1 /*
2 * Copyright © 2015 Rob Clark <[email protected]>
3 * SPDX-License-Identifier: MIT
4 *
5 * Authors:
6 * Rob Clark <[email protected]>
7 */
8
9 #include <stdarg.h>
10
11 #include "util/u_math.h"
12 #include "util/u_memory.h"
13 #include "util/u_string.h"
14
15 #include "ir3_compiler.h"
16 #include "ir3_image.h"
17 #include "ir3_nir.h"
18 #include "ir3_shader.h"
19
20 #include "instr-a3xx.h"
21 #include "ir3.h"
22 #include "ir3_context.h"
23
24 static struct ir3_instruction_rpt
rpt_instr(struct ir3_instruction * instr,unsigned nrpt)25 rpt_instr(struct ir3_instruction *instr, unsigned nrpt)
26 {
27 struct ir3_instruction_rpt dst = {{0}};
28
29 for (unsigned i = 0; i < nrpt; ++i)
30 dst.rpts[i] = instr;
31
32 return dst;
33 }
34
35 static void
cp_instrs(struct ir3_instruction * dst[],struct ir3_instruction * instrs[],unsigned n)36 cp_instrs(struct ir3_instruction *dst[], struct ir3_instruction *instrs[],
37 unsigned n)
38 {
39 for (unsigned i = 0; i < n; ++i)
40 dst[i] = instrs[i];
41 }
42
43 static struct ir3_instruction_rpt
create_immed_rpt(struct ir3_block * block,unsigned nrpt,unsigned val)44 create_immed_rpt(struct ir3_block *block, unsigned nrpt, unsigned val)
45 {
46 return rpt_instr(create_immed(block, val), nrpt);
47 }
48
49 static struct ir3_instruction_rpt
create_immed_shared_rpt(struct ir3_block * block,unsigned nrpt,uint32_t val,bool shared)50 create_immed_shared_rpt(struct ir3_block *block, unsigned nrpt, uint32_t val,
51 bool shared)
52 {
53 return rpt_instr(create_immed_shared(block, val, shared), nrpt);
54 }
55
56 static struct ir3_instruction_rpt
create_immed_typed_rpt(struct ir3_block * block,unsigned nrpt,unsigned val,type_t type)57 create_immed_typed_rpt(struct ir3_block *block, unsigned nrpt, unsigned val,
58 type_t type)
59 {
60 return rpt_instr(create_immed_typed(block, val, type), nrpt);
61 }
62
63 static inline struct ir3_instruction_rpt
create_immed_typed_shared_rpt(struct ir3_block * block,unsigned nrpt,uint32_t val,type_t type,bool shared)64 create_immed_typed_shared_rpt(struct ir3_block *block, unsigned nrpt,
65 uint32_t val, type_t type, bool shared)
66 {
67 return rpt_instr(create_immed_typed_shared(block, val, type, shared), nrpt);
68 }
69
70 static void
set_instr_flags(struct ir3_instruction * instrs[],unsigned n,ir3_instruction_flags flags)71 set_instr_flags(struct ir3_instruction *instrs[], unsigned n,
72 ir3_instruction_flags flags)
73 {
74 for (unsigned i = 0; i < n; ++i)
75 instrs[i]->flags |= flags;
76 }
77
78 static void
set_cat1_round(struct ir3_instruction * instrs[],unsigned n,round_t round)79 set_cat1_round(struct ir3_instruction *instrs[], unsigned n, round_t round)
80 {
81 for (unsigned i = 0; i < n; ++i)
82 instrs[i]->cat1.round = round;
83 }
84
85 static void
set_cat2_condition(struct ir3_instruction * instrs[],unsigned n,unsigned condition)86 set_cat2_condition(struct ir3_instruction *instrs[], unsigned n,
87 unsigned condition)
88 {
89 for (unsigned i = 0; i < n; ++i)
90 instrs[i]->cat2.condition = condition;
91 }
92
93 static void
set_dst_flags(struct ir3_instruction * instrs[],unsigned n,ir3_register_flags flags)94 set_dst_flags(struct ir3_instruction *instrs[], unsigned n,
95 ir3_register_flags flags)
96 {
97 for (unsigned i = 0; i < n; ++i)
98 instrs[i]->dsts[0]->flags |= flags;
99 }
100
101 void
ir3_handle_nonuniform(struct ir3_instruction * instr,nir_intrinsic_instr * intrin)102 ir3_handle_nonuniform(struct ir3_instruction *instr,
103 nir_intrinsic_instr *intrin)
104 {
105 if (nir_intrinsic_has_access(intrin) &&
106 (nir_intrinsic_access(intrin) & ACCESS_NON_UNIFORM)) {
107 instr->flags |= IR3_INSTR_NONUNIF;
108 }
109 }
110
111 void
ir3_handle_bindless_cat6(struct ir3_instruction * instr,nir_src rsrc)112 ir3_handle_bindless_cat6(struct ir3_instruction *instr, nir_src rsrc)
113 {
114 nir_intrinsic_instr *intrin = ir3_bindless_resource(rsrc);
115 if (!intrin)
116 return;
117
118 instr->flags |= IR3_INSTR_B;
119 instr->cat6.base = nir_intrinsic_desc_set(intrin);
120 }
121
122 static struct ir3_instruction *
create_input(struct ir3_context * ctx,unsigned compmask)123 create_input(struct ir3_context *ctx, unsigned compmask)
124 {
125 struct ir3_instruction *in;
126
127 in = ir3_instr_create(ctx->in_block, OPC_META_INPUT, 1, 0);
128 in->input.sysval = ~0;
129 __ssa_dst(in)->wrmask = compmask;
130
131 array_insert(ctx->ir, ctx->ir->inputs, in);
132
133 return in;
134 }
135
136 static struct ir3_instruction_rpt
create_frag_input(struct ir3_context * ctx,struct ir3_instruction * coord,unsigned n,unsigned ncomp)137 create_frag_input(struct ir3_context *ctx, struct ir3_instruction *coord,
138 unsigned n, unsigned ncomp)
139 {
140 struct ir3_block *block = ctx->block;
141 struct ir3_instruction_rpt instr;
142 /* packed inloc is fixed up later: */
143 struct ir3_instruction_rpt inloc;
144
145 for (unsigned i = 0; i < ncomp; i++)
146 inloc.rpts[i] = create_immed(block, n + i);
147
148 if (coord) {
149 instr =
150 ir3_BARY_F_rpt(block, ncomp, inloc, 0, rpt_instr(coord, ncomp), 0);
151 } else if (ctx->compiler->flat_bypass) {
152 if (ctx->compiler->gen >= 6) {
153 instr = ir3_FLAT_B_rpt(block, ncomp, inloc, 0, inloc, 0);
154 } else {
155 for (unsigned i = 0; i < ncomp; i++) {
156 instr.rpts[i] =
157 ir3_LDLV(block, inloc.rpts[i], 0, create_immed(block, 1), 0);
158 instr.rpts[i]->cat6.type = TYPE_U32;
159 instr.rpts[i]->cat6.iim_val = 1;
160 }
161 }
162 } else {
163 instr = ir3_BARY_F_rpt(block, ncomp, inloc, 0,
164 rpt_instr(ctx->ij[IJ_PERSP_PIXEL], ncomp), 0);
165
166 for (unsigned i = 0; i < ncomp; i++)
167 instr.rpts[i]->srcs[1]->wrmask = 0x3;
168 }
169
170 return instr;
171 }
172
173 static struct ir3_instruction *
create_driver_param(struct ir3_context * ctx,enum ir3_driver_param dp)174 create_driver_param(struct ir3_context *ctx, enum ir3_driver_param dp)
175 {
176 /* first four vec4 sysval's reserved for UBOs: */
177 /* NOTE: dp is in scalar, but there can be >4 dp components: */
178 const struct ir3_const_state *const_state = ir3_const_state(ctx->so);
179 unsigned n = const_state->offsets.driver_param;
180 unsigned r = regid(n + dp / 4, dp % 4);
181 return create_uniform(ctx->block, r);
182 }
183
184 static struct ir3_instruction *
create_driver_param_indirect(struct ir3_context * ctx,enum ir3_driver_param dp,struct ir3_instruction * address)185 create_driver_param_indirect(struct ir3_context *ctx, enum ir3_driver_param dp,
186 struct ir3_instruction *address)
187 {
188 /* first four vec4 sysval's reserved for UBOs: */
189 /* NOTE: dp is in scalar, but there can be >4 dp components: */
190 const struct ir3_const_state *const_state = ir3_const_state(ctx->so);
191 unsigned n = const_state->offsets.driver_param;
192 return create_uniform_indirect(ctx->block, n * 4 + dp, TYPE_U32, address);
193 }
194
195 /*
196 * Adreno's comparisons produce a 1 for true and 0 for false, in either 16 or
197 * 32-bit registers. We use NIR's 1-bit integers to represent bools, and
198 * trust that we will only see and/or/xor on those 1-bit values, so we can
199 * safely store NIR i1s in a 32-bit reg while always containing either a 1 or
200 * 0.
201 */
202
203 /*
204 * alu/sfu instructions:
205 */
206
207 static struct ir3_instruction_rpt
create_cov(struct ir3_context * ctx,unsigned nrpt,struct ir3_instruction_rpt src,unsigned src_bitsize,nir_op op)208 create_cov(struct ir3_context *ctx, unsigned nrpt,
209 struct ir3_instruction_rpt src, unsigned src_bitsize, nir_op op)
210 {
211 type_t src_type, dst_type;
212
213 switch (op) {
214 case nir_op_f2f32:
215 case nir_op_f2f16_rtne:
216 case nir_op_f2f16_rtz:
217 case nir_op_f2f16:
218 case nir_op_f2i32:
219 case nir_op_f2i16:
220 case nir_op_f2i8:
221 case nir_op_f2u32:
222 case nir_op_f2u16:
223 case nir_op_f2u8:
224 switch (src_bitsize) {
225 case 32:
226 src_type = TYPE_F32;
227 break;
228 case 16:
229 src_type = TYPE_F16;
230 break;
231 default:
232 ir3_context_error(ctx, "invalid src bit size: %u", src_bitsize);
233 }
234 break;
235
236 case nir_op_i2f32:
237 case nir_op_i2f16:
238 case nir_op_i2i32:
239 case nir_op_i2i16:
240 case nir_op_i2i8:
241 switch (src_bitsize) {
242 case 32:
243 src_type = TYPE_S32;
244 break;
245 case 16:
246 src_type = TYPE_S16;
247 break;
248 case 8:
249 src_type = TYPE_U8;
250 break;
251 default:
252 ir3_context_error(ctx, "invalid src bit size: %u", src_bitsize);
253 }
254 break;
255
256 case nir_op_u2f32:
257 case nir_op_u2f16:
258 case nir_op_u2u32:
259 case nir_op_u2u16:
260 case nir_op_u2u8:
261 switch (src_bitsize) {
262 case 32:
263 src_type = TYPE_U32;
264 break;
265 case 16:
266 src_type = TYPE_U16;
267 break;
268 case 8:
269 src_type = TYPE_U8;
270 break;
271 default:
272 ir3_context_error(ctx, "invalid src bit size: %u", src_bitsize);
273 }
274 break;
275
276 case nir_op_b2f16:
277 case nir_op_b2f32:
278 case nir_op_b2i8:
279 case nir_op_b2i16:
280 case nir_op_b2i32:
281 src_type = ctx->compiler->bool_type;
282 break;
283
284 default:
285 ir3_context_error(ctx, "invalid conversion op: %u", op);
286 }
287
288 switch (op) {
289 case nir_op_f2f32:
290 case nir_op_i2f32:
291 case nir_op_u2f32:
292 case nir_op_b2f32:
293 dst_type = TYPE_F32;
294 break;
295
296 case nir_op_f2f16_rtne:
297 case nir_op_f2f16_rtz:
298 case nir_op_f2f16:
299 case nir_op_i2f16:
300 case nir_op_u2f16:
301 case nir_op_b2f16:
302 dst_type = TYPE_F16;
303 break;
304
305 case nir_op_f2i32:
306 case nir_op_i2i32:
307 case nir_op_b2i32:
308 dst_type = TYPE_S32;
309 break;
310
311 case nir_op_f2i16:
312 case nir_op_i2i16:
313 case nir_op_b2i16:
314 dst_type = TYPE_S16;
315 break;
316
317 case nir_op_f2i8:
318 case nir_op_i2i8:
319 case nir_op_b2i8:
320 dst_type = TYPE_U8;
321 break;
322
323 case nir_op_f2u32:
324 case nir_op_u2u32:
325 dst_type = TYPE_U32;
326 break;
327
328 case nir_op_f2u16:
329 case nir_op_u2u16:
330 dst_type = TYPE_U16;
331 break;
332
333 case nir_op_f2u8:
334 case nir_op_u2u8:
335 dst_type = TYPE_U8;
336 break;
337
338 default:
339 ir3_context_error(ctx, "invalid conversion op: %u", op);
340 }
341
342 if (src_type == dst_type)
343 return src;
344
345 /* Zero-extension of 8-bit values doesn't work with `cov`, so simple masking
346 * is used to achieve the result.
347 */
348 if (src_type == TYPE_U8 && full_type(dst_type) == TYPE_U32) {
349 struct ir3_instruction_rpt mask =
350 create_immed_typed_rpt(ctx->block, nrpt, 0xff, TYPE_U8);
351 struct ir3_instruction_rpt cov =
352 ir3_AND_B_rpt(ctx->block, nrpt, src, 0, mask, 0);
353 set_dst_flags(cov.rpts, nrpt, type_flags(dst_type));
354 return cov;
355 }
356
357 /* Conversion of 8-bit values into floating-point values doesn't work with
358 * a simple `cov`, instead the 8-bit values first have to be converted into
359 * corresponding 16-bit values and converted from there.
360 */
361 if (src_type == TYPE_U8 && full_type(dst_type) == TYPE_F32) {
362 assert(op == nir_op_u2f16 || op == nir_op_i2f16 ||
363 op == nir_op_u2f32 || op == nir_op_i2f32);
364
365 struct ir3_instruction_rpt cov;
366 if (op == nir_op_u2f16 || op == nir_op_u2f32) {
367 struct ir3_instruction_rpt mask =
368 create_immed_typed_rpt(ctx->block, nrpt, 0xff, TYPE_U8);
369 cov = ir3_AND_B_rpt(ctx->block, nrpt, src, 0, mask, 0);
370 set_dst_flags(cov.rpts, nrpt, IR3_REG_HALF);
371 cov = ir3_COV_rpt(ctx->block, nrpt, cov, TYPE_U16, dst_type);
372 } else {
373 cov = ir3_COV_rpt(ctx->block, nrpt, src, TYPE_U8, TYPE_S16);
374 cov = ir3_COV_rpt(ctx->block, nrpt, cov, TYPE_S16, dst_type);
375 }
376 return cov;
377 }
378
379 /* Conversion of floating-point values to 8-bit values also doesn't work
380 * through a single `cov`, instead the conversion has to go through the
381 * corresponding 16-bit type that's then truncated.
382 */
383 if (full_type(src_type) == TYPE_F32 && dst_type == TYPE_U8) {
384 assert(op == nir_op_f2u8 || op == nir_op_f2i8);
385
386 type_t intermediate_type = op == nir_op_f2u8 ? TYPE_U16 : TYPE_S16;
387 struct ir3_instruction_rpt cov =
388 ir3_COV_rpt(ctx->block, nrpt, src, src_type, intermediate_type);
389 cov = ir3_COV_rpt(ctx->block, nrpt, cov, intermediate_type, TYPE_U8);
390 return cov;
391 }
392
393 struct ir3_instruction_rpt cov =
394 ir3_COV_rpt(ctx->block, nrpt, src, src_type, dst_type);
395
396 if (op == nir_op_f2f16_rtne) {
397 set_cat1_round(cov.rpts, nrpt, ROUND_EVEN);
398 } else if (op == nir_op_f2f16_rtz) {
399 set_cat1_round(cov.rpts, nrpt, ROUND_ZERO);
400 } else if (dst_type == TYPE_F16 || dst_type == TYPE_F32) {
401 unsigned execution_mode = ctx->s->info.float_controls_execution_mode;
402 nir_alu_type type =
403 dst_type == TYPE_F16 ? nir_type_float16 : nir_type_float32;
404 nir_rounding_mode rounding_mode =
405 nir_get_rounding_mode_from_float_controls(execution_mode, type);
406 if (rounding_mode == nir_rounding_mode_rtne)
407 set_cat1_round(cov.rpts, nrpt, ROUND_EVEN);
408 else if (rounding_mode == nir_rounding_mode_rtz)
409 set_cat1_round(cov.rpts, nrpt, ROUND_ZERO);
410 }
411
412 return cov;
413 }
414
415 /* For shift instructions NIR always has shift amount as 32 bit integer */
416 static struct ir3_instruction_rpt
resize_shift_amount(struct ir3_context * ctx,unsigned nrpt,struct ir3_instruction_rpt src,unsigned bs)417 resize_shift_amount(struct ir3_context *ctx, unsigned nrpt,
418 struct ir3_instruction_rpt src, unsigned bs)
419 {
420 if (bs == 16)
421 return ir3_COV_rpt(ctx->block, nrpt, src, TYPE_U32, TYPE_U16);
422 else if (bs == 8)
423 return ir3_COV_rpt(ctx->block, nrpt, src, TYPE_U32, TYPE_U8);
424 else
425 return src;
426 }
427
428 static void
emit_alu_dot_4x8_as_dp4acc(struct ir3_context * ctx,nir_alu_instr * alu,struct ir3_instruction ** dst,struct ir3_instruction ** src)429 emit_alu_dot_4x8_as_dp4acc(struct ir3_context *ctx, nir_alu_instr *alu,
430 struct ir3_instruction **dst,
431 struct ir3_instruction **src)
432 {
433 if (ctx->compiler->has_compliant_dp4acc) {
434 dst[0] = ir3_DP4ACC(ctx->block, src[0], 0, src[1], 0, src[2], 0);
435
436 /* This is actually the LHS signedness attribute.
437 * IR3_SRC_UNSIGNED ~ unsigned LHS (i.e. OpUDot and OpUDotAccSat).
438 */
439 if (alu->op == nir_op_udot_4x8_uadd ||
440 alu->op == nir_op_udot_4x8_uadd_sat) {
441 dst[0]->cat3.signedness = IR3_SRC_UNSIGNED;
442 } else {
443 dst[0]->cat3.signedness = IR3_SRC_MIXED;
444 }
445
446 /* This is actually the RHS signedness attribute.
447 * IR3_SRC_PACKED_HIGH ~ signed RHS (i.e. OpSDot and OpSDotAccSat).
448 */
449 if (alu->op == nir_op_sdot_4x8_iadd ||
450 alu->op == nir_op_sdot_4x8_iadd_sat) {
451 dst[0]->cat3.packed = IR3_SRC_PACKED_HIGH;
452 } else {
453 dst[0]->cat3.packed = IR3_SRC_PACKED_LOW;
454 }
455
456 if (alu->op == nir_op_udot_4x8_uadd_sat ||
457 alu->op == nir_op_sdot_4x8_iadd_sat ||
458 alu->op == nir_op_sudot_4x8_iadd_sat) {
459 dst[0]->flags |= IR3_INSTR_SAT;
460 }
461 return;
462 }
463
464 struct ir3_instruction *accumulator = NULL;
465 if (alu->op == nir_op_udot_4x8_uadd_sat) {
466 accumulator = create_immed(ctx->block, 0);
467 } else {
468 accumulator = src[2];
469 }
470
471 dst[0] = ir3_DP4ACC(ctx->block, src[0], 0, src[1], 0, accumulator, 0);
472
473 if (alu->op == nir_op_udot_4x8_uadd ||
474 alu->op == nir_op_udot_4x8_uadd_sat) {
475 dst[0]->cat3.signedness = IR3_SRC_UNSIGNED;
476 } else {
477 dst[0]->cat3.signedness = IR3_SRC_MIXED;
478 }
479
480 /* For some reason (sat) doesn't work in unsigned case so
481 * we have to emulate it.
482 */
483 if (alu->op == nir_op_udot_4x8_uadd_sat) {
484 dst[0] = ir3_ADD_U(ctx->block, dst[0], 0, src[2], 0);
485 dst[0]->flags |= IR3_INSTR_SAT;
486 } else if (alu->op == nir_op_sudot_4x8_iadd_sat) {
487 dst[0]->flags |= IR3_INSTR_SAT;
488 }
489 }
490
491 static void
emit_alu_dot_4x8_as_dp2acc(struct ir3_context * ctx,nir_alu_instr * alu,struct ir3_instruction ** dst,struct ir3_instruction ** src)492 emit_alu_dot_4x8_as_dp2acc(struct ir3_context *ctx, nir_alu_instr *alu,
493 struct ir3_instruction **dst,
494 struct ir3_instruction **src)
495 {
496 int signedness;
497 if (alu->op == nir_op_udot_4x8_uadd ||
498 alu->op == nir_op_udot_4x8_uadd_sat) {
499 signedness = IR3_SRC_UNSIGNED;
500 } else {
501 signedness = IR3_SRC_MIXED;
502 }
503
504 struct ir3_instruction *accumulator = NULL;
505 if (alu->op == nir_op_udot_4x8_uadd_sat ||
506 alu->op == nir_op_sudot_4x8_iadd_sat) {
507 accumulator = create_immed(ctx->block, 0);
508 } else {
509 accumulator = src[2];
510 }
511
512 dst[0] = ir3_DP2ACC(ctx->block, src[0], 0, src[1], 0, accumulator, 0);
513 dst[0]->cat3.packed = IR3_SRC_PACKED_LOW;
514 dst[0]->cat3.signedness = signedness;
515
516 dst[0] = ir3_DP2ACC(ctx->block, src[0], 0, src[1], 0, dst[0], 0);
517 dst[0]->cat3.packed = IR3_SRC_PACKED_HIGH;
518 dst[0]->cat3.signedness = signedness;
519
520 if (alu->op == nir_op_udot_4x8_uadd_sat) {
521 dst[0] = ir3_ADD_U(ctx->block, dst[0], 0, src[2], 0);
522 dst[0]->flags |= IR3_INSTR_SAT;
523 } else if (alu->op == nir_op_sudot_4x8_iadd_sat) {
524 dst[0] = ir3_ADD_S(ctx->block, dst[0], 0, src[2], 0);
525 dst[0]->flags |= IR3_INSTR_SAT;
526 }
527 }
528
529 static bool
all_sat_compatible(struct ir3_instruction * instrs[],unsigned n)530 all_sat_compatible(struct ir3_instruction *instrs[], unsigned n)
531 {
532 for (unsigned i = 0; i < n; i++) {
533 if (!is_sat_compatible(instrs[i]->opc))
534 return false;
535 }
536
537 return true;
538 }
539
540 /* Is src the only use of its def, taking components into account. */
541 static bool
is_unique_use(nir_src * src)542 is_unique_use(nir_src *src)
543 {
544 nir_def *def = src->ssa;
545
546 if (list_is_singular(&def->uses))
547 return true;
548
549 nir_component_mask_t src_read_mask = nir_src_components_read(src);
550
551 nir_foreach_use (use, def) {
552 if (use == src)
553 continue;
554
555 if (nir_src_components_read(use) & src_read_mask)
556 return false;
557 }
558
559 return true;
560 }
561
562 static void
emit_alu(struct ir3_context * ctx,nir_alu_instr * alu)563 emit_alu(struct ir3_context *ctx, nir_alu_instr *alu)
564 {
565 const nir_op_info *info = &nir_op_infos[alu->op];
566 struct ir3_instruction_rpt dst, src[info->num_inputs];
567 unsigned bs[info->num_inputs]; /* bit size */
568 struct ir3_block *b = ctx->block;
569 unsigned dst_sz;
570 unsigned dst_bitsize = ir3_bitsize(ctx, alu->def.bit_size);
571 type_t dst_type = type_uint_size(dst_bitsize);
572
573 dst_sz = alu->def.num_components;
574 assert(dst_sz == 1 || ir3_supports_vectorized_nir_op(alu->op));
575
576 bool use_shared = !alu->def.divergent &&
577 ctx->compiler->has_scalar_alu &&
578 /* it probably isn't worth emulating these with scalar-only ops */
579 alu->op != nir_op_udot_4x8_uadd &&
580 alu->op != nir_op_udot_4x8_uadd_sat &&
581 alu->op != nir_op_sdot_4x8_iadd &&
582 alu->op != nir_op_sdot_4x8_iadd_sat &&
583 alu->op != nir_op_sudot_4x8_iadd &&
584 alu->op != nir_op_sudot_4x8_iadd_sat &&
585 /* not supported in HW, we have to fall back to normal registers */
586 alu->op != nir_op_ffma;
587
588 struct ir3_instruction **def = ir3_get_def(ctx, &alu->def, dst_sz);
589
590 /* Vectors are special in that they have non-scalarized writemasks,
591 * and just take the first swizzle channel for each argument in
592 * order into each writemask channel.
593 */
594 if ((alu->op == nir_op_vec2) || (alu->op == nir_op_vec3) ||
595 (alu->op == nir_op_vec4) || (alu->op == nir_op_vec8) ||
596 (alu->op == nir_op_vec16)) {
597 for (int i = 0; i < info->num_inputs; i++) {
598 nir_alu_src *asrc = &alu->src[i];
599 struct ir3_instruction *src =
600 ir3_get_src_shared(ctx, &asrc->src, use_shared)[asrc->swizzle[0]];
601 compile_assert(ctx, src);
602 def[i] = ir3_MOV(b, src, dst_type);
603 }
604
605 ir3_instr_create_rpt(def, info->num_inputs);
606 ir3_put_def(ctx, &alu->def);
607 return;
608 }
609
610 assert(dst_sz <= ARRAY_SIZE(src[0].rpts));
611
612 for (int i = 0; i < info->num_inputs; i++) {
613 nir_alu_src *asrc = &alu->src[i];
614 struct ir3_instruction *const *input_src =
615 ir3_get_src_shared(ctx, &asrc->src, use_shared);
616 bs[i] = nir_src_bit_size(asrc->src);
617
618 for (unsigned rpt = 0; rpt < dst_sz; rpt++) {
619 src[i].rpts[rpt] = input_src[asrc->swizzle[rpt]];
620 compile_assert(ctx, src[i].rpts[rpt]);
621 }
622 }
623
624 switch (alu->op) {
625 case nir_op_mov:
626 dst = ir3_MOV_rpt(b, dst_sz, src[0], dst_type);
627 break;
628
629 case nir_op_f2f32:
630 case nir_op_f2f16_rtne:
631 case nir_op_f2f16_rtz:
632 case nir_op_f2f16:
633 case nir_op_f2i32:
634 case nir_op_f2i16:
635 case nir_op_f2i8:
636 case nir_op_f2u32:
637 case nir_op_f2u16:
638 case nir_op_f2u8:
639 case nir_op_i2f32:
640 case nir_op_i2f16:
641 case nir_op_i2i32:
642 case nir_op_i2i16:
643 case nir_op_i2i8:
644 case nir_op_u2f32:
645 case nir_op_u2f16:
646 case nir_op_u2u32:
647 case nir_op_u2u16:
648 case nir_op_u2u8:
649 case nir_op_b2f16:
650 case nir_op_b2f32:
651 case nir_op_b2i8:
652 case nir_op_b2i16:
653 case nir_op_b2i32:
654 dst = create_cov(ctx, dst_sz, src[0], bs[0], alu->op);
655 break;
656
657 case nir_op_fquantize2f16:
658 dst = create_cov(ctx, dst_sz,
659 create_cov(ctx, dst_sz, src[0], 32, nir_op_f2f16_rtne),
660 16, nir_op_f2f32);
661 break;
662
663 case nir_op_b2b1:
664 /* b2b1 will appear when translating from
665 *
666 * - nir_intrinsic_load_shared of a 32-bit 0/~0 value.
667 * - nir_intrinsic_load_constant of a 32-bit 0/~0 value
668 *
669 * A negate can turn those into a 1 or 0 for us.
670 */
671 dst = ir3_ABSNEG_S_rpt(b, dst_sz, src[0], IR3_REG_SNEG);
672 break;
673
674 case nir_op_b2b32:
675 /* b2b32 will appear when converting our 1-bit bools to a store_shared
676 * argument.
677 *
678 * A negate can turn those into a ~0 for us.
679 */
680 dst = ir3_ABSNEG_S_rpt(b, dst_sz, src[0], IR3_REG_SNEG);
681 break;
682
683 case nir_op_fneg:
684 dst = ir3_ABSNEG_F_rpt(b, dst_sz, src[0], IR3_REG_FNEG);
685 break;
686 case nir_op_fabs:
687 dst = ir3_ABSNEG_F_rpt(b, dst_sz, src[0], IR3_REG_FABS);
688 break;
689 case nir_op_fmax:
690 dst = ir3_MAX_F_rpt(b, dst_sz, src[0], 0, src[1], 0);
691 break;
692 case nir_op_fmin:
693 dst = ir3_MIN_F_rpt(b, dst_sz, src[0], 0, src[1], 0);
694 break;
695 case nir_op_fsat:
696 /* if there is just a single use of the src, and it supports
697 * (sat) bit, we can just fold the (sat) flag back to the
698 * src instruction and create a mov. This is easier for cp
699 * to eliminate.
700 */
701 if (all_sat_compatible(src[0].rpts, dst_sz) &&
702 is_unique_use(&alu->src[0].src)) {
703 set_instr_flags(src[0].rpts, dst_sz, IR3_INSTR_SAT);
704 dst = ir3_MOV_rpt(b, dst_sz, src[0], dst_type);
705 } else {
706 /* otherwise generate a max.f that saturates.. blob does
707 * similar (generating a cat2 mov using max.f)
708 */
709 dst = ir3_MAX_F_rpt(b, dst_sz, src[0], 0, src[0], 0);
710 set_instr_flags(dst.rpts, dst_sz, IR3_INSTR_SAT);
711 }
712 break;
713 case nir_op_fmul:
714 dst = ir3_MUL_F_rpt(b, dst_sz, src[0], 0, src[1], 0);
715 break;
716 case nir_op_fadd:
717 dst = ir3_ADD_F_rpt(b, dst_sz, src[0], 0, src[1], 0);
718 break;
719 case nir_op_fsub:
720 dst = ir3_ADD_F_rpt(b, dst_sz, src[0], 0, src[1], IR3_REG_FNEG);
721 break;
722 case nir_op_ffma:
723 dst = ir3_MAD_F32_rpt(b, dst_sz, src[0], 0, src[1], 0, src[2], 0);
724 break;
725 case nir_op_flt:
726 dst = ir3_CMPS_F_rpt(b, dst_sz, src[0], 0, src[1], 0);
727 set_cat2_condition(dst.rpts, dst_sz, IR3_COND_LT);
728 break;
729 case nir_op_fge:
730 dst = ir3_CMPS_F_rpt(b, dst_sz, src[0], 0, src[1], 0);
731 set_cat2_condition(dst.rpts, dst_sz, IR3_COND_GE);
732 break;
733 case nir_op_feq:
734 dst = ir3_CMPS_F_rpt(b, dst_sz, src[0], 0, src[1], 0);
735 set_cat2_condition(dst.rpts, dst_sz, IR3_COND_EQ);
736 break;
737 case nir_op_fneu:
738 dst = ir3_CMPS_F_rpt(b, dst_sz, src[0], 0, src[1], 0);
739 set_cat2_condition(dst.rpts, dst_sz, IR3_COND_NE);
740 break;
741 case nir_op_fceil:
742 dst = ir3_CEIL_F_rpt(b, dst_sz, src[0], 0);
743 break;
744 case nir_op_ffloor:
745 dst = ir3_FLOOR_F_rpt(b, dst_sz, src[0], 0);
746 break;
747 case nir_op_ftrunc:
748 dst = ir3_TRUNC_F_rpt(b, dst_sz, src[0], 0);
749 break;
750 case nir_op_fround_even:
751 dst = ir3_RNDNE_F_rpt(b, dst_sz, src[0], 0);
752 break;
753 case nir_op_fsign:
754 dst = ir3_SIGN_F_rpt(b, dst_sz, src[0], 0);
755 break;
756
757 case nir_op_fsin:
758 dst = ir3_SIN_rpt(b, dst_sz, src[0], 0);
759 break;
760 case nir_op_fcos:
761 dst = ir3_COS_rpt(b, dst_sz, src[0], 0);
762 break;
763 case nir_op_frsq:
764 dst = ir3_RSQ_rpt(b, dst_sz, src[0], 0);
765 break;
766 case nir_op_frcp:
767 assert(dst_sz == 1);
768 dst.rpts[0] = ir3_RCP(b, src[0].rpts[0], 0);
769 break;
770 case nir_op_flog2:
771 dst = ir3_LOG2_rpt(b, dst_sz, src[0], 0);
772 break;
773 case nir_op_fexp2:
774 dst = ir3_EXP2_rpt(b, dst_sz, src[0], 0);
775 break;
776 case nir_op_fsqrt:
777 dst = ir3_SQRT_rpt(b, dst_sz, src[0], 0);
778 break;
779
780 case nir_op_iabs:
781 dst = ir3_ABSNEG_S_rpt(b, dst_sz, src[0], IR3_REG_SABS);
782 break;
783 case nir_op_iadd:
784 dst = ir3_ADD_U_rpt(b, dst_sz, src[0], 0, src[1], 0);
785 break;
786 case nir_op_ihadd:
787 dst = ir3_ADD_S_rpt(b, dst_sz, src[0], 0, src[1], 0);
788 set_dst_flags(dst.rpts, dst_sz, IR3_REG_EI);
789 break;
790 case nir_op_uhadd:
791 dst = ir3_ADD_U_rpt(b, dst_sz, src[0], 0, src[1], 0);
792 set_dst_flags(dst.rpts, dst_sz, IR3_REG_EI);
793 break;
794 case nir_op_iand:
795 dst = ir3_AND_B_rpt(b, dst_sz, src[0], 0, src[1], 0);
796 break;
797 case nir_op_imax:
798 dst = ir3_MAX_S_rpt(b, dst_sz, src[0], 0, src[1], 0);
799 break;
800 case nir_op_umax:
801 dst = ir3_MAX_U_rpt(b, dst_sz, src[0], 0, src[1], 0);
802 break;
803 case nir_op_imin:
804 dst = ir3_MIN_S_rpt(b, dst_sz, src[0], 0, src[1], 0);
805 break;
806 case nir_op_umin:
807 dst = ir3_MIN_U_rpt(b, dst_sz, src[0], 0, src[1], 0);
808 break;
809 case nir_op_umul_low:
810 dst = ir3_MULL_U_rpt(b, dst_sz, src[0], 0, src[1], 0);
811 break;
812 case nir_op_imadsh_mix16:
813 if (use_shared) {
814 struct ir3_instruction_rpt sixteen =
815 create_immed_shared_rpt(b, dst_sz, 16, true);
816 struct ir3_instruction_rpt src1 =
817 ir3_SHR_B_rpt(b, dst_sz, src[1], 0, sixteen, 0);
818 struct ir3_instruction_rpt mul =
819 ir3_MULL_U_rpt(b, dst_sz, src[0], 0, src1, 0);
820 dst = ir3_ADD_U_rpt(b, dst_sz,
821 ir3_SHL_B_rpt(b, dst_sz, mul, 0, sixteen, 0), 0,
822 src[2], 0);
823 } else {
824 dst = ir3_MADSH_M16_rpt(b, dst_sz, src[0], 0, src[1], 0, src[2], 0);
825 }
826 break;
827 case nir_op_imad24_ir3:
828 if (use_shared) {
829 dst = ir3_ADD_U_rpt(b, dst_sz,
830 ir3_MUL_U24_rpt(b, dst_sz, src[0], 0, src[1], 0),
831 0, src[2], 0);
832 } else {
833 dst = ir3_MAD_S24_rpt(b, dst_sz, src[0], 0, src[1], 0, src[2], 0);
834 }
835 break;
836 case nir_op_imul:
837 compile_assert(ctx, alu->def.bit_size == 8 || alu->def.bit_size == 16);
838 dst = ir3_MUL_S24_rpt(b, dst_sz, src[0], 0, src[1], 0);
839 break;
840 case nir_op_imul24:
841 dst = ir3_MUL_S24_rpt(b, dst_sz, src[0], 0, src[1], 0);
842 break;
843 case nir_op_ineg:
844 dst = ir3_ABSNEG_S_rpt(b, dst_sz, src[0], IR3_REG_SNEG);
845 break;
846 case nir_op_inot:
847 if (bs[0] == 1) {
848 struct ir3_instruction_rpt one = create_immed_typed_shared_rpt(
849 ctx->block, dst_sz, 1, ctx->compiler->bool_type, use_shared);
850 dst = ir3_SUB_U_rpt(b, dst_sz, one, 0, src[0], 0);
851 } else {
852 dst = ir3_NOT_B_rpt(ctx->block, dst_sz, src[0], 0);
853 }
854 break;
855 case nir_op_ior:
856 dst = ir3_OR_B_rpt(b, dst_sz, src[0], 0, src[1], 0);
857 break;
858 case nir_op_ishl:
859 dst = ir3_SHL_B_rpt(ctx->block, dst_sz, src[0], 0,
860 resize_shift_amount(ctx, dst_sz, src[1], bs[0]), 0);
861 break;
862 case nir_op_ishr:
863 dst = ir3_ASHR_B_rpt(ctx->block, dst_sz, src[0], 0,
864 resize_shift_amount(ctx, dst_sz, src[1], bs[0]), 0);
865 break;
866 case nir_op_isub:
867 dst = ir3_SUB_U_rpt(b, dst_sz, src[0], 0, src[1], 0);
868 break;
869 case nir_op_ixor:
870 dst = ir3_XOR_B_rpt(b, dst_sz, src[0], 0, src[1], 0);
871 break;
872 case nir_op_ushr:
873 dst = ir3_SHR_B_rpt(ctx->block, dst_sz, src[0], 0,
874 resize_shift_amount(ctx, dst_sz, src[1], bs[0]), 0);
875 break;
876 case nir_op_ilt:
877 dst = ir3_CMPS_S_rpt(b, dst_sz, src[0], 0, src[1], 0);
878 set_cat2_condition(dst.rpts, dst_sz, IR3_COND_LT);
879 break;
880 case nir_op_ige:
881 dst = ir3_CMPS_S_rpt(b, dst_sz, src[0], 0, src[1], 0);
882 set_cat2_condition(dst.rpts, dst_sz, IR3_COND_GE);
883 break;
884 case nir_op_ieq:
885 dst = ir3_CMPS_S_rpt(b, dst_sz, src[0], 0, src[1], 0);
886 set_cat2_condition(dst.rpts, dst_sz, IR3_COND_EQ);
887 break;
888 case nir_op_ine:
889 dst = ir3_CMPS_S_rpt(b, dst_sz, src[0], 0, src[1], 0);
890 set_cat2_condition(dst.rpts, dst_sz, IR3_COND_NE);
891 break;
892 case nir_op_ult:
893 dst = ir3_CMPS_U_rpt(b, dst_sz, src[0], 0, src[1], 0);
894 set_cat2_condition(dst.rpts, dst_sz, IR3_COND_LT);
895 break;
896 case nir_op_uge:
897 dst = ir3_CMPS_U_rpt(b, dst_sz, src[0], 0, src[1], 0);
898 set_cat2_condition(dst.rpts, dst_sz, IR3_COND_GE);
899 break;
900
901 case nir_op_bcsel: {
902 struct ir3_instruction_rpt conds;
903
904 compile_assert(ctx, bs[1] == bs[2]);
905
906 /* TODO: repeat the covs when possible. */
907 for (unsigned rpt = 0; rpt < dst_sz; ++rpt) {
908 struct ir3_instruction *cond =
909 ir3_get_cond_for_nonzero_compare(src[0].rpts[rpt]);
910
911 /* The condition's size has to match the other two arguments' size, so
912 * convert down if necessary.
913 *
914 * Single hashtable is fine, because the conversion will either be
915 * 16->32 or 32->16, but never both
916 */
917 if (is_half(src[1].rpts[rpt]) != is_half(cond)) {
918 struct hash_entry *prev_entry = _mesa_hash_table_search(
919 ctx->sel_cond_conversions, src[0].rpts[rpt]);
920 if (prev_entry) {
921 cond = prev_entry->data;
922 } else {
923 if (is_half(cond)) {
924 if (bs[0] == 8) {
925 /* Zero-extension of an 8-bit value has to be done through
926 * masking, as in create_cov.
927 */
928 struct ir3_instruction *mask =
929 create_immed_typed(b, 0xff, TYPE_U8);
930 cond = ir3_AND_B(b, cond, 0, mask, 0);
931 } else {
932 cond = ir3_COV(b, cond, TYPE_U16, TYPE_U32);
933 }
934 } else {
935 cond = ir3_COV(b, cond, TYPE_U32, TYPE_U16);
936 }
937 _mesa_hash_table_insert(ctx->sel_cond_conversions,
938 src[0].rpts[rpt], cond);
939 }
940 }
941 conds.rpts[rpt] = cond;
942 }
943
944 if (is_half(src[1].rpts[0]))
945 dst = ir3_SEL_B16_rpt(b, dst_sz, src[1], 0, conds, 0, src[2], 0);
946 else
947 dst = ir3_SEL_B32_rpt(b, dst_sz, src[1], 0, conds, 0, src[2], 0);
948 break;
949 }
950 case nir_op_bit_count: {
951 if (ctx->compiler->gen < 5 ||
952 (src[0].rpts[0]->dsts[0]->flags & IR3_REG_HALF)) {
953 dst = ir3_CBITS_B_rpt(b, dst_sz, src[0], 0);
954 break;
955 }
956
957 // We need to do this 16b at a time on a5xx+a6xx. Once half-precision
958 // support is in place, this should probably move to a NIR lowering pass:
959 struct ir3_instruction_rpt hi, lo;
960
961 hi = ir3_COV_rpt(
962 b, dst_sz,
963 ir3_SHR_B_rpt(b, dst_sz, src[0], 0,
964 create_immed_shared_rpt(b, dst_sz, 16, use_shared), 0),
965 TYPE_U32, TYPE_U16);
966 lo = ir3_COV_rpt(b, dst_sz, src[0], TYPE_U32, TYPE_U16);
967
968 hi = ir3_CBITS_B_rpt(b, dst_sz, hi, 0);
969 lo = ir3_CBITS_B_rpt(b, dst_sz, lo, 0);
970
971 // TODO maybe the builders should default to making dst half-precision
972 // if the src's were half precision, to make this less awkward.. otoh
973 // we should probably just do this lowering in NIR.
974 set_dst_flags(hi.rpts, dst_sz, IR3_REG_HALF);
975 set_dst_flags(lo.rpts, dst_sz, IR3_REG_HALF);
976
977 dst = ir3_ADD_S_rpt(b, dst_sz, hi, 0, lo, 0);
978 set_dst_flags(dst.rpts, dst_sz, IR3_REG_HALF);
979 dst = ir3_COV_rpt(b, dst_sz, dst, TYPE_U16, TYPE_U32);
980 break;
981 }
982 case nir_op_ifind_msb: {
983 struct ir3_instruction_rpt cmp;
984 dst = ir3_CLZ_S_rpt(b, dst_sz, src[0], 0);
985 cmp =
986 ir3_CMPS_S_rpt(b, dst_sz, dst, 0,
987 create_immed_shared_rpt(b, dst_sz, 0, use_shared), 0);
988 set_cat2_condition(cmp.rpts, dst_sz, IR3_COND_GE);
989 dst = ir3_SEL_B32_rpt(
990 b, dst_sz,
991 ir3_SUB_U_rpt(b, dst_sz,
992 create_immed_shared_rpt(b, dst_sz, 31, use_shared), 0,
993 dst, 0),
994 0, cmp, 0, dst, 0);
995 break;
996 }
997 case nir_op_ufind_msb:
998 dst = ir3_CLZ_B_rpt(b, dst_sz, src[0], 0);
999 dst = ir3_SEL_B32_rpt(
1000 b, dst_sz,
1001 ir3_SUB_U_rpt(b, dst_sz,
1002 create_immed_shared_rpt(b, dst_sz, 31, use_shared), 0,
1003 dst, 0),
1004 0, src[0], 0, dst, 0);
1005 break;
1006 case nir_op_find_lsb:
1007 dst = ir3_BFREV_B_rpt(b, dst_sz, src[0], 0);
1008 dst = ir3_CLZ_B_rpt(b, dst_sz, dst, 0);
1009 break;
1010 case nir_op_bitfield_reverse:
1011 dst = ir3_BFREV_B_rpt(b, dst_sz, src[0], 0);
1012 break;
1013
1014 case nir_op_uadd_sat:
1015 dst = ir3_ADD_U_rpt(b, dst_sz, src[0], 0, src[1], 0);
1016 set_instr_flags(dst.rpts, dst_sz, IR3_INSTR_SAT);
1017 break;
1018 case nir_op_iadd_sat:
1019 dst = ir3_ADD_S_rpt(b, dst_sz, src[0], 0, src[1], 0);
1020 set_instr_flags(dst.rpts, dst_sz, IR3_INSTR_SAT);
1021 break;
1022 case nir_op_usub_sat:
1023 dst = ir3_SUB_U_rpt(b, dst_sz, src[0], 0, src[1], 0);
1024 set_instr_flags(dst.rpts, dst_sz, IR3_INSTR_SAT);
1025 break;
1026 case nir_op_isub_sat:
1027 dst = ir3_SUB_S_rpt(b, dst_sz, src[0], 0, src[1], 0);
1028 set_instr_flags(dst.rpts, dst_sz, IR3_INSTR_SAT);
1029 break;
1030
1031 case nir_op_udot_4x8_uadd:
1032 case nir_op_udot_4x8_uadd_sat:
1033 case nir_op_sdot_4x8_iadd:
1034 case nir_op_sdot_4x8_iadd_sat:
1035 case nir_op_sudot_4x8_iadd:
1036 case nir_op_sudot_4x8_iadd_sat: {
1037 assert(dst_sz == 1);
1038
1039 struct ir3_instruction *src_rpt0[] = {src[0].rpts[0], src[1].rpts[0],
1040 src[2].rpts[0]};
1041
1042 if (ctx->compiler->has_dp4acc) {
1043 emit_alu_dot_4x8_as_dp4acc(ctx, alu, dst.rpts, src_rpt0);
1044 } else if (ctx->compiler->has_dp2acc) {
1045 emit_alu_dot_4x8_as_dp2acc(ctx, alu, dst.rpts, src_rpt0);
1046 } else {
1047 ir3_context_error(ctx, "ALU op should have been lowered: %s\n",
1048 nir_op_infos[alu->op].name);
1049 }
1050
1051 break;
1052 }
1053
1054 default:
1055 ir3_context_error(ctx, "Unhandled ALU op: %s\n",
1056 nir_op_infos[alu->op].name);
1057 break;
1058 }
1059
1060 if (nir_alu_type_get_base_type(info->output_type) == nir_type_bool) {
1061 assert(alu->def.bit_size == 1 || alu->op == nir_op_b2b32);
1062 } else {
1063 /* 1-bit values stored in 32-bit registers are only valid for certain
1064 * ALU ops.
1065 */
1066 switch (alu->op) {
1067 case nir_op_mov:
1068 case nir_op_iand:
1069 case nir_op_ior:
1070 case nir_op_ixor:
1071 case nir_op_inot:
1072 case nir_op_bcsel:
1073 break;
1074 default:
1075 compile_assert(ctx, alu->def.bit_size != 1);
1076 }
1077 }
1078
1079 cp_instrs(def, dst.rpts, dst_sz);
1080 ir3_put_def(ctx, &alu->def);
1081 }
1082
1083 static void
emit_intrinsic_load_ubo_ldc(struct ir3_context * ctx,nir_intrinsic_instr * intr,struct ir3_instruction ** dst)1084 emit_intrinsic_load_ubo_ldc(struct ir3_context *ctx, nir_intrinsic_instr *intr,
1085 struct ir3_instruction **dst)
1086 {
1087 struct ir3_block *b = ctx->block;
1088
1089 /* This is only generated for us by nir_lower_ubo_vec4, which leaves base =
1090 * 0.
1091 */
1092 assert(nir_intrinsic_base(intr) == 0);
1093
1094 unsigned ncomp = intr->num_components;
1095 struct ir3_instruction *offset = ir3_get_src(ctx, &intr->src[1])[0];
1096 struct ir3_instruction *idx = ir3_get_src(ctx, &intr->src[0])[0];
1097 struct ir3_instruction *ldc = ir3_LDC(b, idx, 0, offset, 0);
1098 ldc->dsts[0]->wrmask = MASK(ncomp);
1099 ldc->cat6.iim_val = ncomp;
1100 ldc->cat6.d = nir_intrinsic_component(intr);
1101 ldc->cat6.type = utype_def(&intr->def);
1102
1103 ir3_handle_bindless_cat6(ldc, intr->src[0]);
1104 if (ldc->flags & IR3_INSTR_B)
1105 ctx->so->bindless_ubo = true;
1106 ir3_handle_nonuniform(ldc, intr);
1107
1108 if (!intr->def.divergent &&
1109 ctx->compiler->has_scalar_alu) {
1110 ldc->dsts[0]->flags |= IR3_REG_SHARED;
1111 ldc->flags |= IR3_INSTR_U;
1112 }
1113
1114 ir3_split_dest(b, dst, ldc, 0, ncomp);
1115 }
1116
1117 static void
emit_intrinsic_copy_ubo_to_uniform(struct ir3_context * ctx,nir_intrinsic_instr * intr)1118 emit_intrinsic_copy_ubo_to_uniform(struct ir3_context *ctx,
1119 nir_intrinsic_instr *intr)
1120 {
1121 struct ir3_block *b = ctx->block;
1122
1123 unsigned base = nir_intrinsic_base(intr);
1124 unsigned size = nir_intrinsic_range(intr);
1125
1126 struct ir3_instruction *addr1 = ir3_get_addr1(ctx, base);
1127
1128 struct ir3_instruction *offset = ir3_get_src(ctx, &intr->src[1])[0];
1129 struct ir3_instruction *idx = ir3_get_src(ctx, &intr->src[0])[0];
1130 struct ir3_instruction *ldc = ir3_LDC_K(b, idx, 0, offset, 0);
1131 ldc->cat6.iim_val = size;
1132 ldc->barrier_class = ldc->barrier_conflict = IR3_BARRIER_CONST_W;
1133
1134 ir3_handle_bindless_cat6(ldc, intr->src[0]);
1135 if (ldc->flags & IR3_INSTR_B)
1136 ctx->so->bindless_ubo = true;
1137
1138 ir3_instr_set_address(ldc, addr1);
1139
1140 /* The assembler isn't aware of what value a1.x has, so make sure that
1141 * constlen includes the ldc.k here.
1142 */
1143 ctx->so->constlen =
1144 MAX2(ctx->so->constlen, DIV_ROUND_UP(base + size * 4, 4));
1145
1146 array_insert(b, b->keeps, ldc);
1147 }
1148
1149 static void
emit_intrinsic_copy_global_to_uniform(struct ir3_context * ctx,nir_intrinsic_instr * intr)1150 emit_intrinsic_copy_global_to_uniform(struct ir3_context *ctx,
1151 nir_intrinsic_instr *intr)
1152 {
1153 struct ir3_block *b = ctx->block;
1154
1155 unsigned size = nir_intrinsic_range(intr);
1156 unsigned dst = nir_intrinsic_range_base(intr);
1157 unsigned addr_offset = nir_intrinsic_base(intr);
1158 unsigned dst_lo = dst & 0xff;
1159 unsigned dst_hi = dst >> 8;
1160
1161 struct ir3_instruction *a1 = NULL;
1162 if (dst_hi)
1163 a1 = ir3_get_addr1(ctx, dst_hi << 8);
1164
1165 struct ir3_instruction *addr_lo = ir3_get_src(ctx, &intr->src[0])[0];
1166 struct ir3_instruction *addr_hi = ir3_get_src(ctx, &intr->src[0])[1];
1167 struct ir3_instruction *addr = ir3_collect(b, addr_lo, addr_hi);
1168 struct ir3_instruction *ldg = ir3_LDG_K(b, create_immed(b, dst_lo), 0, addr, 0,
1169 create_immed(b, addr_offset), 0,
1170 create_immed(b, size), 0);
1171 ldg->barrier_class = ldg->barrier_conflict = IR3_BARRIER_CONST_W;
1172 ldg->cat6.type = TYPE_U32;
1173
1174 if (a1) {
1175 ir3_instr_set_address(ldg, a1);
1176 ldg->flags |= IR3_INSTR_A1EN;
1177 }
1178
1179 /* The assembler isn't aware of what value a1.x has, so make sure that
1180 * constlen includes the ldg.k here.
1181 */
1182 ctx->so->constlen =
1183 MAX2(ctx->so->constlen, DIV_ROUND_UP(dst + size * 4, 4));
1184
1185 array_insert(b, b->keeps, ldg);
1186 }
1187
1188
1189 /* handles direct/indirect UBO reads: */
1190 static void
emit_intrinsic_load_ubo(struct ir3_context * ctx,nir_intrinsic_instr * intr,struct ir3_instruction ** dst)1191 emit_intrinsic_load_ubo(struct ir3_context *ctx, nir_intrinsic_instr *intr,
1192 struct ir3_instruction **dst)
1193 {
1194 struct ir3_block *b = ctx->block;
1195 struct ir3_instruction *base_lo, *base_hi, *addr, *src0, *src1;
1196 const struct ir3_const_state *const_state = ir3_const_state(ctx->so);
1197 unsigned ubo = regid(const_state->offsets.ubo, 0);
1198 const unsigned ptrsz = ir3_pointer_size(ctx->compiler);
1199
1200 int off = 0;
1201
1202 /* First src is ubo index, which could either be an immed or not: */
1203 src0 = ir3_get_src(ctx, &intr->src[0])[0];
1204 if (is_same_type_mov(src0) && (src0->srcs[0]->flags & IR3_REG_IMMED)) {
1205 base_lo = create_uniform(b, ubo + (src0->srcs[0]->iim_val * ptrsz));
1206 base_hi = create_uniform(b, ubo + (src0->srcs[0]->iim_val * ptrsz) + 1);
1207 } else {
1208 base_lo = create_uniform_indirect(b, ubo, TYPE_U32,
1209 ir3_get_addr0(ctx, src0, ptrsz));
1210 base_hi = create_uniform_indirect(b, ubo + 1, TYPE_U32,
1211 ir3_get_addr0(ctx, src0, ptrsz));
1212
1213 /* NOTE: since relative addressing is used, make sure constlen is
1214 * at least big enough to cover all the UBO addresses, since the
1215 * assembler won't know what the max address reg is.
1216 */
1217 ctx->so->constlen =
1218 MAX2(ctx->so->constlen,
1219 const_state->offsets.ubo + (ctx->s->info.num_ubos * ptrsz));
1220 }
1221
1222 /* note: on 32bit gpu's base_hi is ignored and DCE'd */
1223 addr = base_lo;
1224
1225 if (nir_src_is_const(intr->src[1])) {
1226 off += nir_src_as_uint(intr->src[1]);
1227 } else {
1228 /* For load_ubo_indirect, second src is indirect offset: */
1229 src1 = ir3_get_src(ctx, &intr->src[1])[0];
1230
1231 /* and add offset to addr: */
1232 addr = ir3_ADD_S(b, addr, 0, src1, 0);
1233 }
1234
1235 /* if offset is to large to encode in the ldg, split it out: */
1236 if ((off + (intr->num_components * 4)) > 1024) {
1237 /* split out the minimal amount to improve the odds that
1238 * cp can fit the immediate in the add.s instruction:
1239 */
1240 unsigned off2 = off + (intr->num_components * 4) - 1024;
1241 addr = ir3_ADD_S(b, addr, 0, create_immed(b, off2), 0);
1242 off -= off2;
1243 }
1244
1245 if (ptrsz == 2) {
1246 struct ir3_instruction *carry;
1247
1248 /* handle 32b rollover, ie:
1249 * if (addr < base_lo)
1250 * base_hi++
1251 */
1252 carry = ir3_CMPS_U(b, addr, 0, base_lo, 0);
1253 carry->cat2.condition = IR3_COND_LT;
1254 base_hi = ir3_ADD_S(b, base_hi, 0, carry, 0);
1255
1256 addr = ir3_collect(b, addr, base_hi);
1257 }
1258
1259 for (int i = 0; i < intr->num_components; i++) {
1260 struct ir3_instruction *load =
1261 ir3_LDG(b, addr, 0, create_immed(b, off + i * 4), 0,
1262 create_immed(b, 1), 0); /* num components */
1263 load->cat6.type = TYPE_U32;
1264 dst[i] = load;
1265 }
1266 }
1267
1268 /* Load a kernel param: src[] = { address }. */
1269 static void
emit_intrinsic_load_kernel_input(struct ir3_context * ctx,nir_intrinsic_instr * intr,struct ir3_instruction ** dst)1270 emit_intrinsic_load_kernel_input(struct ir3_context *ctx,
1271 nir_intrinsic_instr *intr,
1272 struct ir3_instruction **dst)
1273 {
1274 const struct ir3_const_state *const_state = ir3_const_state(ctx->so);
1275 struct ir3_block *b = ctx->block;
1276 unsigned offset = nir_intrinsic_base(intr);
1277 unsigned p = regid(const_state->offsets.kernel_params, 0);
1278
1279 struct ir3_instruction *src0 = ir3_get_src(ctx, &intr->src[0])[0];
1280
1281 if (is_same_type_mov(src0) && (src0->srcs[0]->flags & IR3_REG_IMMED)) {
1282 offset += src0->srcs[0]->iim_val;
1283
1284 /* kernel param position is in bytes, but constant space is 32b registers: */
1285 compile_assert(ctx, !(offset & 0x3));
1286
1287 dst[0] = create_uniform(b, p + (offset / 4));
1288 } else {
1289 /* kernel param position is in bytes, but constant space is 32b registers: */
1290 compile_assert(ctx, !(offset & 0x3));
1291
1292 /* TODO we should probably be lowering this in nir, and also handling
1293 * non-32b inputs.. Also we probably don't want to be using
1294 * SP_MODE_CONTROL.CONSTANT_DEMOTION_ENABLE for KERNEL shaders..
1295 */
1296 src0 = ir3_SHR_B(b, src0, 0, create_immed(b, 2), 0);
1297
1298 dst[0] = create_uniform_indirect(b, offset / 4, TYPE_U32,
1299 ir3_get_addr0(ctx, src0, 1));
1300 }
1301 }
1302
1303 /* src[] = { block_index } */
1304 static void
emit_intrinsic_ssbo_size(struct ir3_context * ctx,nir_intrinsic_instr * intr,struct ir3_instruction ** dst)1305 emit_intrinsic_ssbo_size(struct ir3_context *ctx, nir_intrinsic_instr *intr,
1306 struct ir3_instruction **dst)
1307 {
1308 struct ir3_block *b = ctx->block;
1309 struct ir3_instruction *ibo = ir3_ssbo_to_ibo(ctx, intr->src[0]);
1310 struct ir3_instruction *resinfo = ir3_RESINFO(b, ibo, 0);
1311 resinfo->cat6.iim_val = 1;
1312 resinfo->cat6.d = ctx->compiler->gen >= 6 ? 1 : 2;
1313 resinfo->cat6.type = TYPE_U32;
1314 resinfo->cat6.typed = false;
1315 /* resinfo has no writemask and always writes out 3 components */
1316 resinfo->dsts[0]->wrmask = MASK(3);
1317 ir3_handle_bindless_cat6(resinfo, intr->src[0]);
1318 ir3_handle_nonuniform(resinfo, intr);
1319
1320 if (ctx->compiler->gen >= 6) {
1321 ir3_split_dest(b, dst, resinfo, 0, 1);
1322 } else {
1323 /* On a5xx, resinfo returns the low 16 bits of ssbo size in .x and the high 16 bits in .y */
1324 struct ir3_instruction *resinfo_dst[2];
1325 ir3_split_dest(b, resinfo_dst, resinfo, 0, 2);
1326 *dst = ir3_ADD_U(b, ir3_SHL_B(b, resinfo_dst[1], 0, create_immed(b, 16), 0), 0, resinfo_dst[0], 0);
1327 }
1328 }
1329
1330 /* src[] = { offset }. const_index[] = { base } */
1331 static void
emit_intrinsic_load_shared(struct ir3_context * ctx,nir_intrinsic_instr * intr,struct ir3_instruction ** dst)1332 emit_intrinsic_load_shared(struct ir3_context *ctx, nir_intrinsic_instr *intr,
1333 struct ir3_instruction **dst)
1334 {
1335 struct ir3_block *b = ctx->block;
1336 struct ir3_instruction *ldl, *offset;
1337 unsigned base;
1338
1339 offset = ir3_get_src(ctx, &intr->src[0])[0];
1340 base = nir_intrinsic_base(intr);
1341
1342 ldl = ir3_LDL(b, offset, 0, create_immed(b, base), 0,
1343 create_immed(b, intr->num_components), 0);
1344
1345 ldl->cat6.type = utype_def(&intr->def);
1346 ldl->dsts[0]->wrmask = MASK(intr->num_components);
1347
1348 ldl->barrier_class = IR3_BARRIER_SHARED_R;
1349 ldl->barrier_conflict = IR3_BARRIER_SHARED_W;
1350
1351 ir3_split_dest(b, dst, ldl, 0, intr->num_components);
1352 }
1353
1354 /* src[] = { value, offset }. const_index[] = { base, write_mask } */
1355 static void
emit_intrinsic_store_shared(struct ir3_context * ctx,nir_intrinsic_instr * intr)1356 emit_intrinsic_store_shared(struct ir3_context *ctx, nir_intrinsic_instr *intr)
1357 {
1358 struct ir3_block *b = ctx->block;
1359 struct ir3_instruction *stl, *offset;
1360 struct ir3_instruction *const *value;
1361 unsigned base, wrmask, ncomp;
1362
1363 value = ir3_get_src(ctx, &intr->src[0]);
1364 offset = ir3_get_src(ctx, &intr->src[1])[0];
1365
1366 base = nir_intrinsic_base(intr);
1367 wrmask = nir_intrinsic_write_mask(intr);
1368 ncomp = ffs(~wrmask) - 1;
1369
1370 assert(wrmask == BITFIELD_MASK(intr->num_components));
1371
1372 stl = ir3_STL(b, offset, 0, ir3_create_collect(b, value, ncomp), 0,
1373 create_immed(b, ncomp), 0);
1374 stl->cat6.dst_offset = base;
1375 stl->cat6.type = utype_src(intr->src[0]);
1376 stl->barrier_class = IR3_BARRIER_SHARED_W;
1377 stl->barrier_conflict = IR3_BARRIER_SHARED_R | IR3_BARRIER_SHARED_W;
1378
1379 array_insert(b, b->keeps, stl);
1380 }
1381
1382 /* src[] = { offset }. const_index[] = { base } */
1383 static void
emit_intrinsic_load_shared_ir3(struct ir3_context * ctx,nir_intrinsic_instr * intr,struct ir3_instruction ** dst)1384 emit_intrinsic_load_shared_ir3(struct ir3_context *ctx,
1385 nir_intrinsic_instr *intr,
1386 struct ir3_instruction **dst)
1387 {
1388 struct ir3_block *b = ctx->block;
1389 struct ir3_instruction *load, *offset;
1390 unsigned base;
1391
1392 offset = ir3_get_src(ctx, &intr->src[0])[0];
1393 base = nir_intrinsic_base(intr);
1394
1395 load = ir3_LDLW(b, offset, 0, create_immed(b, base), 0,
1396 create_immed(b, intr->num_components), 0);
1397
1398 /* for a650, use LDL for tess ctrl inputs: */
1399 if (ctx->so->type == MESA_SHADER_TESS_CTRL && ctx->compiler->tess_use_shared)
1400 load->opc = OPC_LDL;
1401
1402 load->cat6.type = utype_def(&intr->def);
1403 load->dsts[0]->wrmask = MASK(intr->num_components);
1404
1405 load->barrier_class = IR3_BARRIER_SHARED_R;
1406 load->barrier_conflict = IR3_BARRIER_SHARED_W;
1407
1408 ir3_split_dest(b, dst, load, 0, intr->num_components);
1409 }
1410
1411 /* src[] = { value, offset }. const_index[] = { base } */
1412 static void
emit_intrinsic_store_shared_ir3(struct ir3_context * ctx,nir_intrinsic_instr * intr)1413 emit_intrinsic_store_shared_ir3(struct ir3_context *ctx,
1414 nir_intrinsic_instr *intr)
1415 {
1416 struct ir3_block *b = ctx->block;
1417 struct ir3_instruction *store, *offset;
1418 struct ir3_instruction *const *value;
1419
1420 value = ir3_get_src(ctx, &intr->src[0]);
1421 offset = ir3_get_src(ctx, &intr->src[1])[0];
1422
1423 store = ir3_STLW(b, offset, 0,
1424 ir3_create_collect(b, value, intr->num_components), 0,
1425 create_immed(b, intr->num_components), 0);
1426
1427 /* for a650, use STL for vertex outputs used by tess ctrl shader: */
1428 if (ctx->so->type == MESA_SHADER_VERTEX && ctx->so->key.tessellation &&
1429 ctx->compiler->tess_use_shared)
1430 store->opc = OPC_STL;
1431
1432 store->cat6.dst_offset = nir_intrinsic_base(intr);
1433 store->cat6.type = utype_src(intr->src[0]);
1434 store->barrier_class = IR3_BARRIER_SHARED_W;
1435 store->barrier_conflict = IR3_BARRIER_SHARED_R | IR3_BARRIER_SHARED_W;
1436
1437 array_insert(b, b->keeps, store);
1438 }
1439
1440 /*
1441 * CS shared variable atomic intrinsics
1442 *
1443 * All of the shared variable atomic memory operations read a value from
1444 * memory, compute a new value using one of the operations below, write the
1445 * new value to memory, and return the original value read.
1446 *
1447 * All operations take 2 sources except CompSwap that takes 3. These
1448 * sources represent:
1449 *
1450 * 0: The offset into the shared variable storage region that the atomic
1451 * operation will operate on.
1452 * 1: The data parameter to the atomic function (i.e. the value to add
1453 * in, etc).
1454 * 2: For CompSwap only: the second data parameter.
1455 */
1456 static struct ir3_instruction *
emit_intrinsic_atomic_shared(struct ir3_context * ctx,nir_intrinsic_instr * intr)1457 emit_intrinsic_atomic_shared(struct ir3_context *ctx, nir_intrinsic_instr *intr)
1458 {
1459 struct ir3_block *b = ctx->block;
1460 struct ir3_instruction *atomic, *src0, *src1;
1461 type_t type = TYPE_U32;
1462
1463 src0 = ir3_get_src(ctx, &intr->src[0])[0]; /* offset */
1464 src1 = ir3_get_src(ctx, &intr->src[1])[0]; /* value */
1465
1466 switch (nir_intrinsic_atomic_op(intr)) {
1467 case nir_atomic_op_iadd:
1468 atomic = ir3_ATOMIC_ADD(b, src0, 0, src1, 0);
1469 break;
1470 case nir_atomic_op_imin:
1471 atomic = ir3_ATOMIC_MIN(b, src0, 0, src1, 0);
1472 type = TYPE_S32;
1473 break;
1474 case nir_atomic_op_umin:
1475 atomic = ir3_ATOMIC_MIN(b, src0, 0, src1, 0);
1476 break;
1477 case nir_atomic_op_imax:
1478 atomic = ir3_ATOMIC_MAX(b, src0, 0, src1, 0);
1479 type = TYPE_S32;
1480 break;
1481 case nir_atomic_op_umax:
1482 atomic = ir3_ATOMIC_MAX(b, src0, 0, src1, 0);
1483 break;
1484 case nir_atomic_op_iand:
1485 atomic = ir3_ATOMIC_AND(b, src0, 0, src1, 0);
1486 break;
1487 case nir_atomic_op_ior:
1488 atomic = ir3_ATOMIC_OR(b, src0, 0, src1, 0);
1489 break;
1490 case nir_atomic_op_ixor:
1491 atomic = ir3_ATOMIC_XOR(b, src0, 0, src1, 0);
1492 break;
1493 case nir_atomic_op_xchg:
1494 atomic = ir3_ATOMIC_XCHG(b, src0, 0, src1, 0);
1495 break;
1496 case nir_atomic_op_cmpxchg:
1497 /* for cmpxchg, src1 is [ui]vec2(data, compare): */
1498 src1 = ir3_collect(b, ir3_get_src(ctx, &intr->src[2])[0], src1);
1499 atomic = ir3_ATOMIC_CMPXCHG(b, src0, 0, src1, 0);
1500 break;
1501 default:
1502 unreachable("boo");
1503 }
1504
1505 atomic->cat6.iim_val = 1;
1506 atomic->cat6.d = 1;
1507 atomic->cat6.type = type;
1508 atomic->barrier_class = IR3_BARRIER_SHARED_W;
1509 atomic->barrier_conflict = IR3_BARRIER_SHARED_R | IR3_BARRIER_SHARED_W;
1510
1511 /* even if nothing consume the result, we can't DCE the instruction: */
1512 array_insert(b, b->keeps, atomic);
1513
1514 return atomic;
1515 }
1516
1517 static void
stp_ldp_offset(struct ir3_context * ctx,nir_src * src,struct ir3_instruction ** offset,int32_t * base)1518 stp_ldp_offset(struct ir3_context *ctx, nir_src *src,
1519 struct ir3_instruction **offset, int32_t *base)
1520 {
1521 struct ir3_block *b = ctx->block;
1522
1523 if (nir_src_is_const(*src)) {
1524 unsigned src_offset = nir_src_as_uint(*src);
1525 /* The base offset field is only 13 bits, and it's signed. Try to make the
1526 * offset constant whenever the original offsets are similar, to avoid
1527 * creating too many constants in the final shader.
1528 */
1529 *base = ((int32_t) src_offset << (32 - 13)) >> (32 - 13);
1530 uint32_t offset_val = src_offset - *base;
1531 *offset = create_immed(b, offset_val);
1532 } else {
1533 /* TODO: match on nir_iadd with a constant that fits */
1534 *base = 0;
1535 *offset = ir3_get_src(ctx, src)[0];
1536 }
1537 }
1538
1539 /* src[] = { offset }. */
1540 static void
emit_intrinsic_load_scratch(struct ir3_context * ctx,nir_intrinsic_instr * intr,struct ir3_instruction ** dst)1541 emit_intrinsic_load_scratch(struct ir3_context *ctx, nir_intrinsic_instr *intr,
1542 struct ir3_instruction **dst)
1543 {
1544 struct ir3_block *b = ctx->block;
1545 struct ir3_instruction *ldp, *offset;
1546 int32_t base;
1547
1548 stp_ldp_offset(ctx, &intr->src[0], &offset, &base);
1549
1550 ldp = ir3_LDP(b, offset, 0, create_immed(b, base), 0,
1551 create_immed(b, intr->num_components), 0);
1552
1553 ldp->cat6.type = utype_def(&intr->def);
1554 ldp->dsts[0]->wrmask = MASK(intr->num_components);
1555
1556 ldp->barrier_class = IR3_BARRIER_PRIVATE_R;
1557 ldp->barrier_conflict = IR3_BARRIER_PRIVATE_W;
1558
1559 ir3_split_dest(b, dst, ldp, 0, intr->num_components);
1560 }
1561
1562 /* src[] = { value, offset }. const_index[] = { write_mask } */
1563 static void
emit_intrinsic_store_scratch(struct ir3_context * ctx,nir_intrinsic_instr * intr)1564 emit_intrinsic_store_scratch(struct ir3_context *ctx, nir_intrinsic_instr *intr)
1565 {
1566 struct ir3_block *b = ctx->block;
1567 struct ir3_instruction *stp, *offset;
1568 struct ir3_instruction *const *value;
1569 unsigned wrmask, ncomp;
1570 int32_t base;
1571
1572 value = ir3_get_src(ctx, &intr->src[0]);
1573
1574 stp_ldp_offset(ctx, &intr->src[1], &offset, &base);
1575
1576 wrmask = nir_intrinsic_write_mask(intr);
1577 ncomp = ffs(~wrmask) - 1;
1578
1579 assert(wrmask == BITFIELD_MASK(intr->num_components));
1580
1581 stp = ir3_STP(b, offset, 0, ir3_create_collect(b, value, ncomp), 0,
1582 create_immed(b, ncomp), 0);
1583 stp->cat6.dst_offset = base;
1584 stp->cat6.type = utype_src(intr->src[0]);
1585 stp->barrier_class = IR3_BARRIER_PRIVATE_W;
1586 stp->barrier_conflict = IR3_BARRIER_PRIVATE_R | IR3_BARRIER_PRIVATE_W;
1587
1588 array_insert(b, b->keeps, stp);
1589 }
1590
1591 struct tex_src_info {
1592 /* For prefetch */
1593 unsigned tex_base, samp_base, tex_idx, samp_idx;
1594 /* For normal tex instructions */
1595 unsigned base, a1_val, flags;
1596 struct ir3_instruction *samp_tex;
1597 };
1598
1599 /* TODO handle actual indirect/dynamic case.. which is going to be weird
1600 * to handle with the image_mapping table..
1601 */
1602 static struct tex_src_info
get_image_ssbo_samp_tex_src(struct ir3_context * ctx,nir_src * src,bool image)1603 get_image_ssbo_samp_tex_src(struct ir3_context *ctx, nir_src *src, bool image)
1604 {
1605 struct ir3_block *b = ctx->block;
1606 struct tex_src_info info = {0};
1607 nir_intrinsic_instr *bindless_tex = ir3_bindless_resource(*src);
1608
1609 if (bindless_tex) {
1610 /* Bindless case */
1611 ctx->so->bindless_tex = true;
1612 info.flags |= IR3_INSTR_B;
1613
1614 /* Gather information required to determine which encoding to
1615 * choose as well as for prefetch.
1616 */
1617 info.tex_base = nir_intrinsic_desc_set(bindless_tex);
1618 bool tex_const = nir_src_is_const(bindless_tex->src[0]);
1619 if (tex_const)
1620 info.tex_idx = nir_src_as_uint(bindless_tex->src[0]);
1621 info.samp_idx = 0;
1622
1623 /* Choose encoding. */
1624 if (tex_const && info.tex_idx < 256) {
1625 if (info.tex_idx < 16) {
1626 /* Everything fits within the instruction */
1627 info.base = info.tex_base;
1628 } else {
1629 info.base = info.tex_base;
1630 if (ctx->compiler->gen <= 6) {
1631 info.a1_val = info.tex_idx << 3;
1632 } else {
1633 info.a1_val = info.samp_idx << 3;
1634 }
1635 info.flags |= IR3_INSTR_A1EN;
1636 }
1637 info.samp_tex = NULL;
1638 } else {
1639 info.flags |= IR3_INSTR_S2EN;
1640 info.base = info.tex_base;
1641
1642 /* Note: the indirect source is now a vec2 instead of hvec2 */
1643 struct ir3_instruction *texture, *sampler;
1644
1645 texture = ir3_get_src(ctx, src)[0];
1646 sampler = create_immed(b, 0);
1647 info.samp_tex = ir3_collect(b, texture, sampler);
1648 }
1649 } else {
1650 info.flags |= IR3_INSTR_S2EN;
1651 unsigned slot = nir_src_as_uint(*src);
1652 unsigned tex_idx = image ?
1653 ir3_image_to_tex(&ctx->so->image_mapping, slot) :
1654 ir3_ssbo_to_tex(&ctx->so->image_mapping, slot);
1655 struct ir3_instruction *texture, *sampler;
1656
1657 ctx->so->num_samp = MAX2(ctx->so->num_samp, tex_idx + 1);
1658
1659 texture = create_immed_typed(ctx->block, tex_idx, TYPE_U16);
1660 sampler = create_immed_typed(ctx->block, tex_idx, TYPE_U16);
1661
1662 info.samp_tex = ir3_collect(b, sampler, texture);
1663 }
1664
1665 return info;
1666 }
1667
1668 static struct ir3_instruction *
emit_sam(struct ir3_context * ctx,opc_t opc,struct tex_src_info info,type_t type,unsigned wrmask,struct ir3_instruction * src0,struct ir3_instruction * src1)1669 emit_sam(struct ir3_context *ctx, opc_t opc, struct tex_src_info info,
1670 type_t type, unsigned wrmask, struct ir3_instruction *src0,
1671 struct ir3_instruction *src1)
1672 {
1673 struct ir3_instruction *sam, *addr;
1674 if (info.flags & IR3_INSTR_A1EN) {
1675 addr = ir3_get_addr1(ctx, info.a1_val);
1676 }
1677 sam = ir3_SAM(ctx->block, opc, type, wrmask, info.flags, info.samp_tex, src0,
1678 src1);
1679 if (info.flags & IR3_INSTR_A1EN) {
1680 ir3_instr_set_address(sam, addr);
1681 }
1682 if (info.flags & IR3_INSTR_B) {
1683 sam->cat5.tex_base = info.base;
1684 sam->cat5.samp = info.samp_idx;
1685 sam->cat5.tex = info.tex_idx;
1686 }
1687 return sam;
1688 }
1689
1690 /* src[] = { deref, coord, sample_index }. const_index[] = {} */
1691 static void
emit_intrinsic_load_image(struct ir3_context * ctx,nir_intrinsic_instr * intr,struct ir3_instruction ** dst)1692 emit_intrinsic_load_image(struct ir3_context *ctx, nir_intrinsic_instr *intr,
1693 struct ir3_instruction **dst)
1694 {
1695 /* If the image can be written, must use LDIB to retrieve data, rather than
1696 * through ISAM (which uses the texture cache and won't get previous writes).
1697 */
1698 if (!(nir_intrinsic_access(intr) & ACCESS_CAN_REORDER)) {
1699 ctx->funcs->emit_intrinsic_load_image(ctx, intr, dst);
1700 return;
1701 }
1702
1703 /* The sparse set of texture descriptors for non-coherent load_images means we can't do indirection, so
1704 * fall back to coherent load.
1705 */
1706 if (ctx->compiler->gen >= 5 &&
1707 !ir3_bindless_resource(intr->src[0]) &&
1708 !nir_src_is_const(intr->src[0])) {
1709 ctx->funcs->emit_intrinsic_load_image(ctx, intr, dst);
1710 return;
1711 }
1712
1713 struct ir3_block *b = ctx->block;
1714 struct tex_src_info info = get_image_ssbo_samp_tex_src(ctx, &intr->src[0], true);
1715 struct ir3_instruction *sam;
1716 struct ir3_instruction *const *src0 = ir3_get_src(ctx, &intr->src[1]);
1717 struct ir3_instruction *coords[4];
1718 unsigned flags, ncoords = ir3_get_image_coords(intr, &flags);
1719 type_t type = ir3_get_type_for_image_intrinsic(intr);
1720
1721 info.flags |= flags;
1722
1723 /* hw doesn't do 1d, so we treat it as 2d with height of 1, and patch up the
1724 * y coord. Note that the array index must come after the fake y coord.
1725 */
1726 enum glsl_sampler_dim dim = nir_intrinsic_image_dim(intr);
1727 if (dim == GLSL_SAMPLER_DIM_1D || dim == GLSL_SAMPLER_DIM_BUF) {
1728 coords[0] = src0[0];
1729 coords[1] = create_immed(b, 0);
1730 for (unsigned i = 1; i < ncoords; i++)
1731 coords[i + 1] = src0[i];
1732 ncoords++;
1733 } else {
1734 for (unsigned i = 0; i < ncoords; i++)
1735 coords[i] = src0[i];
1736 }
1737
1738 sam = emit_sam(ctx, OPC_ISAM, info, type, 0b1111,
1739 ir3_create_collect(b, coords, ncoords), NULL);
1740
1741 ir3_handle_nonuniform(sam, intr);
1742
1743 sam->barrier_class = IR3_BARRIER_IMAGE_R;
1744 sam->barrier_conflict = IR3_BARRIER_IMAGE_W;
1745
1746 ir3_split_dest(b, dst, sam, 0, 4);
1747 }
1748
1749 /* A4xx version of image_size, see ir3_a6xx.c for newer resinfo version. */
1750 void
emit_intrinsic_image_size_tex(struct ir3_context * ctx,nir_intrinsic_instr * intr,struct ir3_instruction ** dst)1751 emit_intrinsic_image_size_tex(struct ir3_context *ctx,
1752 nir_intrinsic_instr *intr,
1753 struct ir3_instruction **dst)
1754 {
1755 struct ir3_block *b = ctx->block;
1756 struct tex_src_info info = get_image_ssbo_samp_tex_src(ctx, &intr->src[0], true);
1757 struct ir3_instruction *sam, *lod;
1758 unsigned flags, ncoords = ir3_get_image_coords(intr, &flags);
1759 type_t dst_type = intr->def.bit_size == 16 ? TYPE_U16 : TYPE_U32;
1760
1761 info.flags |= flags;
1762 assert(nir_src_as_uint(intr->src[1]) == 0);
1763 lod = create_immed(b, 0);
1764 sam = emit_sam(ctx, OPC_GETSIZE, info, dst_type, 0b1111, lod, NULL);
1765
1766 /* Array size actually ends up in .w rather than .z. This doesn't
1767 * matter for miplevel 0, but for higher mips the value in z is
1768 * minified whereas w stays. Also, the value in TEX_CONST_3_DEPTH is
1769 * returned, which means that we have to add 1 to it for arrays for
1770 * a3xx.
1771 *
1772 * Note use a temporary dst and then copy, since the size of the dst
1773 * array that is passed in is based on nir's understanding of the
1774 * result size, not the hardware's
1775 */
1776 struct ir3_instruction *tmp[4];
1777
1778 ir3_split_dest(b, tmp, sam, 0, 4);
1779
1780 for (unsigned i = 0; i < ncoords; i++)
1781 dst[i] = tmp[i];
1782
1783 if (flags & IR3_INSTR_A) {
1784 if (ctx->compiler->levels_add_one) {
1785 dst[ncoords - 1] = ir3_ADD_U(b, tmp[3], 0, create_immed(b, 1), 0);
1786 } else {
1787 dst[ncoords - 1] = ir3_MOV(b, tmp[3], TYPE_U32);
1788 }
1789 }
1790 }
1791
1792 static struct tex_src_info
get_bindless_samp_src(struct ir3_context * ctx,nir_src * tex,nir_src * samp)1793 get_bindless_samp_src(struct ir3_context *ctx, nir_src *tex,
1794 nir_src *samp)
1795 {
1796 struct ir3_block *b = ctx->block;
1797 struct tex_src_info info = {0};
1798
1799 info.flags |= IR3_INSTR_B;
1800
1801 /* Gather information required to determine which encoding to
1802 * choose as well as for prefetch.
1803 */
1804 nir_intrinsic_instr *bindless_tex = NULL;
1805 bool tex_const;
1806 if (tex) {
1807 ctx->so->bindless_tex = true;
1808 bindless_tex = ir3_bindless_resource(*tex);
1809 assert(bindless_tex);
1810 info.tex_base = nir_intrinsic_desc_set(bindless_tex);
1811 tex_const = nir_src_is_const(bindless_tex->src[0]);
1812 if (tex_const)
1813 info.tex_idx = nir_src_as_uint(bindless_tex->src[0]);
1814 } else {
1815 /* To simplify some of the logic below, assume the index is
1816 * constant 0 when it's not enabled.
1817 */
1818 tex_const = true;
1819 info.tex_idx = 0;
1820 }
1821 nir_intrinsic_instr *bindless_samp = NULL;
1822 bool samp_const;
1823 if (samp) {
1824 ctx->so->bindless_samp = true;
1825 bindless_samp = ir3_bindless_resource(*samp);
1826 assert(bindless_samp);
1827 info.samp_base = nir_intrinsic_desc_set(bindless_samp);
1828 samp_const = nir_src_is_const(bindless_samp->src[0]);
1829 if (samp_const)
1830 info.samp_idx = nir_src_as_uint(bindless_samp->src[0]);
1831 } else {
1832 samp_const = true;
1833 info.samp_idx = 0;
1834 }
1835
1836 /* Choose encoding. */
1837 if (tex_const && samp_const && info.tex_idx < 256 &&
1838 info.samp_idx < 256) {
1839 if (info.tex_idx < 16 && info.samp_idx < 16 &&
1840 (!bindless_tex || !bindless_samp ||
1841 info.tex_base == info.samp_base)) {
1842 /* Everything fits within the instruction */
1843 info.base = info.tex_base;
1844 } else {
1845 info.base = info.tex_base;
1846 if (ctx->compiler->gen <= 6) {
1847 info.a1_val = info.tex_idx << 3 | info.samp_base;
1848 } else {
1849 info.a1_val = info.samp_idx << 3 | info.samp_base;
1850 }
1851
1852 info.flags |= IR3_INSTR_A1EN;
1853 }
1854 info.samp_tex = NULL;
1855 } else {
1856 info.flags |= IR3_INSTR_S2EN;
1857 /* In the indirect case, we only use a1.x to store the sampler
1858 * base if it differs from the texture base.
1859 */
1860 if (!bindless_tex || !bindless_samp ||
1861 info.tex_base == info.samp_base) {
1862 info.base = info.tex_base;
1863 } else {
1864 info.base = info.tex_base;
1865 info.a1_val = info.samp_base;
1866 info.flags |= IR3_INSTR_A1EN;
1867 }
1868
1869 /* Note: the indirect source is now a vec2 instead of hvec2, and
1870 * for some reason the texture and sampler are swapped.
1871 */
1872 struct ir3_instruction *texture, *sampler;
1873
1874 if (bindless_tex) {
1875 texture = ir3_get_src(ctx, tex)[0];
1876 } else {
1877 texture = create_immed(b, 0);
1878 }
1879
1880 if (bindless_samp) {
1881 sampler = ir3_get_src(ctx, samp)[0];
1882 } else {
1883 sampler = create_immed(b, 0);
1884 }
1885 info.samp_tex = ir3_collect(b, texture, sampler);
1886 }
1887
1888 return info;
1889 }
1890
1891 /* src[] = { buffer_index, offset }. No const_index */
1892 static void
emit_intrinsic_load_ssbo(struct ir3_context * ctx,nir_intrinsic_instr * intr,struct ir3_instruction ** dst)1893 emit_intrinsic_load_ssbo(struct ir3_context *ctx,
1894 nir_intrinsic_instr *intr,
1895 struct ir3_instruction **dst)
1896 {
1897 /* Note: we can only use isam for vectorized loads/stores if isam.v is
1898 * available.
1899 * Note: isam also can't handle 8-bit loads.
1900 */
1901 if (!(nir_intrinsic_access(intr) & ACCESS_CAN_REORDER) ||
1902 (intr->def.num_components > 1 && !ctx->compiler->has_isam_v) ||
1903 (ctx->compiler->options.storage_8bit && intr->def.bit_size == 8) ||
1904 !ctx->compiler->has_isam_ssbo) {
1905 ctx->funcs->emit_intrinsic_load_ssbo(ctx, intr, dst);
1906 return;
1907 }
1908
1909 struct ir3_block *b = ctx->block;
1910 nir_src *offset_src = &intr->src[2];
1911 struct ir3_instruction *coords = NULL;
1912 unsigned imm_offset = 0;
1913
1914 if (ctx->compiler->has_isam_v) {
1915 ir3_lower_imm_offset(ctx, intr, offset_src, 8, &coords, &imm_offset);
1916 } else {
1917 coords =
1918 ir3_collect(b, ir3_get_src(ctx, offset_src)[0], create_immed(b, 0));
1919 }
1920
1921 struct tex_src_info info = get_image_ssbo_samp_tex_src(ctx, &intr->src[0], false);
1922
1923 unsigned num_components = intr->def.num_components;
1924 assert(num_components == 1 || ctx->compiler->has_isam_v);
1925
1926 struct ir3_instruction *sam =
1927 emit_sam(ctx, OPC_ISAM, info, utype_for_size(intr->def.bit_size),
1928 MASK(num_components), coords, create_immed(b, imm_offset));
1929
1930 if (ctx->compiler->has_isam_v) {
1931 sam->flags |= (IR3_INSTR_V | IR3_INSTR_INV_1D);
1932
1933 if (imm_offset) {
1934 sam->flags |= IR3_INSTR_IMM_OFFSET;
1935 }
1936 }
1937
1938 ir3_handle_nonuniform(sam, intr);
1939
1940 sam->barrier_class = IR3_BARRIER_BUFFER_R;
1941 sam->barrier_conflict = IR3_BARRIER_BUFFER_W;
1942
1943 ir3_split_dest(b, dst, sam, 0, num_components);
1944 }
1945
1946 static void
emit_control_barrier(struct ir3_context * ctx)1947 emit_control_barrier(struct ir3_context *ctx)
1948 {
1949 /* Hull shaders dispatch 32 wide so an entire patch will always
1950 * fit in a single warp and execute in lock-step. Consequently,
1951 * we don't need to do anything for TCS barriers. Emitting
1952 * barrier instruction will deadlock.
1953 */
1954 if (ctx->so->type == MESA_SHADER_TESS_CTRL)
1955 return;
1956
1957 struct ir3_block *b = ctx->block;
1958 struct ir3_instruction *barrier = ir3_BAR(b);
1959 barrier->cat7.g = true;
1960 if (ctx->compiler->gen < 6)
1961 barrier->cat7.l = true;
1962 barrier->flags = IR3_INSTR_SS | IR3_INSTR_SY;
1963 barrier->barrier_class = IR3_BARRIER_EVERYTHING;
1964 array_insert(b, b->keeps, barrier);
1965
1966 ctx->so->has_barrier = true;
1967 }
1968
1969 static void
emit_intrinsic_barrier(struct ir3_context * ctx,nir_intrinsic_instr * intr)1970 emit_intrinsic_barrier(struct ir3_context *ctx, nir_intrinsic_instr *intr)
1971 {
1972 struct ir3_block *b = ctx->block;
1973 struct ir3_instruction *barrier;
1974
1975 /* TODO: find out why there is a major difference of .l usage
1976 * between a5xx and a6xx,
1977 */
1978
1979 mesa_scope exec_scope = nir_intrinsic_execution_scope(intr);
1980 mesa_scope mem_scope = nir_intrinsic_memory_scope(intr);
1981 nir_variable_mode modes = nir_intrinsic_memory_modes(intr);
1982 /* loads/stores are always cache-coherent so we can filter out
1983 * available/visible.
1984 */
1985 nir_memory_semantics semantics =
1986 nir_intrinsic_memory_semantics(intr) & (NIR_MEMORY_ACQUIRE |
1987 NIR_MEMORY_RELEASE);
1988
1989 if (ctx->so->type == MESA_SHADER_TESS_CTRL) {
1990 /* Remove mode corresponding to TCS patch barriers because hull shaders
1991 * dispatch 32 wide so an entire patch will always fit in a single warp
1992 * and execute in lock-step.
1993 *
1994 * TODO: memory barrier also tells us not to reorder stores, this
1995 * information is lost here (backend doesn't reorder stores so we
1996 * are safe for now).
1997 */
1998 modes &= ~nir_var_shader_out;
1999 }
2000
2001 assert(!(modes & nir_var_shader_out));
2002
2003 if ((modes & (nir_var_mem_shared | nir_var_mem_ssbo | nir_var_mem_global |
2004 nir_var_image)) && semantics) {
2005 barrier = ir3_FENCE(b);
2006 barrier->cat7.r = true;
2007 barrier->cat7.w = true;
2008
2009 if (modes & (nir_var_mem_ssbo | nir_var_image | nir_var_mem_global)) {
2010 barrier->cat7.g = true;
2011 }
2012
2013 if (ctx->compiler->gen >= 6) {
2014 if (modes & (nir_var_mem_ssbo | nir_var_image)) {
2015 barrier->cat7.l = true;
2016 }
2017 } else {
2018 if (modes & (nir_var_mem_shared | nir_var_mem_ssbo | nir_var_image)) {
2019 barrier->cat7.l = true;
2020 }
2021 }
2022
2023 barrier->barrier_class = 0;
2024 barrier->barrier_conflict = 0;
2025
2026 if (modes & nir_var_mem_shared) {
2027 barrier->barrier_class |= IR3_BARRIER_SHARED_W;
2028 barrier->barrier_conflict |=
2029 IR3_BARRIER_SHARED_R | IR3_BARRIER_SHARED_W;
2030 }
2031
2032 if (modes & (nir_var_mem_ssbo | nir_var_mem_global)) {
2033 barrier->barrier_class |= IR3_BARRIER_BUFFER_W;
2034 barrier->barrier_conflict |=
2035 IR3_BARRIER_BUFFER_R | IR3_BARRIER_BUFFER_W;
2036 }
2037
2038 if (modes & nir_var_image) {
2039 barrier->barrier_class |= IR3_BARRIER_IMAGE_W;
2040 barrier->barrier_conflict |=
2041 IR3_BARRIER_IMAGE_W | IR3_BARRIER_IMAGE_R;
2042 }
2043
2044 /* make sure barrier doesn't get DCE'd */
2045 array_insert(b, b->keeps, barrier);
2046
2047 if (ctx->compiler->gen >= 7 && mem_scope > SCOPE_WORKGROUP &&
2048 modes & (nir_var_mem_ssbo | nir_var_image) &&
2049 semantics & NIR_MEMORY_ACQUIRE) {
2050 /* "r + l" is not enough to synchronize reads with writes from other
2051 * workgroups, we can disable them since they are useless here.
2052 */
2053 barrier->cat7.r = false;
2054 barrier->cat7.l = false;
2055
2056 struct ir3_instruction *ccinv = ir3_CCINV(b);
2057 /* A7XX TODO: ccinv should just stick to the barrier,
2058 * the barrier class/conflict introduces unnecessary waits.
2059 */
2060 ccinv->barrier_class = barrier->barrier_class;
2061 ccinv->barrier_conflict = barrier->barrier_conflict;
2062 array_insert(b, b->keeps, ccinv);
2063 }
2064 }
2065
2066 if (exec_scope >= SCOPE_WORKGROUP) {
2067 emit_control_barrier(ctx);
2068 }
2069 }
2070
2071 static void
add_sysval_input_compmask(struct ir3_context * ctx,gl_system_value slot,unsigned compmask,struct ir3_instruction * instr)2072 add_sysval_input_compmask(struct ir3_context *ctx, gl_system_value slot,
2073 unsigned compmask, struct ir3_instruction *instr)
2074 {
2075 struct ir3_shader_variant *so = ctx->so;
2076 unsigned n = so->inputs_count++;
2077
2078 assert(instr->opc == OPC_META_INPUT);
2079 instr->input.inidx = n;
2080 instr->input.sysval = slot;
2081
2082 so->inputs[n].sysval = true;
2083 so->inputs[n].slot = slot;
2084 so->inputs[n].compmask = compmask;
2085 so->total_in++;
2086
2087 so->sysval_in += util_last_bit(compmask);
2088 }
2089
2090 static struct ir3_instruction *
create_sysval_input(struct ir3_context * ctx,gl_system_value slot,unsigned compmask)2091 create_sysval_input(struct ir3_context *ctx, gl_system_value slot,
2092 unsigned compmask)
2093 {
2094 assert(compmask);
2095 struct ir3_instruction *sysval = create_input(ctx, compmask);
2096 add_sysval_input_compmask(ctx, slot, compmask, sysval);
2097 return sysval;
2098 }
2099
2100 static struct ir3_instruction *
get_barycentric(struct ir3_context * ctx,enum ir3_bary bary)2101 get_barycentric(struct ir3_context *ctx, enum ir3_bary bary)
2102 {
2103 STATIC_ASSERT(SYSTEM_VALUE_BARYCENTRIC_PERSP_PIXEL + IJ_PERSP_PIXEL ==
2104 SYSTEM_VALUE_BARYCENTRIC_PERSP_PIXEL);
2105 STATIC_ASSERT(SYSTEM_VALUE_BARYCENTRIC_PERSP_PIXEL + IJ_PERSP_SAMPLE ==
2106 SYSTEM_VALUE_BARYCENTRIC_PERSP_SAMPLE);
2107 STATIC_ASSERT(SYSTEM_VALUE_BARYCENTRIC_PERSP_PIXEL + IJ_PERSP_CENTROID ==
2108 SYSTEM_VALUE_BARYCENTRIC_PERSP_CENTROID);
2109 STATIC_ASSERT(SYSTEM_VALUE_BARYCENTRIC_PERSP_PIXEL + IJ_PERSP_CENTER_RHW ==
2110 SYSTEM_VALUE_BARYCENTRIC_PERSP_CENTER_RHW);
2111 STATIC_ASSERT(SYSTEM_VALUE_BARYCENTRIC_PERSP_PIXEL + IJ_LINEAR_PIXEL ==
2112 SYSTEM_VALUE_BARYCENTRIC_LINEAR_PIXEL);
2113 STATIC_ASSERT(SYSTEM_VALUE_BARYCENTRIC_PERSP_PIXEL + IJ_LINEAR_CENTROID ==
2114 SYSTEM_VALUE_BARYCENTRIC_LINEAR_CENTROID);
2115 STATIC_ASSERT(SYSTEM_VALUE_BARYCENTRIC_PERSP_PIXEL + IJ_LINEAR_SAMPLE ==
2116 SYSTEM_VALUE_BARYCENTRIC_LINEAR_SAMPLE);
2117
2118 if (!ctx->ij[bary]) {
2119 struct ir3_instruction *xy[2];
2120 struct ir3_instruction *ij;
2121
2122 ij = create_sysval_input(ctx, SYSTEM_VALUE_BARYCENTRIC_PERSP_PIXEL +
2123 bary, 0x3);
2124 ir3_split_dest(ctx->in_block, xy, ij, 0, 2);
2125
2126 ctx->ij[bary] = ir3_create_collect(ctx->in_block, xy, 2);
2127 }
2128
2129 return ctx->ij[bary];
2130 }
2131
2132 /* TODO: make this a common NIR helper?
2133 * there is a nir_system_value_from_intrinsic but it takes nir_intrinsic_op so
2134 * it can't be extended to work with this
2135 */
2136 static gl_system_value
nir_intrinsic_barycentric_sysval(nir_intrinsic_instr * intr)2137 nir_intrinsic_barycentric_sysval(nir_intrinsic_instr *intr)
2138 {
2139 enum glsl_interp_mode interp_mode = nir_intrinsic_interp_mode(intr);
2140 gl_system_value sysval;
2141
2142 switch (intr->intrinsic) {
2143 case nir_intrinsic_load_barycentric_pixel:
2144 if (interp_mode == INTERP_MODE_NOPERSPECTIVE)
2145 sysval = SYSTEM_VALUE_BARYCENTRIC_LINEAR_PIXEL;
2146 else
2147 sysval = SYSTEM_VALUE_BARYCENTRIC_PERSP_PIXEL;
2148 break;
2149 case nir_intrinsic_load_barycentric_centroid:
2150 if (interp_mode == INTERP_MODE_NOPERSPECTIVE)
2151 sysval = SYSTEM_VALUE_BARYCENTRIC_LINEAR_CENTROID;
2152 else
2153 sysval = SYSTEM_VALUE_BARYCENTRIC_PERSP_CENTROID;
2154 break;
2155 case nir_intrinsic_load_barycentric_sample:
2156 if (interp_mode == INTERP_MODE_NOPERSPECTIVE)
2157 sysval = SYSTEM_VALUE_BARYCENTRIC_LINEAR_SAMPLE;
2158 else
2159 sysval = SYSTEM_VALUE_BARYCENTRIC_PERSP_SAMPLE;
2160 break;
2161 default:
2162 unreachable("invalid barycentric intrinsic");
2163 }
2164
2165 return sysval;
2166 }
2167
2168 static void
emit_intrinsic_barycentric(struct ir3_context * ctx,nir_intrinsic_instr * intr,struct ir3_instruction ** dst)2169 emit_intrinsic_barycentric(struct ir3_context *ctx, nir_intrinsic_instr *intr,
2170 struct ir3_instruction **dst)
2171 {
2172 gl_system_value sysval = nir_intrinsic_barycentric_sysval(intr);
2173
2174 if (!ctx->so->key.msaa && ctx->compiler->gen < 6) {
2175 switch (sysval) {
2176 case SYSTEM_VALUE_BARYCENTRIC_PERSP_SAMPLE:
2177 sysval = SYSTEM_VALUE_BARYCENTRIC_PERSP_PIXEL;
2178 break;
2179 case SYSTEM_VALUE_BARYCENTRIC_PERSP_CENTROID:
2180 sysval = SYSTEM_VALUE_BARYCENTRIC_PERSP_PIXEL;
2181 break;
2182 case SYSTEM_VALUE_BARYCENTRIC_LINEAR_SAMPLE:
2183 sysval = SYSTEM_VALUE_BARYCENTRIC_LINEAR_PIXEL;
2184 break;
2185 case SYSTEM_VALUE_BARYCENTRIC_LINEAR_CENTROID:
2186 sysval = SYSTEM_VALUE_BARYCENTRIC_LINEAR_PIXEL;
2187 break;
2188 default:
2189 break;
2190 }
2191 }
2192
2193 enum ir3_bary bary = sysval - SYSTEM_VALUE_BARYCENTRIC_PERSP_PIXEL;
2194
2195 struct ir3_instruction *ij = get_barycentric(ctx, bary);
2196 ir3_split_dest(ctx->block, dst, ij, 0, 2);
2197 }
2198
2199 static struct ir3_instruction *
get_frag_coord(struct ir3_context * ctx,nir_intrinsic_instr * intr)2200 get_frag_coord(struct ir3_context *ctx, nir_intrinsic_instr *intr)
2201 {
2202 if (!ctx->frag_coord) {
2203 struct ir3_block *b = ir3_after_preamble(ctx->ir);
2204 struct ir3_instruction_rpt xyzw;
2205 struct ir3_instruction *hw_frag_coord;
2206
2207 hw_frag_coord = create_sysval_input(ctx, SYSTEM_VALUE_FRAG_COORD, 0xf);
2208 ir3_split_dest(b, xyzw.rpts, hw_frag_coord, 0, 4);
2209
2210 /* for frag_coord.xy, we get unsigned values.. we need
2211 * to subtract (integer) 8 and divide by 16 (right-
2212 * shift by 4) then convert to float:
2213 *
2214 * sub.s tmp, src, 8
2215 * shr.b tmp, tmp, 4
2216 * mov.u32f32 dst, tmp
2217 *
2218 */
2219 struct ir3_instruction_rpt xy =
2220 ir3_COV_rpt(b, 2, xyzw, TYPE_U32, TYPE_F32);
2221 xy =
2222 ir3_MUL_F_rpt(b, 2, xy, 0, create_immed_rpt(b, 2, fui(1.0 / 16.0)), 0);
2223 cp_instrs(xyzw.rpts, xy.rpts, 2);
2224 ctx->frag_coord = ir3_create_collect(b, xyzw.rpts, 4);
2225 }
2226
2227 ctx->so->fragcoord_compmask |= nir_def_components_read(&intr->def);
2228
2229 return ctx->frag_coord;
2230 }
2231
2232 /* This is a bit of a hack until ir3_context is converted to store SSA values
2233 * as ir3_register's instead of ir3_instruction's. Pick out a given destination
2234 * of an instruction with multiple destinations using a mov that will get folded
2235 * away by ir3_cp.
2236 */
2237 static struct ir3_instruction *
create_multidst_mov(struct ir3_block * block,struct ir3_register * dst)2238 create_multidst_mov(struct ir3_block *block, struct ir3_register *dst)
2239 {
2240 struct ir3_instruction *mov = ir3_instr_create(block, OPC_MOV, 1, 1);
2241 unsigned dst_flags = dst->flags & IR3_REG_HALF;
2242 unsigned src_flags = dst->flags & (IR3_REG_HALF | IR3_REG_SHARED);
2243
2244 __ssa_dst(mov)->flags |= dst_flags;
2245 struct ir3_register *src =
2246 ir3_src_create(mov, INVALID_REG, IR3_REG_SSA | src_flags);
2247 src->wrmask = dst->wrmask;
2248 src->def = dst;
2249 assert(!(dst->flags & IR3_REG_RELATIV));
2250 mov->cat1.src_type = mov->cat1.dst_type =
2251 (dst->flags & IR3_REG_HALF) ? TYPE_U16 : TYPE_U32;
2252 return mov;
2253 }
2254
2255 static reduce_op_t
get_reduce_op(nir_op opc)2256 get_reduce_op(nir_op opc)
2257 {
2258 switch (opc) {
2259 case nir_op_iadd: return REDUCE_OP_ADD_U;
2260 case nir_op_fadd: return REDUCE_OP_ADD_F;
2261 case nir_op_imul: return REDUCE_OP_MUL_U;
2262 case nir_op_fmul: return REDUCE_OP_MUL_F;
2263 case nir_op_umin: return REDUCE_OP_MIN_U;
2264 case nir_op_imin: return REDUCE_OP_MIN_S;
2265 case nir_op_fmin: return REDUCE_OP_MIN_F;
2266 case nir_op_umax: return REDUCE_OP_MAX_U;
2267 case nir_op_imax: return REDUCE_OP_MAX_S;
2268 case nir_op_fmax: return REDUCE_OP_MAX_F;
2269 case nir_op_iand: return REDUCE_OP_AND_B;
2270 case nir_op_ior: return REDUCE_OP_OR_B;
2271 case nir_op_ixor: return REDUCE_OP_XOR_B;
2272 default:
2273 unreachable("unknown NIR reduce op");
2274 }
2275 }
2276
2277 static uint32_t
get_reduce_identity(nir_op opc,unsigned size)2278 get_reduce_identity(nir_op opc, unsigned size)
2279 {
2280 switch (opc) {
2281 case nir_op_iadd:
2282 return 0;
2283 case nir_op_fadd:
2284 return size == 32 ? fui(0.0f) : _mesa_float_to_half(0.0f);
2285 case nir_op_imul:
2286 return 1;
2287 case nir_op_fmul:
2288 return size == 32 ? fui(1.0f) : _mesa_float_to_half(1.0f);
2289 case nir_op_umax:
2290 return 0;
2291 case nir_op_imax:
2292 return size == 32 ? INT32_MIN : (uint32_t)INT16_MIN;
2293 case nir_op_fmax:
2294 return size == 32 ? fui(-INFINITY) : _mesa_float_to_half(-INFINITY);
2295 case nir_op_umin:
2296 return size == 32 ? UINT32_MAX : UINT16_MAX;
2297 case nir_op_imin:
2298 return size == 32 ? INT32_MAX : (uint32_t)INT16_MAX;
2299 case nir_op_fmin:
2300 return size == 32 ? fui(INFINITY) : _mesa_float_to_half(INFINITY);
2301 case nir_op_iand:
2302 return size == 32 ? ~0 : (size == 16 ? (uint32_t)(uint16_t)~0 : 1);
2303 case nir_op_ior:
2304 return 0;
2305 case nir_op_ixor:
2306 return 0;
2307 default:
2308 unreachable("unknown NIR reduce op");
2309 }
2310 }
2311
2312 static struct ir3_instruction *
emit_intrinsic_reduce(struct ir3_context * ctx,nir_intrinsic_instr * intr)2313 emit_intrinsic_reduce(struct ir3_context *ctx, nir_intrinsic_instr *intr)
2314 {
2315 struct ir3_instruction *src = ir3_get_src(ctx, &intr->src[0])[0];
2316 nir_op nir_reduce_op = (nir_op) nir_intrinsic_reduction_op(intr);
2317 reduce_op_t reduce_op = get_reduce_op(nir_reduce_op);
2318 unsigned dst_size = intr->def.bit_size;
2319 unsigned flags = (ir3_bitsize(ctx, dst_size) == 16) ? IR3_REG_HALF : 0;
2320
2321 /* Note: the shared reg is initialized to the identity, so we need it to
2322 * always be 32-bit even when the source isn't because half shared regs are
2323 * not supported.
2324 */
2325 struct ir3_instruction *identity =
2326 create_immed_shared(ctx->block, get_reduce_identity(nir_reduce_op, dst_size),
2327 true);
2328
2329 /* OPC_SCAN_MACRO has the following destinations:
2330 * - Exclusive scan result (interferes with source)
2331 * - Inclusive scan result
2332 * - Shared reg reduction result, must be initialized to the identity
2333 *
2334 * The loop computes all three results at the same time, we just have to
2335 * choose which destination to return.
2336 */
2337 struct ir3_instruction *scan =
2338 ir3_instr_create(ctx->block, OPC_SCAN_MACRO, 3, 2);
2339 scan->cat1.reduce_op = reduce_op;
2340
2341 struct ir3_register *exclusive = __ssa_dst(scan);
2342 exclusive->flags |= flags | IR3_REG_EARLY_CLOBBER;
2343 struct ir3_register *inclusive = __ssa_dst(scan);
2344 inclusive->flags |= flags;
2345 struct ir3_register *reduce = __ssa_dst(scan);
2346 reduce->flags |= IR3_REG_SHARED;
2347
2348 /* The 32-bit multiply macro reads its sources after writing a partial result
2349 * to the destination, therefore inclusive also interferes with the source.
2350 */
2351 if (reduce_op == REDUCE_OP_MUL_U && dst_size == 32)
2352 inclusive->flags |= IR3_REG_EARLY_CLOBBER;
2353
2354 /* Normal source */
2355 __ssa_src(scan, src, 0);
2356
2357 /* shared reg tied source */
2358 struct ir3_register *reduce_init = __ssa_src(scan, identity, IR3_REG_SHARED);
2359 ir3_reg_tie(reduce, reduce_init);
2360
2361 struct ir3_register *dst;
2362 switch (intr->intrinsic) {
2363 case nir_intrinsic_reduce: dst = reduce; break;
2364 case nir_intrinsic_inclusive_scan: dst = inclusive; break;
2365 case nir_intrinsic_exclusive_scan: dst = exclusive; break;
2366 default:
2367 unreachable("unknown reduce intrinsic");
2368 }
2369
2370 return create_multidst_mov(ctx->block, dst);
2371 }
2372
2373 static struct ir3_instruction *
emit_intrinsic_reduce_clusters(struct ir3_context * ctx,nir_intrinsic_instr * intr)2374 emit_intrinsic_reduce_clusters(struct ir3_context *ctx,
2375 nir_intrinsic_instr *intr)
2376 {
2377 nir_op nir_reduce_op = (nir_op)nir_intrinsic_reduction_op(intr);
2378 reduce_op_t reduce_op = get_reduce_op(nir_reduce_op);
2379 unsigned dst_size = intr->def.bit_size;
2380
2381 bool need_exclusive =
2382 intr->intrinsic == nir_intrinsic_exclusive_scan_clusters_ir3;
2383 bool need_scratch = reduce_op == REDUCE_OP_MUL_U && dst_size == 32;
2384
2385 /* Note: the shared reg is initialized to the identity, so we need it to
2386 * always be 32-bit even when the source isn't because half shared regs are
2387 * not supported.
2388 */
2389 struct ir3_instruction *identity =
2390 create_immed_shared(ctx->block, get_reduce_identity(nir_reduce_op, dst_size),
2391 true);
2392
2393 struct ir3_instruction *inclusive_src = ir3_get_src(ctx, &intr->src[0])[0];
2394
2395 struct ir3_instruction *exclusive_src = NULL;
2396 if (need_exclusive)
2397 exclusive_src = ir3_get_src(ctx, &intr->src[1])[0];
2398
2399 /* OPC_SCAN_CLUSTERS_MACRO has the following destinations:
2400 * - Shared reg reduction result, must be initialized to the identity
2401 * - Inclusive scan result
2402 * - (iff exclusive) Exclusive scan result. Conditionally added because
2403 * calculating the exclusive value is optional (i.e., not a side-effect of
2404 * calculating the inclusive value) and won't be DCE'd anymore at this
2405 * point.
2406 * - (iff 32b mul_u) Scratch register. We try to emit "op rx, ry, rx" for
2407 * most ops but this isn't possible for the 32b mul_u macro since its
2408 * destination is clobbered. So conditionally allocate an extra
2409 * register in that case.
2410 *
2411 * Note that the getlast loop this macro expands to iterates over all
2412 * clusters. However, for each iteration, not only the fibers in the current
2413 * cluster are active but all later ones as well. Since they still need their
2414 * sources when their cluster is handled, all destinations interfere with
2415 * the sources.
2416 */
2417 unsigned ndst = 2 + need_exclusive + need_scratch;
2418 unsigned nsrc = 2 + need_exclusive;
2419 struct ir3_instruction *scan =
2420 ir3_instr_create(ctx->block, OPC_SCAN_CLUSTERS_MACRO, ndst, nsrc);
2421 scan->cat1.reduce_op = reduce_op;
2422
2423 unsigned dst_flags = IR3_REG_EARLY_CLOBBER;
2424 if (ir3_bitsize(ctx, dst_size) == 16)
2425 dst_flags |= IR3_REG_HALF;
2426
2427 struct ir3_register *reduce = __ssa_dst(scan);
2428 reduce->flags |= IR3_REG_SHARED;
2429 struct ir3_register *inclusive = __ssa_dst(scan);
2430 inclusive->flags |= dst_flags;
2431
2432 struct ir3_register *exclusive = NULL;
2433 if (need_exclusive) {
2434 exclusive = __ssa_dst(scan);
2435 exclusive->flags |= dst_flags;
2436 }
2437
2438 if (need_scratch) {
2439 struct ir3_register *scratch = __ssa_dst(scan);
2440 scratch->flags |= dst_flags;
2441 }
2442
2443 struct ir3_register *reduce_init = __ssa_src(scan, identity, IR3_REG_SHARED);
2444 ir3_reg_tie(reduce, reduce_init);
2445
2446 __ssa_src(scan, inclusive_src, 0);
2447
2448 if (need_exclusive)
2449 __ssa_src(scan, exclusive_src, 0);
2450
2451 struct ir3_register *dst;
2452 switch (intr->intrinsic) {
2453 case nir_intrinsic_reduce_clusters_ir3:
2454 dst = reduce;
2455 break;
2456 case nir_intrinsic_inclusive_scan_clusters_ir3:
2457 dst = inclusive;
2458 break;
2459 case nir_intrinsic_exclusive_scan_clusters_ir3: {
2460 assert(exclusive != NULL);
2461 dst = exclusive;
2462 break;
2463 }
2464 default:
2465 unreachable("unknown reduce intrinsic");
2466 }
2467
2468 return create_multidst_mov(ctx->block, dst);
2469 }
2470
2471 static struct ir3_instruction *
emit_intrinsic_brcst_active(struct ir3_context * ctx,nir_intrinsic_instr * intr)2472 emit_intrinsic_brcst_active(struct ir3_context *ctx, nir_intrinsic_instr *intr)
2473 {
2474 struct ir3_instruction *default_src = ir3_get_src(ctx, &intr->src[0])[0];
2475 struct ir3_instruction *brcst_val = ir3_get_src(ctx, &intr->src[1])[0];
2476 return ir3_BRCST_ACTIVE(ctx->block, nir_intrinsic_cluster_size(intr),
2477 brcst_val, default_src);
2478 }
2479
2480 static void setup_input(struct ir3_context *ctx, nir_intrinsic_instr *intr);
2481 static void setup_output(struct ir3_context *ctx, nir_intrinsic_instr *intr);
2482
2483 static void
emit_intrinsic(struct ir3_context * ctx,nir_intrinsic_instr * intr)2484 emit_intrinsic(struct ir3_context *ctx, nir_intrinsic_instr *intr)
2485 {
2486 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
2487 struct ir3_instruction **dst;
2488 struct ir3_instruction *const *src;
2489 struct ir3_block *b = ctx->block;
2490 unsigned dest_components = nir_intrinsic_dest_components(intr);
2491 int idx;
2492 bool create_rpt = false;
2493
2494 if (info->has_dest) {
2495 dst = ir3_get_def(ctx, &intr->def, dest_components);
2496 } else {
2497 dst = NULL;
2498 }
2499
2500 const struct ir3_const_state *const_state = ir3_const_state(ctx->so);
2501 const unsigned primitive_param = const_state->offsets.primitive_param * 4;
2502 const unsigned primitive_map = const_state->offsets.primitive_map * 4;
2503
2504 switch (intr->intrinsic) {
2505 case nir_intrinsic_decl_reg:
2506 /* There's logically nothing to do, but this has a destination in NIR so
2507 * plug in something... It will get DCE'd.
2508 */
2509 dst[0] = create_immed(ctx->block, 0);
2510 break;
2511
2512 case nir_intrinsic_load_reg:
2513 case nir_intrinsic_load_reg_indirect: {
2514 struct ir3_array *arr = ir3_get_array(ctx, intr->src[0].ssa);
2515 struct ir3_instruction *addr = NULL;
2516
2517 if (intr->intrinsic == nir_intrinsic_load_reg_indirect) {
2518 addr = ir3_get_addr0(ctx, ir3_get_src(ctx, &intr->src[1])[0],
2519 dest_components);
2520 }
2521
2522 ASSERTED nir_intrinsic_instr *decl = nir_reg_get_decl(intr->src[0].ssa);
2523 assert(dest_components == nir_intrinsic_num_components(decl));
2524
2525 for (unsigned i = 0; i < dest_components; i++) {
2526 unsigned n = nir_intrinsic_base(intr) * dest_components + i;
2527 compile_assert(ctx, n < arr->length);
2528 dst[i] = ir3_create_array_load(ctx, arr, n, addr);
2529 }
2530
2531 break;
2532 }
2533
2534 case nir_intrinsic_store_reg:
2535 case nir_intrinsic_store_reg_indirect: {
2536 struct ir3_array *arr = ir3_get_array(ctx, intr->src[1].ssa);
2537 unsigned num_components = nir_src_num_components(intr->src[0]);
2538 struct ir3_instruction *addr = NULL;
2539
2540 ASSERTED nir_intrinsic_instr *decl = nir_reg_get_decl(intr->src[1].ssa);
2541 assert(num_components == nir_intrinsic_num_components(decl));
2542
2543 struct ir3_instruction *const *value = ir3_get_src(ctx, &intr->src[0]);
2544
2545 if (intr->intrinsic == nir_intrinsic_store_reg_indirect) {
2546 addr = ir3_get_addr0(ctx, ir3_get_src(ctx, &intr->src[2])[0],
2547 num_components);
2548 }
2549
2550 u_foreach_bit(i, nir_intrinsic_write_mask(intr)) {
2551 assert(i < num_components);
2552
2553 unsigned n = nir_intrinsic_base(intr) * num_components + i;
2554 compile_assert(ctx, n < arr->length);
2555 if (value[i])
2556 ir3_create_array_store(ctx, arr, n, value[i], addr);
2557 }
2558
2559 break;
2560 }
2561
2562 case nir_intrinsic_load_const_ir3:
2563 idx = nir_intrinsic_base(intr);
2564 if (nir_src_is_const(intr->src[0])) {
2565 idx += nir_src_as_uint(intr->src[0]);
2566 for (int i = 0; i < dest_components; i++) {
2567 dst[i] = create_uniform_typed(
2568 b, idx + i,
2569 intr->def.bit_size == 16 ? TYPE_F16 : TYPE_F32);
2570 }
2571 create_rpt = true;
2572 } else {
2573 src = ctx->compiler->has_scalar_alu ?
2574 ir3_get_src_maybe_shared(ctx, &intr->src[0]) :
2575 ir3_get_src(ctx, &intr->src[0]);
2576 for (int i = 0; i < dest_components; i++) {
2577 dst[i] = create_uniform_indirect(
2578 b, idx + i,
2579 intr->def.bit_size == 16 ? TYPE_F16 : TYPE_F32,
2580 ir3_get_addr0(ctx, src[0], 1));
2581 /* Since this may not be foldable into conversions into shared
2582 * registers, manually make it shared. Optimizations can undo this if
2583 * the user can't use shared regs.
2584 */
2585 if (ctx->compiler->has_scalar_alu && !intr->def.divergent)
2586 dst[i]->dsts[0]->flags |= IR3_REG_SHARED;
2587 }
2588 /* NOTE: if relative addressing is used, we set
2589 * constlen in the compiler (to worst-case value)
2590 * since we don't know in the assembler what the max
2591 * addr reg value can be:
2592 */
2593 ctx->so->constlen =
2594 MAX2(ctx->so->constlen,
2595 ctx->so->shader_options.num_reserved_user_consts +
2596 const_state->ubo_state.size / 16);
2597 }
2598 break;
2599
2600 case nir_intrinsic_load_vs_primitive_stride_ir3:
2601 dst[0] = create_uniform(b, primitive_param + 0);
2602 break;
2603 case nir_intrinsic_load_vs_vertex_stride_ir3:
2604 dst[0] = create_uniform(b, primitive_param + 1);
2605 break;
2606 case nir_intrinsic_load_hs_patch_stride_ir3:
2607 dst[0] = create_uniform(b, primitive_param + 2);
2608 break;
2609 case nir_intrinsic_load_patch_vertices_in:
2610 dst[0] = create_uniform(b, primitive_param + 3);
2611 break;
2612 case nir_intrinsic_load_tess_param_base_ir3:
2613 dst[0] = create_uniform(b, primitive_param + 4);
2614 dst[1] = create_uniform(b, primitive_param + 5);
2615 break;
2616 case nir_intrinsic_load_tess_factor_base_ir3:
2617 dst[0] = create_uniform(b, primitive_param + 6);
2618 dst[1] = create_uniform(b, primitive_param + 7);
2619 break;
2620
2621 case nir_intrinsic_load_primitive_location_ir3:
2622 idx = nir_intrinsic_driver_location(intr);
2623 dst[0] = create_uniform(b, primitive_map + idx);
2624 break;
2625
2626 case nir_intrinsic_load_gs_header_ir3:
2627 dst[0] = ctx->gs_header;
2628 break;
2629 case nir_intrinsic_load_tcs_header_ir3:
2630 dst[0] = ctx->tcs_header;
2631 break;
2632
2633 case nir_intrinsic_load_rel_patch_id_ir3:
2634 dst[0] = ctx->rel_patch_id;
2635 break;
2636
2637 case nir_intrinsic_load_primitive_id:
2638 if (!ctx->primitive_id) {
2639 ctx->primitive_id =
2640 create_sysval_input(ctx, SYSTEM_VALUE_PRIMITIVE_ID, 0x1);
2641 }
2642 dst[0] = ctx->primitive_id;
2643 break;
2644
2645 case nir_intrinsic_load_tess_coord_xy:
2646 if (!ctx->tess_coord) {
2647 ctx->tess_coord =
2648 create_sysval_input(ctx, SYSTEM_VALUE_TESS_COORD, 0x3);
2649 }
2650 ir3_split_dest(b, dst, ctx->tess_coord, 0, 2);
2651 break;
2652
2653 case nir_intrinsic_store_global_ir3:
2654 ctx->funcs->emit_intrinsic_store_global_ir3(ctx, intr);
2655 break;
2656 case nir_intrinsic_load_global_ir3:
2657 ctx->funcs->emit_intrinsic_load_global_ir3(ctx, intr, dst);
2658 break;
2659
2660 case nir_intrinsic_load_ubo:
2661 emit_intrinsic_load_ubo(ctx, intr, dst);
2662 break;
2663 case nir_intrinsic_load_ubo_vec4:
2664 emit_intrinsic_load_ubo_ldc(ctx, intr, dst);
2665 break;
2666 case nir_intrinsic_copy_ubo_to_uniform_ir3:
2667 emit_intrinsic_copy_ubo_to_uniform(ctx, intr);
2668 break;
2669 case nir_intrinsic_copy_global_to_uniform_ir3:
2670 emit_intrinsic_copy_global_to_uniform(ctx, intr);
2671 break;
2672 case nir_intrinsic_load_frag_coord:
2673 case nir_intrinsic_load_frag_coord_unscaled_ir3:
2674 ir3_split_dest(b, dst, get_frag_coord(ctx, intr), 0, 4);
2675 break;
2676 case nir_intrinsic_load_sample_pos_from_id: {
2677 /* NOTE: blob seems to always use TYPE_F16 and then cov.f16f32,
2678 * but that doesn't seem necessary.
2679 */
2680 struct ir3_instruction *offset =
2681 ir3_RGETPOS(b, ir3_get_src(ctx, &intr->src[0])[0], 0);
2682 offset->dsts[0]->wrmask = 0x3;
2683 offset->cat5.type = TYPE_F32;
2684
2685 ir3_split_dest(b, dst, offset, 0, 2);
2686
2687 break;
2688 }
2689 case nir_intrinsic_load_persp_center_rhw_ir3:
2690 if (!ctx->ij[IJ_PERSP_CENTER_RHW]) {
2691 ctx->ij[IJ_PERSP_CENTER_RHW] =
2692 create_sysval_input(ctx, SYSTEM_VALUE_BARYCENTRIC_PERSP_CENTER_RHW, 0x1);
2693 }
2694 dst[0] = ctx->ij[IJ_PERSP_CENTER_RHW];
2695 break;
2696 case nir_intrinsic_load_barycentric_centroid:
2697 case nir_intrinsic_load_barycentric_sample:
2698 case nir_intrinsic_load_barycentric_pixel:
2699 emit_intrinsic_barycentric(ctx, intr, dst);
2700 break;
2701 case nir_intrinsic_load_interpolated_input:
2702 case nir_intrinsic_load_input:
2703 setup_input(ctx, intr);
2704 break;
2705 case nir_intrinsic_load_kernel_input:
2706 emit_intrinsic_load_kernel_input(ctx, intr, dst);
2707 break;
2708 /* All SSBO intrinsics should have been lowered by 'lower_io_offsets'
2709 * pass and replaced by an ir3-specifc version that adds the
2710 * dword-offset in the last source.
2711 */
2712 case nir_intrinsic_load_ssbo_ir3:
2713 emit_intrinsic_load_ssbo(ctx, intr, dst);
2714 break;
2715 case nir_intrinsic_store_ssbo_ir3:
2716 ctx->funcs->emit_intrinsic_store_ssbo(ctx, intr);
2717 break;
2718 case nir_intrinsic_get_ssbo_size:
2719 emit_intrinsic_ssbo_size(ctx, intr, dst);
2720 break;
2721 case nir_intrinsic_ssbo_atomic_ir3:
2722 case nir_intrinsic_ssbo_atomic_swap_ir3:
2723 dst[0] = ctx->funcs->emit_intrinsic_atomic_ssbo(ctx, intr);
2724 break;
2725 case nir_intrinsic_load_shared:
2726 emit_intrinsic_load_shared(ctx, intr, dst);
2727 break;
2728 case nir_intrinsic_store_shared:
2729 emit_intrinsic_store_shared(ctx, intr);
2730 break;
2731 case nir_intrinsic_shared_atomic:
2732 case nir_intrinsic_shared_atomic_swap:
2733 dst[0] = emit_intrinsic_atomic_shared(ctx, intr);
2734 break;
2735 case nir_intrinsic_load_scratch:
2736 emit_intrinsic_load_scratch(ctx, intr, dst);
2737 break;
2738 case nir_intrinsic_store_scratch:
2739 emit_intrinsic_store_scratch(ctx, intr);
2740 break;
2741 case nir_intrinsic_image_load:
2742 case nir_intrinsic_bindless_image_load:
2743 emit_intrinsic_load_image(ctx, intr, dst);
2744 break;
2745 case nir_intrinsic_image_store:
2746 case nir_intrinsic_bindless_image_store:
2747 ctx->funcs->emit_intrinsic_store_image(ctx, intr);
2748 break;
2749 case nir_intrinsic_image_size:
2750 case nir_intrinsic_bindless_image_size:
2751 ctx->funcs->emit_intrinsic_image_size(ctx, intr, dst);
2752 break;
2753 case nir_intrinsic_image_atomic:
2754 case nir_intrinsic_bindless_image_atomic:
2755 case nir_intrinsic_image_atomic_swap:
2756 case nir_intrinsic_bindless_image_atomic_swap:
2757 dst[0] = ctx->funcs->emit_intrinsic_atomic_image(ctx, intr);
2758 break;
2759 case nir_intrinsic_barrier:
2760 emit_intrinsic_barrier(ctx, intr);
2761 /* note that blk ptr no longer valid, make that obvious: */
2762 b = NULL;
2763 break;
2764 case nir_intrinsic_store_output:
2765 setup_output(ctx, intr);
2766 break;
2767 case nir_intrinsic_load_base_vertex:
2768 case nir_intrinsic_load_first_vertex:
2769 if (!ctx->basevertex) {
2770 ctx->basevertex = create_driver_param(ctx, IR3_DP_VTXID_BASE);
2771 }
2772 dst[0] = ctx->basevertex;
2773 break;
2774 case nir_intrinsic_load_is_indexed_draw:
2775 if (!ctx->is_indexed_draw) {
2776 ctx->is_indexed_draw = create_driver_param(ctx, IR3_DP_IS_INDEXED_DRAW);
2777 }
2778 dst[0] = ctx->is_indexed_draw;
2779 break;
2780 case nir_intrinsic_load_draw_id:
2781 if (!ctx->draw_id) {
2782 ctx->draw_id = create_driver_param(ctx, IR3_DP_DRAWID);
2783 }
2784 dst[0] = ctx->draw_id;
2785 break;
2786 case nir_intrinsic_load_base_instance:
2787 if (!ctx->base_instance) {
2788 ctx->base_instance = create_driver_param(ctx, IR3_DP_INSTID_BASE);
2789 }
2790 dst[0] = ctx->base_instance;
2791 break;
2792 case nir_intrinsic_load_view_index:
2793 if (!ctx->view_index) {
2794 ctx->view_index =
2795 create_sysval_input(ctx, SYSTEM_VALUE_VIEW_INDEX, 0x1);
2796 }
2797 dst[0] = ctx->view_index;
2798 break;
2799 case nir_intrinsic_load_vertex_id_zero_base:
2800 case nir_intrinsic_load_vertex_id:
2801 if (!ctx->vertex_id) {
2802 gl_system_value sv = (intr->intrinsic == nir_intrinsic_load_vertex_id)
2803 ? SYSTEM_VALUE_VERTEX_ID
2804 : SYSTEM_VALUE_VERTEX_ID_ZERO_BASE;
2805 ctx->vertex_id = create_sysval_input(ctx, sv, 0x1);
2806 }
2807 dst[0] = ctx->vertex_id;
2808 break;
2809 case nir_intrinsic_load_instance_id:
2810 if (!ctx->instance_id) {
2811 ctx->instance_id =
2812 create_sysval_input(ctx, SYSTEM_VALUE_INSTANCE_ID, 0x1);
2813 }
2814 dst[0] = ctx->instance_id;
2815 break;
2816 case nir_intrinsic_load_sample_id:
2817 case nir_intrinsic_load_sample_id_no_per_sample:
2818 if (!ctx->samp_id) {
2819 ctx->samp_id = create_sysval_input(ctx, SYSTEM_VALUE_SAMPLE_ID, 0x1);
2820 ctx->samp_id->dsts[0]->flags |= IR3_REG_HALF;
2821 }
2822 dst[0] = ir3_COV(b, ctx->samp_id, TYPE_U16, TYPE_U32);
2823 break;
2824 case nir_intrinsic_load_sample_mask_in:
2825 if (!ctx->samp_mask_in) {
2826 ctx->samp_mask_in =
2827 create_sysval_input(ctx, SYSTEM_VALUE_SAMPLE_MASK_IN, 0x1);
2828 }
2829 dst[0] = ctx->samp_mask_in;
2830 break;
2831 case nir_intrinsic_load_user_clip_plane:
2832 idx = nir_intrinsic_ucp_id(intr);
2833 for (int i = 0; i < dest_components; i++) {
2834 unsigned n = idx * 4 + i;
2835 dst[i] = create_driver_param(ctx, IR3_DP_UCP0_X + n);
2836 }
2837 create_rpt = true;
2838 break;
2839 case nir_intrinsic_load_front_face:
2840 if (!ctx->frag_face) {
2841 ctx->so->frag_face = true;
2842 ctx->frag_face =
2843 create_sysval_input(ctx, SYSTEM_VALUE_FRONT_FACE, 0x1);
2844 ctx->frag_face->dsts[0]->flags |= IR3_REG_HALF;
2845 }
2846 /* for fragface, we get -1 for back and 0 for front. However this is
2847 * the inverse of what nir expects (where ~0 is true).
2848 */
2849 dst[0] = ir3_CMPS_S(b, ctx->frag_face, 0,
2850 create_immed_typed(b, 0, TYPE_U16), 0);
2851 dst[0]->cat2.condition = IR3_COND_EQ;
2852 break;
2853 case nir_intrinsic_load_local_invocation_id:
2854 if (!ctx->local_invocation_id) {
2855 ctx->local_invocation_id =
2856 create_sysval_input(ctx, SYSTEM_VALUE_LOCAL_INVOCATION_ID, 0x7);
2857 }
2858 ir3_split_dest(b, dst, ctx->local_invocation_id, 0, 3);
2859 break;
2860 case nir_intrinsic_load_workgroup_id:
2861 if (ctx->compiler->has_shared_regfile) {
2862 if (!ctx->work_group_id) {
2863 ctx->work_group_id =
2864 create_sysval_input(ctx, SYSTEM_VALUE_WORKGROUP_ID, 0x7);
2865 ctx->work_group_id->dsts[0]->flags |= IR3_REG_SHARED;
2866 }
2867 ir3_split_dest(b, dst, ctx->work_group_id, 0, 3);
2868 } else {
2869 /* For a3xx/a4xx, this comes in via const injection by the hw */
2870 for (int i = 0; i < dest_components; i++) {
2871 dst[i] = create_driver_param(ctx, IR3_DP_WORKGROUP_ID_X + i);
2872 }
2873 }
2874 break;
2875 case nir_intrinsic_load_base_workgroup_id:
2876 for (int i = 0; i < dest_components; i++) {
2877 dst[i] = create_driver_param(ctx, IR3_DP_BASE_GROUP_X + i);
2878 }
2879 create_rpt = true;
2880 break;
2881 case nir_intrinsic_load_num_workgroups:
2882 for (int i = 0; i < dest_components; i++) {
2883 dst[i] = create_driver_param(ctx, IR3_DP_NUM_WORK_GROUPS_X + i);
2884 }
2885 create_rpt = true;
2886 break;
2887 case nir_intrinsic_load_workgroup_size:
2888 for (int i = 0; i < dest_components; i++) {
2889 dst[i] = create_driver_param(ctx, IR3_DP_LOCAL_GROUP_SIZE_X + i);
2890 }
2891 create_rpt = true;
2892 break;
2893 case nir_intrinsic_load_subgroup_size: {
2894 assert(ctx->so->type == MESA_SHADER_COMPUTE ||
2895 ctx->so->type == MESA_SHADER_FRAGMENT);
2896 enum ir3_driver_param size = ctx->so->type == MESA_SHADER_COMPUTE ?
2897 IR3_DP_CS_SUBGROUP_SIZE : IR3_DP_FS_SUBGROUP_SIZE;
2898 dst[0] = create_driver_param(ctx, size);
2899 break;
2900 }
2901 case nir_intrinsic_load_subgroup_id_shift_ir3:
2902 dst[0] = create_driver_param(ctx, IR3_DP_SUBGROUP_ID_SHIFT);
2903 break;
2904 case nir_intrinsic_load_work_dim:
2905 dst[0] = create_driver_param(ctx, IR3_DP_WORK_DIM);
2906 break;
2907 case nir_intrinsic_load_subgroup_invocation:
2908 assert(ctx->compiler->has_getfiberid);
2909 dst[0] = ir3_GETFIBERID(b);
2910 dst[0]->cat6.type = TYPE_U32;
2911 __ssa_dst(dst[0]);
2912 break;
2913 case nir_intrinsic_load_tess_level_outer_default:
2914 for (int i = 0; i < dest_components; i++) {
2915 dst[i] = create_driver_param(ctx, IR3_DP_HS_DEFAULT_OUTER_LEVEL_X + i);
2916 }
2917 create_rpt = true;
2918 break;
2919 case nir_intrinsic_load_tess_level_inner_default:
2920 for (int i = 0; i < dest_components; i++) {
2921 dst[i] = create_driver_param(ctx, IR3_DP_HS_DEFAULT_INNER_LEVEL_X + i);
2922 }
2923 create_rpt = true;
2924 break;
2925 case nir_intrinsic_load_frag_invocation_count:
2926 dst[0] = create_driver_param(ctx, IR3_DP_FS_FRAG_INVOCATION_COUNT);
2927 break;
2928 case nir_intrinsic_load_frag_size_ir3:
2929 case nir_intrinsic_load_frag_offset_ir3: {
2930 enum ir3_driver_param param =
2931 intr->intrinsic == nir_intrinsic_load_frag_size_ir3 ?
2932 IR3_DP_FS_FRAG_SIZE : IR3_DP_FS_FRAG_OFFSET;
2933 if (nir_src_is_const(intr->src[0])) {
2934 uint32_t view = nir_src_as_uint(intr->src[0]);
2935 for (int i = 0; i < dest_components; i++) {
2936 dst[i] = create_driver_param(ctx, param + 4 * view + i);
2937 }
2938 create_rpt = true;
2939 } else {
2940 struct ir3_instruction *view = ir3_get_src(ctx, &intr->src[0])[0];
2941 for (int i = 0; i < dest_components; i++) {
2942 dst[i] = create_driver_param_indirect(ctx, param + i,
2943 ir3_get_addr0(ctx, view, 4));
2944 }
2945 ctx->so->constlen =
2946 MAX2(ctx->so->constlen,
2947 const_state->offsets.driver_param + param / 4 +
2948 nir_intrinsic_range(intr));
2949 }
2950 break;
2951 }
2952 case nir_intrinsic_demote:
2953 case nir_intrinsic_demote_if:
2954 case nir_intrinsic_terminate:
2955 case nir_intrinsic_terminate_if: {
2956 struct ir3_instruction *cond, *kill;
2957
2958 if (intr->intrinsic == nir_intrinsic_demote_if ||
2959 intr->intrinsic == nir_intrinsic_terminate_if) {
2960 /* conditional discard: */
2961 src = ir3_get_src(ctx, &intr->src[0]);
2962 cond = src[0];
2963 } else {
2964 /* unconditional discard: */
2965 cond = create_immed_typed(b, 1, ctx->compiler->bool_type);
2966 }
2967
2968 /* NOTE: only cmps.*.* can write p0.x: */
2969 struct ir3_instruction *zero =
2970 create_immed_typed(b, 0, is_half(cond) ? TYPE_U16 : TYPE_U32);
2971 cond = ir3_CMPS_S(b, cond, 0, zero, 0);
2972 cond->cat2.condition = IR3_COND_NE;
2973
2974 /* condition always goes in predicate register: */
2975 cond->dsts[0]->flags |= IR3_REG_PREDICATE;
2976
2977 if (intr->intrinsic == nir_intrinsic_demote ||
2978 intr->intrinsic == nir_intrinsic_demote_if) {
2979 kill = ir3_DEMOTE(b, cond, 0);
2980 } else {
2981 kill = ir3_KILL(b, cond, 0);
2982 }
2983
2984 /* - Side-effects should not be moved on a different side of the kill
2985 * - Instructions that depend on active fibers should not be reordered
2986 */
2987 kill->barrier_class = IR3_BARRIER_IMAGE_W | IR3_BARRIER_BUFFER_W |
2988 IR3_BARRIER_ACTIVE_FIBERS_W;
2989 kill->barrier_conflict = IR3_BARRIER_IMAGE_W | IR3_BARRIER_BUFFER_W |
2990 IR3_BARRIER_ACTIVE_FIBERS_R;
2991 kill->srcs[0]->flags |= IR3_REG_PREDICATE;
2992
2993 array_insert(b, b->keeps, kill);
2994 ctx->so->has_kill = true;
2995
2996 break;
2997 }
2998
2999 case nir_intrinsic_vote_any:
3000 case nir_intrinsic_vote_all: {
3001 struct ir3_instruction *src = ir3_get_src(ctx, &intr->src[0])[0];
3002 struct ir3_instruction *pred = ir3_get_predicate(ctx, src);
3003 if (intr->intrinsic == nir_intrinsic_vote_any)
3004 dst[0] = ir3_ANY_MACRO(ctx->block, pred, 0);
3005 else
3006 dst[0] = ir3_ALL_MACRO(ctx->block, pred, 0);
3007 dst[0]->srcs[0]->flags |= IR3_REG_PREDICATE;
3008 break;
3009 }
3010 case nir_intrinsic_elect:
3011 dst[0] = ir3_ELECT_MACRO(ctx->block);
3012 dst[0]->flags |= IR3_INSTR_NEEDS_HELPERS;
3013 break;
3014 case nir_intrinsic_elect_any_ir3:
3015 dst[0] = ir3_ELECT_MACRO(ctx->block);
3016 break;
3017 case nir_intrinsic_preamble_start_ir3:
3018 dst[0] = ir3_SHPS_MACRO(ctx->block);
3019 break;
3020
3021 case nir_intrinsic_read_invocation_cond_ir3: {
3022 struct ir3_instruction *src = ir3_get_src(ctx, &intr->src[0])[0];
3023 struct ir3_instruction *cond = ir3_get_src(ctx, &intr->src[1])[0];
3024 dst[0] = ir3_READ_COND_MACRO(ctx->block, ir3_get_predicate(ctx, cond), 0,
3025 src, 0);
3026 dst[0]->dsts[0]->flags |= IR3_REG_SHARED;
3027 dst[0]->srcs[0]->flags |= IR3_REG_PREDICATE;
3028 /* Work around a bug with half-register shared -> non-shared moves by
3029 * adding an extra mov here so that the original destination stays full.
3030 */
3031 if (src->dsts[0]->flags & IR3_REG_HALF) {
3032 dst[0] = ir3_MOV(b, dst[0], TYPE_U32);
3033 if (!ctx->compiler->has_scalar_alu)
3034 dst[0]->dsts[0]->flags &= ~IR3_REG_SHARED;
3035 }
3036 break;
3037 }
3038
3039 case nir_intrinsic_read_first_invocation: {
3040 struct ir3_instruction *src = ir3_get_src(ctx, &intr->src[0])[0];
3041 dst[0] = ir3_READ_FIRST_MACRO(ctx->block, src, 0);
3042 dst[0]->dsts[0]->flags |= IR3_REG_SHARED;
3043 /* See above. */
3044 if (src->dsts[0]->flags & IR3_REG_HALF) {
3045 dst[0] = ir3_MOV(b, dst[0], TYPE_U32);
3046 if (!ctx->compiler->has_scalar_alu)
3047 dst[0]->dsts[0]->flags &= ~IR3_REG_SHARED;
3048 }
3049 break;
3050 }
3051
3052 case nir_intrinsic_ballot: {
3053 struct ir3_instruction *ballot;
3054 unsigned components = intr->def.num_components;
3055 if (nir_src_is_const(intr->src[0]) && nir_src_as_bool(intr->src[0])) {
3056 /* ballot(true) is just MOVMSK */
3057 ballot = ir3_MOVMSK(ctx->block, components);
3058 } else {
3059 struct ir3_instruction *src = ir3_get_src(ctx, &intr->src[0])[0];
3060 struct ir3_instruction *pred = ir3_get_predicate(ctx, src);
3061 ballot = ir3_BALLOT_MACRO(ctx->block, pred, components);
3062 ballot->srcs[0]->flags |= IR3_REG_PREDICATE;
3063 }
3064
3065 ballot->barrier_class = IR3_BARRIER_ACTIVE_FIBERS_R;
3066 ballot->barrier_conflict = IR3_BARRIER_ACTIVE_FIBERS_W;
3067
3068 ir3_split_dest(ctx->block, dst, ballot, 0, components);
3069 break;
3070 }
3071
3072 case nir_intrinsic_quad_broadcast: {
3073 struct ir3_instruction *src = ir3_get_src(ctx, &intr->src[0])[0];
3074 struct ir3_instruction *idx = ir3_get_src(ctx, &intr->src[1])[0];
3075
3076 type_t dst_type = type_uint_size(intr->def.bit_size);
3077
3078 if (dst_type != TYPE_U32)
3079 idx = ir3_COV(ctx->block, idx, TYPE_U32, dst_type);
3080
3081 dst[0] = ir3_QUAD_SHUFFLE_BRCST(ctx->block, src, 0, idx, 0);
3082 dst[0]->cat5.type = dst_type;
3083 break;
3084 }
3085
3086 case nir_intrinsic_quad_swap_horizontal: {
3087 struct ir3_instruction *src = ir3_get_src(ctx, &intr->src[0])[0];
3088 dst[0] = ir3_QUAD_SHUFFLE_HORIZ(ctx->block, src, 0);
3089 dst[0]->cat5.type = type_uint_size(intr->def.bit_size);
3090 break;
3091 }
3092
3093 case nir_intrinsic_quad_swap_vertical: {
3094 struct ir3_instruction *src = ir3_get_src(ctx, &intr->src[0])[0];
3095 dst[0] = ir3_QUAD_SHUFFLE_VERT(ctx->block, src, 0);
3096 dst[0]->cat5.type = type_uint_size(intr->def.bit_size);
3097 break;
3098 }
3099
3100 case nir_intrinsic_quad_swap_diagonal: {
3101 struct ir3_instruction *src = ir3_get_src(ctx, &intr->src[0])[0];
3102 dst[0] = ir3_QUAD_SHUFFLE_DIAG(ctx->block, src, 0);
3103 dst[0]->cat5.type = type_uint_size(intr->def.bit_size);
3104 break;
3105 }
3106 case nir_intrinsic_ddx:
3107 case nir_intrinsic_ddx_coarse: {
3108 struct ir3_instruction *src = ir3_get_src(ctx, &intr->src[0])[0];
3109 dst[0] = ir3_DSX(b, src, 0);
3110 dst[0]->cat5.type = TYPE_F32;
3111 break;
3112 }
3113 case nir_intrinsic_ddx_fine: {
3114 struct ir3_instruction *src = ir3_get_src(ctx, &intr->src[0])[0];
3115 dst[0] = ir3_DSXPP_MACRO(b, src, 0);
3116 dst[0]->cat5.type = TYPE_F32;
3117 break;
3118 }
3119 case nir_intrinsic_ddy:
3120 case nir_intrinsic_ddy_coarse: {
3121 struct ir3_instruction *src = ir3_get_src(ctx, &intr->src[0])[0];
3122 dst[0] = ir3_DSY(b, src, 0);
3123 dst[0]->cat5.type = TYPE_F32;
3124 break;
3125 }
3126 case nir_intrinsic_ddy_fine: {
3127 struct ir3_instruction *src = ir3_get_src(ctx, &intr->src[0])[0];
3128 dst[0] = ir3_DSYPP_MACRO(b, src, 0);
3129 dst[0]->cat5.type = TYPE_F32;
3130 break;
3131 }
3132 case nir_intrinsic_load_shared_ir3:
3133 emit_intrinsic_load_shared_ir3(ctx, intr, dst);
3134 break;
3135 case nir_intrinsic_store_shared_ir3:
3136 emit_intrinsic_store_shared_ir3(ctx, intr);
3137 break;
3138 case nir_intrinsic_bindless_resource_ir3:
3139 dst[0] = ir3_get_src(ctx, &intr->src[0])[0];
3140 break;
3141 case nir_intrinsic_global_atomic_ir3:
3142 case nir_intrinsic_global_atomic_swap_ir3: {
3143 dst[0] = ctx->funcs->emit_intrinsic_atomic_global(ctx, intr);
3144 break;
3145 }
3146
3147 case nir_intrinsic_reduce:
3148 case nir_intrinsic_inclusive_scan:
3149 case nir_intrinsic_exclusive_scan:
3150 dst[0] = emit_intrinsic_reduce(ctx, intr);
3151 break;
3152
3153 case nir_intrinsic_reduce_clusters_ir3:
3154 case nir_intrinsic_inclusive_scan_clusters_ir3:
3155 case nir_intrinsic_exclusive_scan_clusters_ir3:
3156 dst[0] = emit_intrinsic_reduce_clusters(ctx, intr);
3157 break;
3158
3159 case nir_intrinsic_brcst_active_ir3:
3160 dst[0] = emit_intrinsic_brcst_active(ctx, intr);
3161 break;
3162
3163 case nir_intrinsic_preamble_end_ir3: {
3164 struct ir3_instruction *instr = ir3_SHPE(ctx->block);
3165 instr->barrier_class = instr->barrier_conflict = IR3_BARRIER_CONST_W;
3166 array_insert(b, b->keeps, instr);
3167 break;
3168 }
3169 case nir_intrinsic_store_const_ir3: {
3170 unsigned components = nir_src_num_components(intr->src[0]);
3171 unsigned dst = nir_intrinsic_base(intr);
3172 unsigned dst_lo = dst & 0xff;
3173 unsigned dst_hi = dst >> 8;
3174
3175 struct ir3_instruction *src =
3176 ir3_create_collect(b, ir3_get_src_shared(ctx, &intr->src[0],
3177 ctx->compiler->has_scalar_alu),
3178 components);
3179 struct ir3_instruction *a1 = NULL;
3180 if (dst_hi) {
3181 /* Encode only the high part of the destination in a1.x to increase the
3182 * chance that we can reuse the a1.x value in subsequent stc
3183 * instructions.
3184 */
3185 a1 = ir3_get_addr1(ctx, dst_hi << 8);
3186 }
3187
3188 struct ir3_instruction *stc =
3189 ir3_STC(ctx->block, create_immed(b, dst_lo), 0, src, 0);
3190 stc->cat6.iim_val = components;
3191 stc->cat6.type = TYPE_U32;
3192 stc->barrier_conflict = IR3_BARRIER_CONST_W;
3193 if (a1) {
3194 ir3_instr_set_address(stc, a1);
3195 stc->flags |= IR3_INSTR_A1EN;
3196 }
3197 /* The assembler isn't aware of what value a1.x has, so make sure that
3198 * constlen includes the stc here.
3199 */
3200 ctx->so->constlen =
3201 MAX2(ctx->so->constlen, DIV_ROUND_UP(dst + components, 4));
3202 array_insert(b, b->keeps, stc);
3203 break;
3204 }
3205 case nir_intrinsic_copy_push_const_to_uniform_ir3: {
3206 struct ir3_instruction *load =
3207 ir3_instr_create(ctx->block, OPC_PUSH_CONSTS_LOAD_MACRO, 0, 0);
3208 array_insert(b, b->keeps, load);
3209
3210 load->push_consts.dst_base = nir_src_as_uint(intr->src[0]);
3211 load->push_consts.src_base = nir_intrinsic_base(intr);
3212 load->push_consts.src_size = nir_intrinsic_range(intr);
3213
3214 ctx->so->constlen =
3215 MAX2(ctx->so->constlen,
3216 DIV_ROUND_UP(
3217 load->push_consts.dst_base + load->push_consts.src_size, 4));
3218 break;
3219 }
3220 case nir_intrinsic_prefetch_sam_ir3: {
3221 struct tex_src_info info =
3222 get_bindless_samp_src(ctx, &intr->src[0], &intr->src[1]);
3223 struct ir3_instruction *sam =
3224 emit_sam(ctx, OPC_SAM, info, TYPE_F32, 0b1111, NULL, NULL);
3225
3226 sam->dsts_count = 0;
3227 array_insert(ctx->block, ctx->block->keeps, sam);
3228 break;
3229 }
3230 case nir_intrinsic_prefetch_tex_ir3: {
3231 struct ir3_instruction *idx = ir3_get_src(ctx, &intr->src[0])[0];
3232 struct ir3_instruction *resinfo = ir3_RESINFO(b, idx, 0);
3233 resinfo->cat6.iim_val = 1;
3234 resinfo->cat6.d = 1;
3235 resinfo->cat6.type = TYPE_U32;
3236 resinfo->cat6.typed = false;
3237
3238 ir3_handle_bindless_cat6(resinfo, intr->src[0]);
3239 if (resinfo->flags & IR3_INSTR_B)
3240 ctx->so->bindless_tex = true;
3241
3242 resinfo->dsts_count = 0;
3243 array_insert(ctx->block, ctx->block->keeps, resinfo);
3244 break;
3245 }
3246 case nir_intrinsic_prefetch_ubo_ir3: {
3247 struct ir3_instruction *offset = create_immed(ctx->block, 0);
3248 struct ir3_instruction *idx = ir3_get_src(ctx, &intr->src[0])[0];
3249 struct ir3_instruction *ldc = ir3_LDC(b, idx, 0, offset, 0);
3250 ldc->cat6.iim_val = 1;
3251 ldc->cat6.type = TYPE_U32;
3252
3253 ir3_handle_bindless_cat6(ldc, intr->src[0]);
3254 if (ldc->flags & IR3_INSTR_B)
3255 ctx->so->bindless_ubo = true;
3256
3257 ldc->dsts_count = 0;
3258 array_insert(ctx->block, ctx->block->keeps, ldc);
3259 break;
3260 }
3261 default:
3262 ir3_context_error(ctx, "Unhandled intrinsic type: %s\n",
3263 nir_intrinsic_infos[intr->intrinsic].name);
3264 break;
3265 }
3266
3267 if (info->has_dest) {
3268 if (create_rpt)
3269 ir3_instr_create_rpt(dst, dest_components);
3270 ir3_put_def(ctx, &intr->def);
3271 }
3272 }
3273
3274 static void
emit_load_const(struct ir3_context * ctx,nir_load_const_instr * instr)3275 emit_load_const(struct ir3_context *ctx, nir_load_const_instr *instr)
3276 {
3277 struct ir3_instruction **dst =
3278 ir3_get_dst_ssa(ctx, &instr->def, instr->def.num_components);
3279 unsigned bit_size = ir3_bitsize(ctx, instr->def.bit_size);
3280
3281 if (bit_size <= 8) {
3282 for (int i = 0; i < instr->def.num_components; i++)
3283 dst[i] = create_immed_typed(ctx->block, instr->value[i].u8, TYPE_U8);
3284 } else if (bit_size <= 16) {
3285 for (int i = 0; i < instr->def.num_components; i++)
3286 dst[i] = create_immed_typed(ctx->block, instr->value[i].u16, TYPE_U16);
3287 } else {
3288 for (int i = 0; i < instr->def.num_components; i++)
3289 dst[i] = create_immed_typed(ctx->block, instr->value[i].u32, TYPE_U32);
3290 }
3291 }
3292
3293 static void
emit_undef(struct ir3_context * ctx,nir_undef_instr * undef)3294 emit_undef(struct ir3_context *ctx, nir_undef_instr *undef)
3295 {
3296 struct ir3_instruction **dst =
3297 ir3_get_dst_ssa(ctx, &undef->def, undef->def.num_components);
3298 type_t type = utype_for_size(ir3_bitsize(ctx, undef->def.bit_size));
3299
3300 /* backend doesn't want undefined instructions, so just plug
3301 * in 0.0..
3302 */
3303 for (int i = 0; i < undef->def.num_components; i++)
3304 dst[i] = create_immed_typed(ctx->block, fui(0.0), type);
3305 }
3306
3307 /*
3308 * texture fetch/sample instructions:
3309 */
3310
3311 static type_t
get_tex_dest_type(nir_tex_instr * tex)3312 get_tex_dest_type(nir_tex_instr *tex)
3313 {
3314 type_t type;
3315
3316 switch (tex->dest_type) {
3317 case nir_type_float32:
3318 return TYPE_F32;
3319 case nir_type_float16:
3320 return TYPE_F16;
3321 case nir_type_int32:
3322 return TYPE_S32;
3323 case nir_type_int16:
3324 return TYPE_S16;
3325 case nir_type_bool32:
3326 case nir_type_uint32:
3327 return TYPE_U32;
3328 case nir_type_bool16:
3329 case nir_type_uint16:
3330 return TYPE_U16;
3331 case nir_type_invalid:
3332 default:
3333 unreachable("bad dest_type");
3334 }
3335
3336 return type;
3337 }
3338
3339 static void
tex_info(nir_tex_instr * tex,unsigned * flagsp,unsigned * coordsp)3340 tex_info(nir_tex_instr *tex, unsigned *flagsp, unsigned *coordsp)
3341 {
3342 unsigned coords =
3343 glsl_get_sampler_dim_coordinate_components(tex->sampler_dim);
3344 unsigned flags = 0;
3345
3346 /* note: would use tex->coord_components.. except txs.. also,
3347 * since array index goes after shadow ref, we don't want to
3348 * count it:
3349 */
3350 if (coords == 3)
3351 flags |= IR3_INSTR_3D;
3352
3353 if (tex->is_shadow && tex->op != nir_texop_lod)
3354 flags |= IR3_INSTR_S;
3355
3356 if (tex->is_array && tex->op != nir_texop_lod)
3357 flags |= IR3_INSTR_A;
3358
3359 *flagsp = flags;
3360 *coordsp = coords;
3361 }
3362
3363 /* Gets the sampler/texture idx as a hvec2. Which could either be dynamic
3364 * or immediate (in which case it will get lowered later to a non .s2en
3365 * version of the tex instruction which encode tex/samp as immediates:
3366 */
3367 static struct tex_src_info
get_tex_samp_tex_src(struct ir3_context * ctx,nir_tex_instr * tex)3368 get_tex_samp_tex_src(struct ir3_context *ctx, nir_tex_instr *tex)
3369 {
3370 struct ir3_block *b = ctx->block;
3371 struct tex_src_info info = {0};
3372 int texture_idx = nir_tex_instr_src_index(tex, nir_tex_src_texture_handle);
3373 int sampler_idx = nir_tex_instr_src_index(tex, nir_tex_src_sampler_handle);
3374 struct ir3_instruction *texture, *sampler;
3375
3376 if (texture_idx >= 0 || sampler_idx >= 0) {
3377 /* Bindless case */
3378 info = get_bindless_samp_src(ctx,
3379 texture_idx >= 0 ? &tex->src[texture_idx].src : NULL,
3380 sampler_idx >= 0 ? &tex->src[sampler_idx].src : NULL);
3381
3382 if (tex->texture_non_uniform || tex->sampler_non_uniform)
3383 info.flags |= IR3_INSTR_NONUNIF;
3384 } else {
3385 info.flags |= IR3_INSTR_S2EN;
3386 texture_idx = nir_tex_instr_src_index(tex, nir_tex_src_texture_offset);
3387 sampler_idx = nir_tex_instr_src_index(tex, nir_tex_src_sampler_offset);
3388 if (texture_idx >= 0) {
3389 texture = ir3_get_src(ctx, &tex->src[texture_idx].src)[0];
3390 texture = ir3_COV(ctx->block, texture, TYPE_U32, TYPE_U16);
3391 } else {
3392 /* TODO what to do for dynamic case? I guess we only need the
3393 * max index for astc srgb workaround so maybe not a problem
3394 * to worry about if we don't enable indirect samplers for
3395 * a4xx?
3396 */
3397 ctx->max_texture_index =
3398 MAX2(ctx->max_texture_index, tex->texture_index);
3399 texture = create_immed_typed(ctx->block, tex->texture_index, TYPE_U16);
3400 info.tex_idx = tex->texture_index;
3401 }
3402
3403 if (sampler_idx >= 0) {
3404 sampler = ir3_get_src(ctx, &tex->src[sampler_idx].src)[0];
3405 sampler = ir3_COV(ctx->block, sampler, TYPE_U32, TYPE_U16);
3406 } else {
3407 sampler = create_immed_typed(ctx->block, tex->sampler_index, TYPE_U16);
3408 info.samp_idx = tex->texture_index;
3409 }
3410
3411 info.samp_tex = ir3_collect(b, sampler, texture);
3412 }
3413
3414 return info;
3415 }
3416
3417 static void
emit_tex(struct ir3_context * ctx,nir_tex_instr * tex)3418 emit_tex(struct ir3_context *ctx, nir_tex_instr *tex)
3419 {
3420 struct ir3_block *b = ctx->block;
3421 struct ir3_instruction **dst, *sam, *src0[12], *src1[4];
3422 struct ir3_instruction *const *coord, *const *off, *const *ddx, *const *ddy;
3423 struct ir3_instruction *lod, *compare, *proj, *sample_index;
3424 struct tex_src_info info = {0};
3425 bool has_bias = false, has_lod = false, has_proj = false, has_off = false;
3426 unsigned i, coords, flags, ncomp;
3427 unsigned nsrc0 = 0, nsrc1 = 0;
3428 type_t type;
3429 opc_t opc = 0;
3430
3431 ncomp = tex->def.num_components;
3432
3433 coord = off = ddx = ddy = NULL;
3434 lod = proj = compare = sample_index = NULL;
3435
3436 dst = ir3_get_def(ctx, &tex->def, ncomp);
3437
3438 for (unsigned i = 0; i < tex->num_srcs; i++) {
3439 switch (tex->src[i].src_type) {
3440 case nir_tex_src_coord:
3441 coord = ir3_get_src(ctx, &tex->src[i].src);
3442 break;
3443 case nir_tex_src_bias:
3444 lod = ir3_get_src(ctx, &tex->src[i].src)[0];
3445 has_bias = true;
3446 break;
3447 case nir_tex_src_lod:
3448 lod = ir3_get_src(ctx, &tex->src[i].src)[0];
3449 has_lod = true;
3450 break;
3451 case nir_tex_src_comparator: /* shadow comparator */
3452 compare = ir3_get_src(ctx, &tex->src[i].src)[0];
3453 break;
3454 case nir_tex_src_projector:
3455 proj = ir3_get_src(ctx, &tex->src[i].src)[0];
3456 has_proj = true;
3457 break;
3458 case nir_tex_src_offset:
3459 off = ir3_get_src(ctx, &tex->src[i].src);
3460 has_off = true;
3461 break;
3462 case nir_tex_src_ddx:
3463 ddx = ir3_get_src(ctx, &tex->src[i].src);
3464 break;
3465 case nir_tex_src_ddy:
3466 ddy = ir3_get_src(ctx, &tex->src[i].src);
3467 break;
3468 case nir_tex_src_ms_index:
3469 sample_index = ir3_get_src(ctx, &tex->src[i].src)[0];
3470 break;
3471 case nir_tex_src_texture_offset:
3472 case nir_tex_src_sampler_offset:
3473 case nir_tex_src_texture_handle:
3474 case nir_tex_src_sampler_handle:
3475 /* handled in get_tex_samp_src() */
3476 break;
3477 default:
3478 ir3_context_error(ctx, "Unhandled NIR tex src type: %d\n",
3479 tex->src[i].src_type);
3480 return;
3481 }
3482 }
3483
3484 switch (tex->op) {
3485 case nir_texop_tex_prefetch:
3486 compile_assert(ctx, !has_bias);
3487 compile_assert(ctx, !has_lod);
3488 compile_assert(ctx, !compare);
3489 compile_assert(ctx, !has_proj);
3490 compile_assert(ctx, !has_off);
3491 compile_assert(ctx, !ddx);
3492 compile_assert(ctx, !ddy);
3493 compile_assert(ctx, !sample_index);
3494 compile_assert(
3495 ctx, nir_tex_instr_src_index(tex, nir_tex_src_texture_offset) < 0);
3496 compile_assert(
3497 ctx, nir_tex_instr_src_index(tex, nir_tex_src_sampler_offset) < 0);
3498
3499 if (ctx->so->num_sampler_prefetch < ctx->prefetch_limit) {
3500 opc = OPC_META_TEX_PREFETCH;
3501 ctx->so->num_sampler_prefetch++;
3502 break;
3503 }
3504 FALLTHROUGH;
3505 case nir_texop_tex:
3506 opc = has_lod ? OPC_SAML : OPC_SAM;
3507 break;
3508 case nir_texop_txb:
3509 opc = OPC_SAMB;
3510 break;
3511 case nir_texop_txl:
3512 opc = OPC_SAML;
3513 break;
3514 case nir_texop_txd:
3515 opc = OPC_SAMGQ;
3516 break;
3517 case nir_texop_txf:
3518 opc = OPC_ISAML;
3519 break;
3520 case nir_texop_lod:
3521 opc = OPC_GETLOD;
3522 break;
3523 case nir_texop_tg4:
3524 switch (tex->component) {
3525 case 0:
3526 opc = OPC_GATHER4R;
3527 break;
3528 case 1:
3529 opc = OPC_GATHER4G;
3530 break;
3531 case 2:
3532 opc = OPC_GATHER4B;
3533 break;
3534 case 3:
3535 opc = OPC_GATHER4A;
3536 break;
3537 }
3538 break;
3539 case nir_texop_txf_ms_fb:
3540 case nir_texop_txf_ms:
3541 opc = OPC_ISAMM;
3542 break;
3543 default:
3544 ir3_context_error(ctx, "Unhandled NIR tex type: %d\n", tex->op);
3545 return;
3546 }
3547
3548 tex_info(tex, &flags, &coords);
3549
3550 /*
3551 * lay out the first argument in the proper order:
3552 * - actual coordinates first
3553 * - shadow reference
3554 * - array index
3555 * - projection w
3556 * - starting at offset 4, dpdx.xy, dpdy.xy
3557 *
3558 * bias/lod go into the second arg
3559 */
3560
3561 /* insert tex coords: */
3562 for (i = 0; i < coords; i++)
3563 src0[i] = coord[i];
3564
3565 nsrc0 = i;
3566
3567 type_t coord_pad_type = is_half(coord[0]) ? TYPE_U16 : TYPE_U32;
3568 /* scale up integer coords for TXF based on the LOD */
3569 if (ctx->compiler->unminify_coords && (opc == OPC_ISAML)) {
3570 assert(has_lod);
3571 for (i = 0; i < coords; i++)
3572 src0[i] = ir3_SHL_B(b, src0[i], 0, lod, 0);
3573 }
3574
3575 if (coords == 1) {
3576 /* hw doesn't do 1d, so we treat it as 2d with
3577 * height of 1, and patch up the y coord.
3578 */
3579 if (is_isam(opc)) {
3580 src0[nsrc0++] = create_immed_typed(b, 0, coord_pad_type);
3581 } else if (is_half(coord[0])) {
3582 src0[nsrc0++] = create_immed_typed(b, _mesa_float_to_half(0.5), coord_pad_type);
3583 } else {
3584 src0[nsrc0++] = create_immed_typed(b, fui(0.5), coord_pad_type);
3585 }
3586 }
3587
3588 if (tex->is_shadow && tex->op != nir_texop_lod)
3589 src0[nsrc0++] = compare;
3590
3591 if (tex->is_array && tex->op != nir_texop_lod)
3592 src0[nsrc0++] = coord[coords];
3593
3594 if (has_proj) {
3595 src0[nsrc0++] = proj;
3596 flags |= IR3_INSTR_P;
3597 }
3598
3599 /* pad to 4, then ddx/ddy: */
3600 if (tex->op == nir_texop_txd) {
3601 while (nsrc0 < 4)
3602 src0[nsrc0++] = create_immed_typed(b, fui(0.0), coord_pad_type);
3603 for (i = 0; i < coords; i++)
3604 src0[nsrc0++] = ddx[i];
3605 if (coords < 2)
3606 src0[nsrc0++] = create_immed_typed(b, fui(0.0), coord_pad_type);
3607 for (i = 0; i < coords; i++)
3608 src0[nsrc0++] = ddy[i];
3609 if (coords < 2)
3610 src0[nsrc0++] = create_immed_typed(b, fui(0.0), coord_pad_type);
3611 }
3612
3613 /* NOTE a3xx (and possibly a4xx?) might be different, using isaml
3614 * with scaled x coord according to requested sample:
3615 */
3616 if (opc == OPC_ISAMM) {
3617 if (ctx->compiler->txf_ms_with_isaml) {
3618 /* the samples are laid out in x dimension as
3619 * 0 1 2 3
3620 * x_ms = (x << ms) + sample_index;
3621 */
3622 struct ir3_instruction *ms;
3623 ms = create_immed(b, (ctx->samples >> (2 * tex->texture_index)) & 3);
3624
3625 src0[0] = ir3_SHL_B(b, src0[0], 0, ms, 0);
3626 src0[0] = ir3_ADD_U(b, src0[0], 0, sample_index, 0);
3627
3628 opc = OPC_ISAML;
3629 } else {
3630 src0[nsrc0++] = sample_index;
3631 }
3632 }
3633
3634 /*
3635 * second argument (if applicable):
3636 * - offsets
3637 * - lod
3638 * - bias
3639 */
3640 if (has_off | has_lod | has_bias) {
3641 if (has_off) {
3642 unsigned off_coords = coords;
3643 if (tex->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
3644 off_coords--;
3645 for (i = 0; i < off_coords; i++)
3646 src1[nsrc1++] = off[i];
3647 if (off_coords < 2)
3648 src1[nsrc1++] = create_immed_typed(b, fui(0.0), coord_pad_type);
3649 flags |= IR3_INSTR_O;
3650 }
3651
3652 if (has_lod | has_bias)
3653 src1[nsrc1++] = lod;
3654 }
3655
3656 type = get_tex_dest_type(tex);
3657
3658 if (opc == OPC_GETLOD)
3659 type = TYPE_S32;
3660
3661 if (tex->op == nir_texop_txf_ms_fb) {
3662 compile_assert(ctx, ctx->so->type == MESA_SHADER_FRAGMENT);
3663
3664 ctx->so->fb_read = true;
3665 if (ctx->compiler->options.bindless_fb_read_descriptor >= 0) {
3666 ctx->so->bindless_tex = true;
3667 info.flags = IR3_INSTR_B;
3668 info.base = ctx->compiler->options.bindless_fb_read_descriptor;
3669 struct ir3_instruction *texture, *sampler;
3670
3671 int base_index =
3672 nir_tex_instr_src_index(tex, nir_tex_src_texture_handle);
3673 nir_src tex_src = tex->src[base_index].src;
3674
3675 if (nir_src_is_const(tex_src)) {
3676 texture = create_immed_typed(b,
3677 nir_src_as_uint(tex_src) + ctx->compiler->options.bindless_fb_read_slot,
3678 TYPE_U32);
3679 } else {
3680 texture = create_immed_typed(
3681 ctx->block, ctx->compiler->options.bindless_fb_read_slot, TYPE_U32);
3682 struct ir3_instruction *base =
3683 ir3_get_src(ctx, &tex->src[base_index].src)[0];
3684 texture = ir3_ADD_U(b, texture, 0, base, 0);
3685 }
3686 sampler = create_immed_typed(ctx->block, 0, TYPE_U32);
3687 info.samp_tex = ir3_collect(b, texture, sampler);
3688 info.flags |= IR3_INSTR_S2EN;
3689 if (tex->texture_non_uniform) {
3690 info.flags |= IR3_INSTR_NONUNIF;
3691 }
3692 } else {
3693 /* Otherwise append a sampler to be patched into the texture
3694 * state:
3695 */
3696 info.samp_tex = ir3_collect(
3697 b, create_immed_typed(ctx->block, ctx->so->num_samp, TYPE_U16),
3698 create_immed_typed(ctx->block, ctx->so->num_samp, TYPE_U16));
3699 info.flags = IR3_INSTR_S2EN;
3700 }
3701
3702 ctx->so->num_samp++;
3703 } else {
3704 info = get_tex_samp_tex_src(ctx, tex);
3705 }
3706
3707 bool tg4_swizzle_fixup = false;
3708 if (tex->op == nir_texop_tg4 && ctx->compiler->gen == 4 &&
3709 ctx->sampler_swizzles[tex->texture_index] != 0x688 /* rgba */) {
3710 uint16_t swizzles = ctx->sampler_swizzles[tex->texture_index];
3711 uint16_t swizzle = (swizzles >> (tex->component * 3)) & 7;
3712 if (swizzle > 3) {
3713 /* this would mean that we can just return 0 / 1, no texturing
3714 * necessary
3715 */
3716 struct ir3_instruction *imm = create_immed(b,
3717 type_float(type) ? fui(swizzle - 4) : (swizzle - 4));
3718 for (int i = 0; i < 4; i++)
3719 dst[i] = imm;
3720 ir3_put_def(ctx, &tex->def);
3721 return;
3722 }
3723 opc = OPC_GATHER4R + swizzle;
3724 tg4_swizzle_fixup = true;
3725 }
3726
3727 struct ir3_instruction *col0 = ir3_create_collect(b, src0, nsrc0);
3728 struct ir3_instruction *col1 = ir3_create_collect(b, src1, nsrc1);
3729
3730 if (opc == OPC_META_TEX_PREFETCH) {
3731 int idx = nir_tex_instr_src_index(tex, nir_tex_src_coord);
3732
3733
3734 sam = ir3_SAM(ctx->in_block, opc, type, MASK(ncomp), 0, NULL,
3735 get_barycentric(ctx, IJ_PERSP_PIXEL), 0);
3736 sam->prefetch.input_offset = ir3_nir_coord_offset(tex->src[idx].src.ssa);
3737 /* make sure not to add irrelevant flags like S2EN */
3738 sam->flags = flags | (info.flags & IR3_INSTR_B);
3739 sam->prefetch.tex = info.tex_idx;
3740 sam->prefetch.samp = info.samp_idx;
3741 sam->prefetch.tex_base = info.tex_base;
3742 sam->prefetch.samp_base = info.samp_base;
3743 } else {
3744 info.flags |= flags;
3745 sam = emit_sam(ctx, opc, info, type, MASK(ncomp), col0, col1);
3746 }
3747
3748 if (tg4_swizzle_fixup) {
3749 /* TODO: fix-up for ASTC when alpha is selected? */
3750 array_insert(ctx->ir, ctx->ir->tg4, sam);
3751
3752 ir3_split_dest(b, dst, sam, 0, 4);
3753
3754 uint8_t tex_bits = ctx->sampler_swizzles[tex->texture_index] >> 12;
3755 if (!type_float(type) && tex_bits != 3 /* 32bpp */ &&
3756 tex_bits != 0 /* key unset */) {
3757 uint8_t bits = 0;
3758 switch (tex_bits) {
3759 case 1: /* 8bpp */
3760 bits = 8;
3761 break;
3762 case 2: /* 16bpp */
3763 bits = 16;
3764 break;
3765 case 4: /* 10bpp or 2bpp for alpha */
3766 if (opc == OPC_GATHER4A)
3767 bits = 2;
3768 else
3769 bits = 10;
3770 break;
3771 default:
3772 assert(0);
3773 }
3774
3775 sam->cat5.type = TYPE_F32;
3776 for (int i = 0; i < 4; i++) {
3777 /* scale and offset the unorm data */
3778 dst[i] = ir3_MAD_F32(b, dst[i], 0, create_immed(b, fui((1 << bits) - 1)), 0, create_immed(b, fui(0.5f)), 0);
3779 /* convert the scaled value to integer */
3780 dst[i] = ir3_COV(b, dst[i], TYPE_F32, TYPE_U32);
3781 /* sign extend for signed values */
3782 if (type == TYPE_S32) {
3783 dst[i] = ir3_SHL_B(b, dst[i], 0, create_immed(b, 32 - bits), 0);
3784 dst[i] = ir3_ASHR_B(b, dst[i], 0, create_immed(b, 32 - bits), 0);
3785 }
3786 }
3787 }
3788 } else if ((ctx->astc_srgb & (1 << tex->texture_index)) &&
3789 tex->op != nir_texop_tg4 && /* leave out tg4, unless it's on alpha? */
3790 !nir_tex_instr_is_query(tex)) {
3791 assert(opc != OPC_META_TEX_PREFETCH);
3792
3793 /* only need first 3 components: */
3794 sam->dsts[0]->wrmask = 0x7;
3795 ir3_split_dest(b, dst, sam, 0, 3);
3796
3797 /* we need to sample the alpha separately with a non-SRGB
3798 * texture state:
3799 */
3800 sam = ir3_SAM(b, opc, type, 0b1000, flags | info.flags, info.samp_tex,
3801 col0, col1);
3802
3803 array_insert(ctx->ir, ctx->ir->astc_srgb, sam);
3804
3805 /* fixup .w component: */
3806 ir3_split_dest(b, &dst[3], sam, 3, 1);
3807 } else {
3808 /* normal (non-workaround) case: */
3809 ir3_split_dest(b, dst, sam, 0, ncomp);
3810 }
3811
3812 /* GETLOD returns results in 4.8 fixed point */
3813 if (opc == OPC_GETLOD) {
3814 bool half = tex->def.bit_size == 16;
3815 struct ir3_instruction *factor =
3816 half ? create_immed_typed(b, _mesa_float_to_half(1.0 / 256), TYPE_F16)
3817 : create_immed(b, fui(1.0 / 256));
3818
3819 for (i = 0; i < 2; i++) {
3820 dst[i] = ir3_MUL_F(
3821 b, ir3_COV(b, dst[i], TYPE_S32, half ? TYPE_F16 : TYPE_F32), 0,
3822 factor, 0);
3823 }
3824 }
3825
3826 ir3_put_def(ctx, &tex->def);
3827 }
3828
3829 static void
emit_tex_info(struct ir3_context * ctx,nir_tex_instr * tex,unsigned idx)3830 emit_tex_info(struct ir3_context *ctx, nir_tex_instr *tex, unsigned idx)
3831 {
3832 struct ir3_block *b = ctx->block;
3833 struct ir3_instruction **dst, *sam;
3834 type_t dst_type = get_tex_dest_type(tex);
3835 struct tex_src_info info = get_tex_samp_tex_src(ctx, tex);
3836
3837 dst = ir3_get_def(ctx, &tex->def, 1);
3838
3839 sam = emit_sam(ctx, OPC_GETINFO, info, dst_type, 1 << idx, NULL, NULL);
3840
3841 /* even though there is only one component, since it ends
3842 * up in .y/.z/.w rather than .x, we need a split_dest()
3843 */
3844 ir3_split_dest(b, dst, sam, idx, 1);
3845
3846 /* The # of levels comes from getinfo.z. We need to add 1 to it, since
3847 * the value in TEX_CONST_0 is zero-based.
3848 */
3849 if (ctx->compiler->levels_add_one)
3850 dst[0] = ir3_ADD_U(b, dst[0], 0, create_immed(b, 1), 0);
3851
3852 ir3_put_def(ctx, &tex->def);
3853 }
3854
3855 static void
emit_tex_txs(struct ir3_context * ctx,nir_tex_instr * tex)3856 emit_tex_txs(struct ir3_context *ctx, nir_tex_instr *tex)
3857 {
3858 struct ir3_block *b = ctx->block;
3859 struct ir3_instruction **dst, *sam;
3860 struct ir3_instruction *lod;
3861 unsigned flags, coords;
3862 type_t dst_type = get_tex_dest_type(tex);
3863 struct tex_src_info info = get_tex_samp_tex_src(ctx, tex);
3864
3865 tex_info(tex, &flags, &coords);
3866 info.flags |= flags;
3867
3868 /* Actually we want the number of dimensions, not coordinates. This
3869 * distinction only matters for cubes.
3870 */
3871 if (tex->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
3872 coords = 2;
3873
3874 dst = ir3_get_def(ctx, &tex->def, 4);
3875
3876 int lod_idx = nir_tex_instr_src_index(tex, nir_tex_src_lod);
3877 compile_assert(ctx, lod_idx >= 0);
3878
3879 lod = ir3_get_src(ctx, &tex->src[lod_idx].src)[0];
3880
3881 if (tex->sampler_dim != GLSL_SAMPLER_DIM_BUF) {
3882 sam = emit_sam(ctx, OPC_GETSIZE, info, dst_type, 0b1111, lod, NULL);
3883 } else {
3884 /*
3885 * The maximum value which OPC_GETSIZE could return for one dimension
3886 * is 0x007ff0, however sampler buffer could be much bigger.
3887 * Blob uses OPC_GETBUF for them.
3888 */
3889 sam = emit_sam(ctx, OPC_GETBUF, info, dst_type, 0b1111, NULL, NULL);
3890 }
3891
3892 ir3_split_dest(b, dst, sam, 0, 4);
3893
3894 /* Array size actually ends up in .w rather than .z. This doesn't
3895 * matter for miplevel 0, but for higher mips the value in z is
3896 * minified whereas w stays. Also, the value in TEX_CONST_3_DEPTH is
3897 * returned, which means that we have to add 1 to it for arrays.
3898 */
3899 if (tex->is_array) {
3900 if (ctx->compiler->levels_add_one) {
3901 dst[coords] = ir3_ADD_U(b, dst[3], 0, create_immed(b, 1), 0);
3902 } else {
3903 dst[coords] = ir3_MOV(b, dst[3], TYPE_U32);
3904 }
3905 }
3906
3907 ir3_put_def(ctx, &tex->def);
3908 }
3909
3910 /* phi instructions are left partially constructed. We don't resolve
3911 * their srcs until the end of the shader, since (eg. loops) one of
3912 * the phi's srcs might be defined after the phi due to back edges in
3913 * the CFG.
3914 */
3915 static void
emit_phi(struct ir3_context * ctx,nir_phi_instr * nphi)3916 emit_phi(struct ir3_context *ctx, nir_phi_instr *nphi)
3917 {
3918 struct ir3_instruction *phi, **dst;
3919
3920 unsigned num_components = nphi->def.num_components;
3921 dst = ir3_get_def(ctx, &nphi->def, num_components);
3922
3923 if (exec_list_is_singular(&nphi->srcs)) {
3924 nir_phi_src *src = list_entry(exec_list_get_head(&nphi->srcs),
3925 nir_phi_src, node);
3926 if (nphi->def.divergent == src->src.ssa->divergent) {
3927 struct ir3_instruction *const *srcs =
3928 ir3_get_src_maybe_shared(ctx, &src->src);
3929 memcpy(dst, srcs, num_components * sizeof(struct ir3_instruction *));
3930 ir3_put_def(ctx, &nphi->def);
3931 return;
3932 }
3933 }
3934
3935 for (unsigned i = 0; i < num_components; i++) {
3936 phi = ir3_instr_create(ctx->block, OPC_META_PHI, 1,
3937 exec_list_length(&nphi->srcs));
3938 __ssa_dst(phi);
3939 phi->phi.nphi = nphi;
3940 phi->phi.comp = i;
3941
3942 if (ctx->compiler->has_scalar_alu && !nphi->def.divergent)
3943 phi->dsts[0]->flags |= IR3_REG_SHARED;
3944
3945 dst[i] = phi;
3946 }
3947
3948 ir3_put_def(ctx, &nphi->def);
3949 }
3950
3951 static struct ir3_block *get_block(struct ir3_context *ctx,
3952 const nir_block *nblock);
3953
3954 static struct ir3_instruction *
read_phi_src(struct ir3_context * ctx,struct ir3_block * blk,struct ir3_instruction * phi,nir_phi_instr * nphi)3955 read_phi_src(struct ir3_context *ctx, struct ir3_block *blk,
3956 struct ir3_instruction *phi, nir_phi_instr *nphi)
3957 {
3958 if (!blk->nblock) {
3959 struct ir3_instruction *continue_phi =
3960 ir3_instr_create(blk, OPC_META_PHI, 1, blk->predecessors_count);
3961 __ssa_dst(continue_phi)->flags = phi->dsts[0]->flags;
3962
3963 for (unsigned i = 0; i < blk->predecessors_count; i++) {
3964 struct ir3_instruction *src =
3965 read_phi_src(ctx, blk->predecessors[i], phi, nphi);
3966 if (src)
3967 __ssa_src(continue_phi, src, 0);
3968 else
3969 ir3_src_create(continue_phi, INVALID_REG, phi->dsts[0]->flags);
3970 }
3971
3972 return continue_phi;
3973 }
3974
3975 nir_foreach_phi_src (nsrc, nphi) {
3976 if (blk->nblock == nsrc->pred) {
3977 if (nsrc->src.ssa->parent_instr->type == nir_instr_type_undef) {
3978 /* Create an ir3 undef */
3979 return NULL;
3980 } else {
3981 /* We need to insert the move at the end of the block */
3982 struct ir3_block *old_block = ctx->block;
3983 ctx->block = blk;
3984 struct ir3_instruction *src = ir3_get_src_shared(
3985 ctx, &nsrc->src,
3986 phi->dsts[0]->flags & IR3_REG_SHARED)[phi->phi.comp];
3987 ctx->block = old_block;
3988 return src;
3989 }
3990 }
3991 }
3992
3993 unreachable("couldn't find phi node ir3 block");
3994 return NULL;
3995 }
3996
3997 static void
resolve_phis(struct ir3_context * ctx,struct ir3_block * block)3998 resolve_phis(struct ir3_context *ctx, struct ir3_block *block)
3999 {
4000 foreach_instr (phi, &block->instr_list) {
4001 if (phi->opc != OPC_META_PHI)
4002 break;
4003
4004 nir_phi_instr *nphi = phi->phi.nphi;
4005
4006 if (!nphi) /* skip continue phis created above */
4007 continue;
4008
4009 for (unsigned i = 0; i < block->predecessors_count; i++) {
4010 struct ir3_block *pred = block->predecessors[i];
4011 struct ir3_instruction *src = read_phi_src(ctx, pred, phi, nphi);
4012 if (src) {
4013 __ssa_src(phi, src, 0);
4014 } else {
4015 /* Create an ir3 undef */
4016 ir3_src_create(phi, INVALID_REG, phi->dsts[0]->flags);
4017 }
4018 }
4019 }
4020 }
4021
4022 static void
emit_jump(struct ir3_context * ctx,nir_jump_instr * jump)4023 emit_jump(struct ir3_context *ctx, nir_jump_instr *jump)
4024 {
4025 switch (jump->type) {
4026 case nir_jump_break:
4027 case nir_jump_continue:
4028 case nir_jump_return:
4029 /* I *think* we can simply just ignore this, and use the
4030 * successor block link to figure out where we need to
4031 * jump to for break/continue
4032 */
4033 break;
4034 default:
4035 ir3_context_error(ctx, "Unhandled NIR jump type: %d\n", jump->type);
4036 break;
4037 }
4038 }
4039
4040 static void
emit_instr(struct ir3_context * ctx,nir_instr * instr)4041 emit_instr(struct ir3_context *ctx, nir_instr *instr)
4042 {
4043 switch (instr->type) {
4044 case nir_instr_type_alu:
4045 emit_alu(ctx, nir_instr_as_alu(instr));
4046 break;
4047 case nir_instr_type_deref:
4048 /* ignored, handled as part of the intrinsic they are src to */
4049 break;
4050 case nir_instr_type_intrinsic:
4051 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
4052 break;
4053 case nir_instr_type_load_const:
4054 emit_load_const(ctx, nir_instr_as_load_const(instr));
4055 break;
4056 case nir_instr_type_undef:
4057 emit_undef(ctx, nir_instr_as_undef(instr));
4058 break;
4059 case nir_instr_type_tex: {
4060 nir_tex_instr *tex = nir_instr_as_tex(instr);
4061 /* couple tex instructions get special-cased:
4062 */
4063 switch (tex->op) {
4064 case nir_texop_txs:
4065 emit_tex_txs(ctx, tex);
4066 break;
4067 case nir_texop_query_levels:
4068 emit_tex_info(ctx, tex, 2);
4069 break;
4070 case nir_texop_texture_samples:
4071 emit_tex_info(ctx, tex, 3);
4072 break;
4073 default:
4074 emit_tex(ctx, tex);
4075 break;
4076 }
4077 break;
4078 }
4079 case nir_instr_type_jump:
4080 emit_jump(ctx, nir_instr_as_jump(instr));
4081 break;
4082 case nir_instr_type_phi:
4083 emit_phi(ctx, nir_instr_as_phi(instr));
4084 break;
4085 case nir_instr_type_call:
4086 case nir_instr_type_parallel_copy:
4087 case nir_instr_type_debug_info:
4088 ir3_context_error(ctx, "Unhandled NIR instruction type: %d\n",
4089 instr->type);
4090 break;
4091 }
4092 }
4093
4094 static struct ir3_block *
get_block(struct ir3_context * ctx,const nir_block * nblock)4095 get_block(struct ir3_context *ctx, const nir_block *nblock)
4096 {
4097 struct ir3_block *block;
4098 struct hash_entry *hentry;
4099
4100 hentry = _mesa_hash_table_search(ctx->block_ht, nblock);
4101 if (hentry)
4102 return hentry->data;
4103
4104 block = ir3_block_create(ctx->ir);
4105 block->nblock = nblock;
4106 _mesa_hash_table_insert(ctx->block_ht, nblock, block);
4107
4108 return block;
4109 }
4110
4111 static struct ir3_block *
get_block_or_continue(struct ir3_context * ctx,const nir_block * nblock)4112 get_block_or_continue(struct ir3_context *ctx, const nir_block *nblock)
4113 {
4114 struct hash_entry *hentry;
4115
4116 hentry = _mesa_hash_table_search(ctx->continue_block_ht, nblock);
4117 if (hentry)
4118 return hentry->data;
4119
4120 return get_block(ctx, nblock);
4121 }
4122
4123 static struct ir3_block *
create_continue_block(struct ir3_context * ctx,const nir_block * nblock)4124 create_continue_block(struct ir3_context *ctx, const nir_block *nblock)
4125 {
4126 struct ir3_block *block = ir3_block_create(ctx->ir);
4127 block->nblock = NULL;
4128 _mesa_hash_table_insert(ctx->continue_block_ht, nblock, block);
4129 return block;
4130 }
4131
4132 static void
emit_block(struct ir3_context * ctx,nir_block * nblock)4133 emit_block(struct ir3_context *ctx, nir_block *nblock)
4134 {
4135 ctx->block = get_block(ctx, nblock);
4136
4137 list_addtail(&ctx->block->node, &ctx->ir->block_list);
4138
4139 ctx->block->loop_depth = ctx->loop_depth;
4140
4141 /* re-emit addr register in each block if needed: */
4142 for (int i = 0; i < ARRAY_SIZE(ctx->addr0_ht); i++) {
4143 _mesa_hash_table_destroy(ctx->addr0_ht[i], NULL);
4144 ctx->addr0_ht[i] = NULL;
4145 }
4146
4147 _mesa_hash_table_u64_destroy(ctx->addr1_ht);
4148 ctx->addr1_ht = NULL;
4149
4150 nir_foreach_instr (instr, nblock) {
4151 ctx->cur_instr = instr;
4152 emit_instr(ctx, instr);
4153 ctx->cur_instr = NULL;
4154 if (ctx->error)
4155 return;
4156 }
4157
4158 for (int i = 0; i < ARRAY_SIZE(ctx->block->successors); i++) {
4159 if (nblock->successors[i]) {
4160 ctx->block->successors[i] =
4161 get_block_or_continue(ctx, nblock->successors[i]);
4162 }
4163 }
4164
4165 /* Emit unconditional branch if we only have one successor. Conditional
4166 * branches are emitted in emit_if.
4167 */
4168 if (ctx->block->successors[0] && !ctx->block->successors[1]) {
4169 if (!ir3_block_get_terminator(ctx->block))
4170 ir3_JUMP(ctx->block);
4171 }
4172
4173 _mesa_hash_table_clear(ctx->sel_cond_conversions, NULL);
4174 }
4175
4176 static void emit_cf_list(struct ir3_context *ctx, struct exec_list *list);
4177
4178 /* Get the ir3 branch condition for a given nir source. This will strip any inot
4179 * instructions and set *inv when the condition should be inverted. This
4180 * inversion can be directly folded into branches (in the inv1/inv2 fields)
4181 * instead of adding an explicit not.b/sub.u instruction.
4182 */
4183 static struct ir3_instruction *
get_branch_condition(struct ir3_context * ctx,nir_src * src,unsigned comp,bool * inv)4184 get_branch_condition(struct ir3_context *ctx, nir_src *src, unsigned comp,
4185 bool *inv)
4186 {
4187 struct ir3_instruction *condition = ir3_get_src(ctx, src)[comp];
4188
4189 if (src->ssa->parent_instr->type == nir_instr_type_alu) {
4190 nir_alu_instr *nir_cond = nir_instr_as_alu(src->ssa->parent_instr);
4191
4192 if (nir_cond->op == nir_op_inot) {
4193 struct ir3_instruction *inv_cond = get_branch_condition(
4194 ctx, &nir_cond->src[0].src, nir_cond->src[0].swizzle[comp], inv);
4195 *inv = !*inv;
4196 return inv_cond;
4197 }
4198 }
4199
4200 *inv = false;
4201 return ir3_get_predicate(ctx, condition);
4202 }
4203
4204 /* Try to fold br (and/or cond1, cond2) into braa/brao cond1, cond2.
4205 */
4206 static struct ir3_instruction *
fold_conditional_branch(struct ir3_context * ctx,struct nir_src * nir_cond)4207 fold_conditional_branch(struct ir3_context *ctx, struct nir_src *nir_cond)
4208 {
4209 if (!ctx->compiler->has_branch_and_or)
4210 return NULL;
4211
4212 if (nir_cond->ssa->parent_instr->type != nir_instr_type_alu)
4213 return NULL;
4214
4215 nir_alu_instr *alu_cond = nir_instr_as_alu(nir_cond->ssa->parent_instr);
4216
4217 if ((alu_cond->op != nir_op_iand) && (alu_cond->op != nir_op_ior))
4218 return NULL;
4219
4220 /* If the result of the and/or is also used for something else than an if
4221 * condition, the and/or cannot be removed. In that case, we will end-up with
4222 * extra predicate conversions for the conditions without actually removing
4223 * any instructions, resulting in an increase of instructions. Let's not fold
4224 * the conditions in the branch in that case.
4225 */
4226 if (!nir_def_only_used_by_if(&alu_cond->def))
4227 return NULL;
4228
4229 bool inv1, inv2;
4230 struct ir3_instruction *cond1 = get_branch_condition(
4231 ctx, &alu_cond->src[0].src, alu_cond->src[0].swizzle[0], &inv1);
4232 struct ir3_instruction *cond2 = get_branch_condition(
4233 ctx, &alu_cond->src[1].src, alu_cond->src[1].swizzle[0], &inv2);
4234
4235 struct ir3_instruction *branch;
4236 if (alu_cond->op == nir_op_iand) {
4237 branch = ir3_BRAA(ctx->block, cond1, IR3_REG_PREDICATE, cond2,
4238 IR3_REG_PREDICATE);
4239 } else {
4240 branch = ir3_BRAO(ctx->block, cond1, IR3_REG_PREDICATE, cond2,
4241 IR3_REG_PREDICATE);
4242 }
4243
4244 branch->cat0.inv1 = inv1;
4245 branch->cat0.inv2 = inv2;
4246 return branch;
4247 }
4248
4249 static bool
instr_can_be_predicated(nir_instr * instr)4250 instr_can_be_predicated(nir_instr *instr)
4251 {
4252 /* Anything that doesn't expand to control-flow can be predicated. */
4253 switch (instr->type) {
4254 case nir_instr_type_alu:
4255 case nir_instr_type_deref:
4256 case nir_instr_type_tex:
4257 case nir_instr_type_load_const:
4258 case nir_instr_type_undef:
4259 case nir_instr_type_phi:
4260 case nir_instr_type_parallel_copy:
4261 return true;
4262 case nir_instr_type_call:
4263 case nir_instr_type_jump:
4264 case nir_instr_type_debug_info:
4265 return false;
4266 case nir_instr_type_intrinsic: {
4267 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
4268 switch (intrin->intrinsic) {
4269 case nir_intrinsic_reduce:
4270 case nir_intrinsic_inclusive_scan:
4271 case nir_intrinsic_exclusive_scan:
4272 case nir_intrinsic_reduce_clusters_ir3:
4273 case nir_intrinsic_inclusive_scan_clusters_ir3:
4274 case nir_intrinsic_exclusive_scan_clusters_ir3:
4275 case nir_intrinsic_brcst_active_ir3:
4276 case nir_intrinsic_ballot:
4277 case nir_intrinsic_elect:
4278 case nir_intrinsic_elect_any_ir3:
4279 case nir_intrinsic_read_invocation_cond_ir3:
4280 case nir_intrinsic_demote:
4281 case nir_intrinsic_demote_if:
4282 case nir_intrinsic_terminate:
4283 case nir_intrinsic_terminate_if:
4284 return false;
4285 default:
4286 return true;
4287 }
4288 }
4289 }
4290
4291 unreachable("Checked all cases");
4292 }
4293
4294 static bool
nif_can_be_predicated(nir_if * nif)4295 nif_can_be_predicated(nir_if *nif)
4296 {
4297 /* For non-divergent branches, predication is more expensive than a branch
4298 * because the latter can potentially skip all instructions.
4299 */
4300 if (!nir_src_is_divergent(nif->condition))
4301 return false;
4302
4303 /* Although it could potentially be possible to allow a limited form of
4304 * nested predication (e.g., by resetting the predication mask after a nested
4305 * branch), let's avoid this for now and only use predication for leaf
4306 * branches. That is, for ifs that contain exactly one block in both branches
4307 * (note that they always contain at least one block).
4308 */
4309 if (!exec_list_is_singular(&nif->then_list) ||
4310 !exec_list_is_singular(&nif->else_list)) {
4311 return false;
4312 }
4313
4314 nir_foreach_instr (instr, nir_if_first_then_block(nif)) {
4315 if (!instr_can_be_predicated(instr))
4316 return false;
4317 }
4318
4319 nir_foreach_instr (instr, nir_if_first_else_block(nif)) {
4320 if (!instr_can_be_predicated(instr))
4321 return false;
4322 }
4323
4324 return true;
4325 }
4326
4327 /* A typical if-else block like this:
4328 * if (cond) {
4329 * tblock;
4330 * } else {
4331 * fblock;
4332 * }
4333 * Will be emitted as:
4334 * |-- i --|
4335 * | ... |
4336 * | predt |
4337 * |-------|
4338 * succ0 / \ succ1
4339 * |-- i+1 --| |-- i+2 --|
4340 * | tblock | | fblock |
4341 * | predf | | jump |
4342 * |---------| |---------|
4343 * succ0 \ / succ0
4344 * |-- j --|
4345 * | ... |
4346 * |-------|
4347 * Where the numbers at the top of blocks are their indices. That is, the true
4348 * block and false block are laid-out contiguously after the current block. This
4349 * layout is verified during legalization in prede_sched which also inserts the
4350 * final prede instruction. Note that we don't insert prede right away to allow
4351 * opt_jump to optimize the jump in the false block.
4352 */
4353 static struct ir3_instruction *
emit_predicated_branch(struct ir3_context * ctx,nir_if * nif)4354 emit_predicated_branch(struct ir3_context *ctx, nir_if *nif)
4355 {
4356 if (!ctx->compiler->has_predication)
4357 return NULL;
4358 if (!nif_can_be_predicated(nif))
4359 return NULL;
4360
4361 struct ir3_block *then_block = get_block(ctx, nir_if_first_then_block(nif));
4362 struct ir3_block *else_block = get_block(ctx, nir_if_first_else_block(nif));
4363 assert(list_is_empty(&then_block->instr_list) &&
4364 list_is_empty(&else_block->instr_list));
4365
4366 bool inv;
4367 struct ir3_instruction *condition =
4368 get_branch_condition(ctx, &nif->condition, 0, &inv);
4369 struct ir3_instruction *pred, *pred_inv;
4370
4371 if (!inv) {
4372 pred = ir3_PREDT(ctx->block, condition, IR3_REG_PREDICATE);
4373 pred_inv = ir3_PREDF(then_block, condition, IR3_REG_PREDICATE);
4374 } else {
4375 pred = ir3_PREDF(ctx->block, condition, IR3_REG_PREDICATE);
4376 pred_inv = ir3_PREDT(then_block, condition, IR3_REG_PREDICATE);
4377 }
4378
4379 pred->srcs[0]->num = REG_P0_X;
4380 pred_inv->srcs[0]->num = REG_P0_X;
4381 return pred;
4382 }
4383
4384 static struct ir3_instruction *
emit_conditional_branch(struct ir3_context * ctx,nir_if * nif)4385 emit_conditional_branch(struct ir3_context *ctx, nir_if *nif)
4386 {
4387 nir_src *nir_cond = &nif->condition;
4388 struct ir3_instruction *folded = fold_conditional_branch(ctx, nir_cond);
4389 if (folded)
4390 return folded;
4391
4392 struct ir3_instruction *predicated = emit_predicated_branch(ctx, nif);
4393 if (predicated)
4394 return predicated;
4395
4396 bool inv1;
4397 struct ir3_instruction *cond1 =
4398 get_branch_condition(ctx, nir_cond, 0, &inv1);
4399 struct ir3_instruction *branch =
4400 ir3_BR(ctx->block, cond1, IR3_REG_PREDICATE);
4401 branch->cat0.inv1 = inv1;
4402 return branch;
4403 }
4404
4405 static void
emit_if(struct ir3_context * ctx,nir_if * nif)4406 emit_if(struct ir3_context *ctx, nir_if *nif)
4407 {
4408 struct ir3_instruction *condition = ir3_get_src_maybe_shared(ctx, &nif->condition)[0];
4409
4410 if (condition->opc == OPC_ANY_MACRO && condition->block == ctx->block) {
4411 struct ir3_instruction *pred = ssa(condition->srcs[0]);
4412 ir3_BANY(ctx->block, pred, IR3_REG_PREDICATE);
4413 } else if (condition->opc == OPC_ALL_MACRO &&
4414 condition->block == ctx->block) {
4415 struct ir3_instruction *pred = ssa(condition->srcs[0]);
4416 ir3_BALL(ctx->block, pred, IR3_REG_PREDICATE);
4417 } else if (condition->opc == OPC_ELECT_MACRO &&
4418 condition->block == ctx->block) {
4419 struct ir3_instruction *branch = ir3_GETONE(ctx->block);
4420 branch->flags |= condition->flags & IR3_INSTR_NEEDS_HELPERS;
4421 } else if (condition->opc == OPC_SHPS_MACRO &&
4422 condition->block == ctx->block) {
4423 /* TODO: technically this only works if the block is the only user of the
4424 * shps, but we only use it in very constrained scenarios so this should
4425 * be ok.
4426 */
4427 ir3_SHPS(ctx->block);
4428 } else {
4429 emit_conditional_branch(ctx, nif);
4430 }
4431
4432 ctx->block->divergent_condition = nif->condition.ssa->divergent;
4433
4434 emit_cf_list(ctx, &nif->then_list);
4435 emit_cf_list(ctx, &nif->else_list);
4436 }
4437
4438 static void
emit_loop(struct ir3_context * ctx,nir_loop * nloop)4439 emit_loop(struct ir3_context *ctx, nir_loop *nloop)
4440 {
4441 assert(!nir_loop_has_continue_construct(nloop));
4442 ctx->loop_depth++;
4443
4444 struct nir_block *nstart = nir_loop_first_block(nloop);
4445 struct ir3_block *continue_blk = NULL;
4446
4447 /* There's always one incoming edge from outside the loop, and if there
4448 * is more than one backedge from inside the loop (so more than 2 total
4449 * edges) then we need to create a continue block after the loop to ensure
4450 * that control reconverges at the end of each loop iteration.
4451 */
4452 if (nstart->predecessors->entries > 2) {
4453 continue_blk = create_continue_block(ctx, nstart);
4454 }
4455
4456 emit_cf_list(ctx, &nloop->body);
4457
4458 if (continue_blk) {
4459 struct ir3_block *start = get_block(ctx, nstart);
4460 ir3_JUMP(continue_blk);
4461 continue_blk->successors[0] = start;
4462 continue_blk->loop_depth = ctx->loop_depth;
4463 list_addtail(&continue_blk->node, &ctx->ir->block_list);
4464 }
4465
4466 ctx->so->loops++;
4467 ctx->loop_depth--;
4468 }
4469
4470 static void
emit_cf_list(struct ir3_context * ctx,struct exec_list * list)4471 emit_cf_list(struct ir3_context *ctx, struct exec_list *list)
4472 {
4473 foreach_list_typed (nir_cf_node, node, node, list) {
4474 switch (node->type) {
4475 case nir_cf_node_block:
4476 emit_block(ctx, nir_cf_node_as_block(node));
4477 break;
4478 case nir_cf_node_if:
4479 emit_if(ctx, nir_cf_node_as_if(node));
4480 break;
4481 case nir_cf_node_loop:
4482 emit_loop(ctx, nir_cf_node_as_loop(node));
4483 break;
4484 case nir_cf_node_function:
4485 ir3_context_error(ctx, "TODO\n");
4486 break;
4487 }
4488 }
4489 }
4490
4491 /* emit stream-out code. At this point, the current block is the original
4492 * (nir) end block, and nir ensures that all flow control paths terminate
4493 * into the end block. We re-purpose the original end block to generate
4494 * the 'if (vtxcnt < maxvtxcnt)' condition, then append the conditional
4495 * block holding stream-out write instructions, followed by the new end
4496 * block:
4497 *
4498 * blockOrigEnd {
4499 * p0.x = (vtxcnt < maxvtxcnt)
4500 * // succs: blockStreamOut, blockNewEnd
4501 * }
4502 * blockStreamOut {
4503 * // preds: blockOrigEnd
4504 * ... stream-out instructions ...
4505 * // succs: blockNewEnd
4506 * }
4507 * blockNewEnd {
4508 * // preds: blockOrigEnd, blockStreamOut
4509 * }
4510 */
4511 static void
emit_stream_out(struct ir3_context * ctx)4512 emit_stream_out(struct ir3_context *ctx)
4513 {
4514 struct ir3 *ir = ctx->ir;
4515 struct ir3_stream_output_info *strmout = &ctx->so->stream_output;
4516 struct ir3_block *orig_end_block, *stream_out_block, *new_end_block;
4517 struct ir3_instruction *vtxcnt, *maxvtxcnt, *cond;
4518 struct ir3_instruction *bases[IR3_MAX_SO_BUFFERS];
4519
4520 /* create vtxcnt input in input block at top of shader,
4521 * so that it is seen as live over the entire duration
4522 * of the shader:
4523 */
4524 vtxcnt = create_sysval_input(ctx, SYSTEM_VALUE_VERTEX_CNT, 0x1);
4525 maxvtxcnt = create_driver_param(ctx, IR3_DP_VTXCNT_MAX);
4526
4527 /* at this point, we are at the original 'end' block,
4528 * re-purpose this block to stream-out condition, then
4529 * append stream-out block and new-end block
4530 */
4531 orig_end_block = ctx->block;
4532
4533 // maybe w/ store_global intrinsic, we could do this
4534 // stuff in nir->nir pass
4535
4536 stream_out_block = ir3_block_create(ir);
4537 list_addtail(&stream_out_block->node, &ir->block_list);
4538
4539 new_end_block = ir3_block_create(ir);
4540 list_addtail(&new_end_block->node, &ir->block_list);
4541
4542 orig_end_block->successors[0] = stream_out_block;
4543 orig_end_block->successors[1] = new_end_block;
4544
4545 stream_out_block->successors[0] = new_end_block;
4546
4547 /* setup 'if (vtxcnt < maxvtxcnt)' condition: */
4548 cond = ir3_CMPS_S(ctx->block, vtxcnt, 0, maxvtxcnt, 0);
4549 cond->dsts[0]->flags |= IR3_REG_PREDICATE;
4550 cond->cat2.condition = IR3_COND_LT;
4551
4552 /* condition goes on previous block to the conditional,
4553 * since it is used to pick which of the two successor
4554 * paths to take:
4555 */
4556 ir3_BR(orig_end_block, cond, IR3_REG_PREDICATE);
4557
4558 /* switch to stream_out_block to generate the stream-out
4559 * instructions:
4560 */
4561 ctx->block = stream_out_block;
4562
4563 /* Calculate base addresses based on vtxcnt. Instructions
4564 * generated for bases not used in following loop will be
4565 * stripped out in the backend.
4566 */
4567 for (unsigned i = 0; i < IR3_MAX_SO_BUFFERS; i++) {
4568 const struct ir3_const_state *const_state = ir3_const_state(ctx->so);
4569 unsigned stride = strmout->stride[i];
4570 struct ir3_instruction *base, *off;
4571
4572 base = create_uniform(ctx->block, regid(const_state->offsets.tfbo, i));
4573
4574 /* 24-bit should be enough: */
4575 off = ir3_MUL_U24(ctx->block, vtxcnt, 0,
4576 create_immed(ctx->block, stride * 4), 0);
4577
4578 bases[i] = ir3_ADD_S(ctx->block, off, 0, base, 0);
4579 }
4580
4581 /* Generate the per-output store instructions: */
4582 for (unsigned i = 0; i < strmout->num_outputs; i++) {
4583 for (unsigned j = 0; j < strmout->output[i].num_components; j++) {
4584 unsigned c = j + strmout->output[i].start_component;
4585 struct ir3_instruction *base, *out, *stg;
4586
4587 base = bases[strmout->output[i].output_buffer];
4588 out = ctx->outputs[regid(strmout->output[i].register_index, c)];
4589
4590 stg = ir3_STG(
4591 ctx->block, base, 0,
4592 create_immed(ctx->block, (strmout->output[i].dst_offset + j) * 4),
4593 0, out, 0, create_immed(ctx->block, 1), 0);
4594 stg->cat6.type = TYPE_U32;
4595
4596 array_insert(ctx->block, ctx->block->keeps, stg);
4597 }
4598 }
4599
4600 ir3_JUMP(ctx->block);
4601
4602 /* and finally switch to the new_end_block: */
4603 ctx->block = new_end_block;
4604 }
4605
4606 static void
setup_predecessors(struct ir3 * ir)4607 setup_predecessors(struct ir3 *ir)
4608 {
4609 foreach_block (block, &ir->block_list) {
4610 for (int i = 0; i < ARRAY_SIZE(block->successors); i++) {
4611 if (block->successors[i])
4612 ir3_block_add_predecessor(block->successors[i], block);
4613 }
4614 }
4615 }
4616
4617 static void
emit_function(struct ir3_context * ctx,nir_function_impl * impl)4618 emit_function(struct ir3_context *ctx, nir_function_impl *impl)
4619 {
4620 nir_metadata_require(impl, nir_metadata_block_index);
4621
4622 emit_cf_list(ctx, &impl->body);
4623 emit_block(ctx, impl->end_block);
4624
4625 /* at this point, we should have a single empty block,
4626 * into which we emit the 'end' instruction.
4627 */
4628 compile_assert(ctx, list_is_empty(&ctx->block->instr_list));
4629
4630 /* If stream-out (aka transform-feedback) enabled, emit the
4631 * stream-out instructions, followed by a new empty block (into
4632 * which the 'end' instruction lands).
4633 *
4634 * NOTE: it is done in this order, rather than inserting before
4635 * we emit end_block, because NIR guarantees that all blocks
4636 * flow into end_block, and that end_block has no successors.
4637 * So by re-purposing end_block as the first block of stream-
4638 * out, we guarantee that all exit paths flow into the stream-
4639 * out instructions.
4640 */
4641 if ((ctx->compiler->gen < 5) &&
4642 (ctx->so->stream_output.num_outputs > 0) &&
4643 !ctx->so->binning_pass) {
4644 assert(ctx->so->type == MESA_SHADER_VERTEX);
4645 emit_stream_out(ctx);
4646 }
4647
4648 setup_predecessors(ctx->ir);
4649 foreach_block (block, &ctx->ir->block_list) {
4650 resolve_phis(ctx, block);
4651 }
4652 }
4653
4654 static void
setup_input(struct ir3_context * ctx,nir_intrinsic_instr * intr)4655 setup_input(struct ir3_context *ctx, nir_intrinsic_instr *intr)
4656 {
4657 struct ir3_shader_variant *so = ctx->so;
4658 struct ir3_instruction *coord = NULL;
4659
4660 if (intr->intrinsic == nir_intrinsic_load_interpolated_input)
4661 coord = ir3_create_collect(ctx->block, ir3_get_src(ctx, &intr->src[0]), 2);
4662
4663 compile_assert(ctx, nir_src_is_const(intr->src[coord ? 1 : 0]));
4664
4665 unsigned frac = nir_intrinsic_component(intr);
4666 unsigned offset = nir_src_as_uint(intr->src[coord ? 1 : 0]);
4667 unsigned ncomp = nir_intrinsic_dest_components(intr);
4668 unsigned n = nir_intrinsic_base(intr) + offset;
4669 unsigned slot = nir_intrinsic_io_semantics(intr).location + offset;
4670 unsigned compmask = BITFIELD_MASK(ncomp + frac);
4671
4672 /* Inputs are loaded using ldlw or ldg for other stages. */
4673 compile_assert(ctx, ctx->so->type == MESA_SHADER_FRAGMENT ||
4674 ctx->so->type == MESA_SHADER_VERTEX);
4675
4676 /* for clip+cull distances, unused components can't be eliminated because
4677 * they're read by fixed-function, even if there's a hole. Note that
4678 * clip/cull distance arrays must be declared in the FS, so we can just
4679 * use the NIR clip/cull distances to avoid reading ucp_enables in the
4680 * shader key.
4681 */
4682 if (ctx->so->type == MESA_SHADER_FRAGMENT &&
4683 (slot == VARYING_SLOT_CLIP_DIST0 ||
4684 slot == VARYING_SLOT_CLIP_DIST1)) {
4685 unsigned clip_cull_mask = so->clip_mask | so->cull_mask;
4686
4687 if (slot == VARYING_SLOT_CLIP_DIST0)
4688 compmask = clip_cull_mask & 0xf;
4689 else
4690 compmask = clip_cull_mask >> 4;
4691 }
4692
4693 /* for a4xx+ rasterflat */
4694 if (so->inputs[n].rasterflat && ctx->so->key.rasterflat)
4695 coord = NULL;
4696
4697 so->total_in += util_bitcount(compmask & ~so->inputs[n].compmask);
4698
4699 so->inputs[n].slot = slot;
4700 so->inputs[n].compmask |= compmask;
4701 so->inputs_count = MAX2(so->inputs_count, n + 1);
4702 compile_assert(ctx, so->inputs_count < ARRAY_SIZE(so->inputs));
4703 so->inputs[n].flat = !coord;
4704
4705 if (ctx->so->type == MESA_SHADER_FRAGMENT) {
4706 compile_assert(ctx, slot != VARYING_SLOT_POS);
4707
4708 so->inputs[n].bary = true;
4709 unsigned idx = (n * 4) + frac;
4710 struct ir3_instruction_rpt instr =
4711 create_frag_input(ctx, coord, idx, ncomp);
4712 cp_instrs(ctx->last_dst, instr.rpts, ncomp);
4713
4714 if (slot == VARYING_SLOT_PRIMITIVE_ID)
4715 so->reads_primid = true;
4716
4717 so->inputs[n].inloc = 4 * n;
4718 so->varying_in = MAX2(so->varying_in, 4 * n + 4);
4719 } else {
4720 struct ir3_instruction *input = NULL;
4721
4722 foreach_input (in, ctx->ir) {
4723 if (in->input.inidx == n) {
4724 input = in;
4725 break;
4726 }
4727 }
4728
4729 if (!input) {
4730 input = create_input(ctx, compmask);
4731 input->input.inidx = n;
4732 } else {
4733 /* For aliased inputs, just append to the wrmask.. ie. if we
4734 * first see a vec2 index at slot N, and then later a vec4,
4735 * the wrmask of the resulting overlapped vec2 and vec4 is 0xf
4736 */
4737 input->dsts[0]->wrmask |= compmask;
4738 }
4739
4740 for (int i = 0; i < ncomp + frac; i++) {
4741 unsigned idx = (n * 4) + i;
4742 compile_assert(ctx, idx < ctx->ninputs);
4743
4744 /* fixup the src wrmask to avoid validation fail */
4745 if (ctx->inputs[idx] && (ctx->inputs[idx] != input)) {
4746 ctx->inputs[idx]->srcs[0]->wrmask = input->dsts[0]->wrmask;
4747 continue;
4748 }
4749
4750 ir3_split_dest(ctx->block, &ctx->inputs[idx], input, i, 1);
4751 }
4752
4753 for (int i = 0; i < ncomp; i++) {
4754 unsigned idx = (n * 4) + i + frac;
4755 ctx->last_dst[i] = ctx->inputs[idx];
4756 }
4757 }
4758 }
4759
4760 /* Initially we assign non-packed inloc's for varyings, as we don't really
4761 * know up-front which components will be unused. After all the compilation
4762 * stages we scan the shader to see which components are actually used, and
4763 * re-pack the inlocs to eliminate unneeded varyings.
4764 */
4765 static void
pack_inlocs(struct ir3_context * ctx)4766 pack_inlocs(struct ir3_context *ctx)
4767 {
4768 struct ir3_shader_variant *so = ctx->so;
4769 uint8_t used_components[so->inputs_count];
4770
4771 memset(used_components, 0, sizeof(used_components));
4772
4773 /*
4774 * First Step: scan shader to find which bary.f/ldlv remain:
4775 */
4776
4777 foreach_block (block, &ctx->ir->block_list) {
4778 foreach_instr (instr, &block->instr_list) {
4779 if (is_input(instr)) {
4780 unsigned inloc = instr->srcs[0]->iim_val;
4781 unsigned i = inloc / 4;
4782 unsigned j = inloc % 4;
4783
4784 compile_assert(ctx, instr->srcs[0]->flags & IR3_REG_IMMED);
4785 compile_assert(ctx, i < so->inputs_count);
4786
4787 used_components[i] |= 1 << j;
4788 } else if (instr->opc == OPC_META_TEX_PREFETCH) {
4789 for (int n = 0; n < 2; n++) {
4790 unsigned inloc = instr->prefetch.input_offset + n;
4791 unsigned i = inloc / 4;
4792 unsigned j = inloc % 4;
4793
4794 compile_assert(ctx, i < so->inputs_count);
4795
4796 used_components[i] |= 1 << j;
4797 }
4798 }
4799 }
4800 }
4801
4802 /*
4803 * Second Step: reassign varying inloc/slots:
4804 */
4805
4806 unsigned inloc = 0;
4807
4808 /* for clip+cull distances, unused components can't be eliminated because
4809 * they're read by fixed-function, even if there's a hole. Note that
4810 * clip/cull distance arrays must be declared in the FS, so we can just
4811 * use the NIR clip/cull distances to avoid reading ucp_enables in the
4812 * shader key.
4813 */
4814 unsigned clip_cull_mask = so->clip_mask | so->cull_mask;
4815
4816 so->varying_in = 0;
4817
4818 for (unsigned i = 0; i < so->inputs_count; i++) {
4819 unsigned compmask = 0, maxcomp = 0;
4820
4821 so->inputs[i].inloc = inloc;
4822 so->inputs[i].bary = false;
4823
4824 if (so->inputs[i].slot == VARYING_SLOT_CLIP_DIST0 ||
4825 so->inputs[i].slot == VARYING_SLOT_CLIP_DIST1) {
4826 if (so->inputs[i].slot == VARYING_SLOT_CLIP_DIST0)
4827 compmask = clip_cull_mask & 0xf;
4828 else
4829 compmask = clip_cull_mask >> 4;
4830 used_components[i] = compmask;
4831 }
4832
4833 for (unsigned j = 0; j < 4; j++) {
4834 if (!(used_components[i] & (1 << j)))
4835 continue;
4836
4837 compmask |= (1 << j);
4838 maxcomp = j + 1;
4839
4840 /* at this point, since used_components[i] mask is only
4841 * considering varyings (ie. not sysvals) we know this
4842 * is a varying:
4843 */
4844 so->inputs[i].bary = true;
4845 }
4846
4847 if (so->inputs[i].bary) {
4848 so->varying_in++;
4849 so->inputs[i].compmask = (1 << maxcomp) - 1;
4850 inloc += maxcomp;
4851 }
4852 }
4853
4854 /*
4855 * Third Step: reassign packed inloc's:
4856 */
4857
4858 foreach_block (block, &ctx->ir->block_list) {
4859 foreach_instr (instr, &block->instr_list) {
4860 if (is_input(instr)) {
4861 unsigned inloc = instr->srcs[0]->iim_val;
4862 unsigned i = inloc / 4;
4863 unsigned j = inloc % 4;
4864
4865 instr->srcs[0]->iim_val = so->inputs[i].inloc + j;
4866 if (instr->opc == OPC_FLAT_B)
4867 instr->srcs[1]->iim_val = instr->srcs[0]->iim_val;
4868 } else if (instr->opc == OPC_META_TEX_PREFETCH) {
4869 unsigned i = instr->prefetch.input_offset / 4;
4870 unsigned j = instr->prefetch.input_offset % 4;
4871 instr->prefetch.input_offset = so->inputs[i].inloc + j;
4872 }
4873 }
4874 }
4875 }
4876
4877 static void
setup_output(struct ir3_context * ctx,nir_intrinsic_instr * intr)4878 setup_output(struct ir3_context *ctx, nir_intrinsic_instr *intr)
4879 {
4880 struct ir3_shader_variant *so = ctx->so;
4881 nir_io_semantics io = nir_intrinsic_io_semantics(intr);
4882
4883 compile_assert(ctx, nir_src_is_const(intr->src[1]));
4884
4885 unsigned offset = nir_src_as_uint(intr->src[1]);
4886 unsigned n = nir_intrinsic_base(intr) + offset;
4887 unsigned frac = nir_intrinsic_component(intr);
4888 unsigned ncomp = nir_intrinsic_src_components(intr, 0);
4889
4890 /* For per-view variables, each user-facing slot corresponds to multiple
4891 * views, each with a corresponding driver_location, and the offset is for
4892 * the driver_location. To properly figure out of the slot, we'd need to
4893 * plumb through the number of views. However, for now we only use
4894 * per-view with gl_Position, so we assume that the variable is not an
4895 * array or matrix (so there are no indirect accesses to the variable
4896 * itself) and the indirect offset corresponds to the view.
4897 */
4898 unsigned slot = io.location + (io.per_view ? 0 : offset);
4899
4900 if (io.per_view && offset > 0)
4901 so->multi_pos_output = true;
4902
4903 if (ctx->so->type == MESA_SHADER_FRAGMENT) {
4904 switch (slot) {
4905 case FRAG_RESULT_DEPTH:
4906 so->writes_pos = true;
4907 break;
4908 case FRAG_RESULT_COLOR:
4909 if (!ctx->s->info.fs.color_is_dual_source) {
4910 so->color0_mrt = 1;
4911 } else {
4912 slot = FRAG_RESULT_DATA0 + io.dual_source_blend_index;
4913 if (io.dual_source_blend_index > 0)
4914 so->dual_src_blend = true;
4915 }
4916 break;
4917 case FRAG_RESULT_SAMPLE_MASK:
4918 so->writes_smask = true;
4919 break;
4920 case FRAG_RESULT_STENCIL:
4921 so->writes_stencilref = true;
4922 break;
4923 default:
4924 slot += io.dual_source_blend_index; /* For dual-src blend */
4925 if (io.dual_source_blend_index > 0)
4926 so->dual_src_blend = true;
4927 if (slot >= FRAG_RESULT_DATA0)
4928 break;
4929 ir3_context_error(ctx, "unknown FS output name: %s\n",
4930 gl_frag_result_name(slot));
4931 }
4932 } else if (ctx->so->type == MESA_SHADER_VERTEX ||
4933 ctx->so->type == MESA_SHADER_TESS_EVAL ||
4934 ctx->so->type == MESA_SHADER_GEOMETRY) {
4935 switch (slot) {
4936 case VARYING_SLOT_POS:
4937 so->writes_pos = true;
4938 break;
4939 case VARYING_SLOT_PSIZ:
4940 so->writes_psize = true;
4941 break;
4942 case VARYING_SLOT_VIEWPORT:
4943 so->writes_viewport = true;
4944 break;
4945 case VARYING_SLOT_PRIMITIVE_ID:
4946 case VARYING_SLOT_GS_VERTEX_FLAGS_IR3:
4947 assert(ctx->so->type == MESA_SHADER_GEOMETRY);
4948 FALLTHROUGH;
4949 case VARYING_SLOT_COL0:
4950 case VARYING_SLOT_COL1:
4951 case VARYING_SLOT_BFC0:
4952 case VARYING_SLOT_BFC1:
4953 case VARYING_SLOT_FOGC:
4954 case VARYING_SLOT_CLIP_DIST0:
4955 case VARYING_SLOT_CLIP_DIST1:
4956 case VARYING_SLOT_CLIP_VERTEX:
4957 case VARYING_SLOT_LAYER:
4958 break;
4959 default:
4960 if (slot >= VARYING_SLOT_VAR0)
4961 break;
4962 if ((VARYING_SLOT_TEX0 <= slot) && (slot <= VARYING_SLOT_TEX7))
4963 break;
4964 ir3_context_error(ctx, "unknown %s shader output name: %s\n",
4965 _mesa_shader_stage_to_string(ctx->so->type),
4966 gl_varying_slot_name_for_stage(slot, ctx->so->type));
4967 }
4968 } else {
4969 ir3_context_error(ctx, "unknown shader type: %d\n", ctx->so->type);
4970 }
4971
4972 so->outputs_count = MAX2(so->outputs_count, n + 1);
4973 compile_assert(ctx, so->outputs_count <= ARRAY_SIZE(so->outputs));
4974
4975 so->outputs[n].slot = slot;
4976 if (io.per_view)
4977 so->outputs[n].view = offset;
4978
4979 for (int i = 0; i < ncomp; i++) {
4980 unsigned idx = (n * 4) + i + frac;
4981 compile_assert(ctx, idx < ctx->noutputs);
4982 ctx->outputs[idx] = create_immed(ctx->block, fui(0.0));
4983 }
4984
4985 /* if varying packing doesn't happen, we could end up in a situation
4986 * with "holes" in the output, and since the per-generation code that
4987 * sets up varying linkage registers doesn't expect to have more than
4988 * one varying per vec4 slot, pad the holes.
4989 *
4990 * Note that this should probably generate a performance warning of
4991 * some sort.
4992 */
4993 for (int i = 0; i < frac; i++) {
4994 unsigned idx = (n * 4) + i;
4995 if (!ctx->outputs[idx]) {
4996 ctx->outputs[idx] = create_immed(ctx->block, fui(0.0));
4997 }
4998 }
4999
5000 struct ir3_instruction *const *src = ir3_get_src(ctx, &intr->src[0]);
5001 for (int i = 0; i < ncomp; i++) {
5002 unsigned idx = (n * 4) + i + frac;
5003 ctx->outputs[idx] = src[i];
5004 }
5005 }
5006
5007 static bool
uses_load_input(struct ir3_shader_variant * so)5008 uses_load_input(struct ir3_shader_variant *so)
5009 {
5010 return so->type == MESA_SHADER_VERTEX || so->type == MESA_SHADER_FRAGMENT;
5011 }
5012
5013 static bool
uses_store_output(struct ir3_shader_variant * so)5014 uses_store_output(struct ir3_shader_variant *so)
5015 {
5016 switch (so->type) {
5017 case MESA_SHADER_VERTEX:
5018 return !so->key.has_gs && !so->key.tessellation;
5019 case MESA_SHADER_TESS_EVAL:
5020 return !so->key.has_gs;
5021 case MESA_SHADER_GEOMETRY:
5022 case MESA_SHADER_FRAGMENT:
5023 return true;
5024 case MESA_SHADER_TESS_CTRL:
5025 case MESA_SHADER_COMPUTE:
5026 case MESA_SHADER_KERNEL:
5027 return false;
5028 default:
5029 unreachable("unknown stage");
5030 }
5031 }
5032
5033 static void
emit_instructions(struct ir3_context * ctx)5034 emit_instructions(struct ir3_context *ctx)
5035 {
5036 MESA_TRACE_FUNC();
5037
5038 nir_function_impl *fxn = nir_shader_get_entrypoint(ctx->s);
5039
5040 /* some varying setup which can't be done in setup_input(): */
5041 if (ctx->so->type == MESA_SHADER_FRAGMENT) {
5042 nir_foreach_shader_in_variable (var, ctx->s) {
5043 /* set rasterflat flag for front/back color */
5044 if (var->data.interpolation == INTERP_MODE_NONE) {
5045 switch (var->data.location) {
5046 case VARYING_SLOT_COL0:
5047 case VARYING_SLOT_COL1:
5048 case VARYING_SLOT_BFC0:
5049 case VARYING_SLOT_BFC1:
5050 ctx->so->inputs[var->data.driver_location].rasterflat = true;
5051 break;
5052 default:
5053 break;
5054 }
5055 }
5056 }
5057 }
5058
5059 if (uses_load_input(ctx->so)) {
5060 ctx->so->inputs_count = ctx->s->num_inputs;
5061 compile_assert(ctx, ctx->so->inputs_count < ARRAY_SIZE(ctx->so->inputs));
5062 ctx->ninputs = ctx->s->num_inputs * 4;
5063 ctx->inputs = rzalloc_array(ctx, struct ir3_instruction *, ctx->ninputs);
5064 } else {
5065 ctx->ninputs = 0;
5066 ctx->so->inputs_count = 0;
5067 }
5068
5069 if (uses_store_output(ctx->so)) {
5070 ctx->noutputs = ctx->s->num_outputs * 4;
5071 ctx->outputs =
5072 rzalloc_array(ctx, struct ir3_instruction *, ctx->noutputs);
5073 } else {
5074 ctx->noutputs = 0;
5075 }
5076
5077 ctx->ir = ir3_create(ctx->compiler, ctx->so);
5078
5079 /* Create inputs in first block: */
5080 ctx->block = get_block(ctx, nir_start_block(fxn));
5081 ctx->in_block = ctx->block;
5082
5083 /* for fragment shader, the vcoord input register is used as the
5084 * base for bary.f varying fetch instrs:
5085 *
5086 * TODO defer creating ctx->ij_pixel and corresponding sysvals
5087 * until emit_intrinsic when we know they are actually needed.
5088 * For now, we defer creating ctx->ij_centroid, etc, since we
5089 * only need ij_pixel for "old style" varying inputs (ie.
5090 * tgsi_to_nir)
5091 */
5092 if (ctx->so->type == MESA_SHADER_FRAGMENT) {
5093 ctx->ij[IJ_PERSP_PIXEL] = create_input(ctx, 0x3);
5094 }
5095
5096 /* Defer add_sysval_input() stuff until after setup_inputs(),
5097 * because sysvals need to be appended after varyings:
5098 */
5099 if (ctx->ij[IJ_PERSP_PIXEL]) {
5100 add_sysval_input_compmask(ctx, SYSTEM_VALUE_BARYCENTRIC_PERSP_PIXEL, 0x3,
5101 ctx->ij[IJ_PERSP_PIXEL]);
5102 }
5103
5104 /* Tesselation shaders always need primitive ID for indexing the
5105 * BO. Geometry shaders don't always need it but when they do it has be
5106 * delivered and unclobbered in the VS. To make things easy, we always
5107 * make room for it in VS/DS.
5108 */
5109 bool has_tess = ctx->so->key.tessellation != IR3_TESS_NONE;
5110 bool has_gs = ctx->so->key.has_gs;
5111 switch (ctx->so->type) {
5112 case MESA_SHADER_VERTEX:
5113 if (has_tess) {
5114 ctx->tcs_header =
5115 create_sysval_input(ctx, SYSTEM_VALUE_TCS_HEADER_IR3, 0x1);
5116 ctx->rel_patch_id =
5117 create_sysval_input(ctx, SYSTEM_VALUE_REL_PATCH_ID_IR3, 0x1);
5118 ctx->primitive_id =
5119 create_sysval_input(ctx, SYSTEM_VALUE_PRIMITIVE_ID, 0x1);
5120 } else if (has_gs) {
5121 ctx->gs_header =
5122 create_sysval_input(ctx, SYSTEM_VALUE_GS_HEADER_IR3, 0x1);
5123 ctx->primitive_id =
5124 create_sysval_input(ctx, SYSTEM_VALUE_PRIMITIVE_ID, 0x1);
5125 }
5126 break;
5127 case MESA_SHADER_TESS_CTRL:
5128 ctx->tcs_header =
5129 create_sysval_input(ctx, SYSTEM_VALUE_TCS_HEADER_IR3, 0x1);
5130 ctx->rel_patch_id =
5131 create_sysval_input(ctx, SYSTEM_VALUE_REL_PATCH_ID_IR3, 0x1);
5132 break;
5133 case MESA_SHADER_TESS_EVAL:
5134 if (has_gs) {
5135 ctx->gs_header =
5136 create_sysval_input(ctx, SYSTEM_VALUE_GS_HEADER_IR3, 0x1);
5137 ctx->primitive_id =
5138 create_sysval_input(ctx, SYSTEM_VALUE_PRIMITIVE_ID, 0x1);
5139 }
5140 ctx->rel_patch_id =
5141 create_sysval_input(ctx, SYSTEM_VALUE_REL_PATCH_ID_IR3, 0x1);
5142 break;
5143 case MESA_SHADER_GEOMETRY:
5144 ctx->gs_header =
5145 create_sysval_input(ctx, SYSTEM_VALUE_GS_HEADER_IR3, 0x1);
5146 break;
5147 default:
5148 break;
5149 }
5150
5151 /* Find # of samplers. Just assume that we'll be reading from images.. if
5152 * it is write-only we don't have to count it, but after lowering derefs
5153 * is too late to compact indices for that.
5154 */
5155 ctx->so->num_samp =
5156 BITSET_LAST_BIT(ctx->s->info.textures_used) + ctx->s->info.num_images;
5157
5158 /* Save off clip+cull information. Note that in OpenGL clip planes may
5159 * be individually enabled/disabled, and some gens handle lowering in
5160 * backend, so we also need to consider the shader key:
5161 */
5162 ctx->so->clip_mask = ctx->so->key.ucp_enables |
5163 MASK(ctx->s->info.clip_distance_array_size);
5164 ctx->so->cull_mask = MASK(ctx->s->info.cull_distance_array_size)
5165 << ctx->s->info.clip_distance_array_size;
5166
5167 ctx->so->pvtmem_size = ctx->s->scratch_size;
5168 ctx->so->shared_size = ctx->s->info.shared_size;
5169
5170 /* NOTE: need to do something more clever when we support >1 fxn */
5171 nir_foreach_reg_decl (decl, fxn) {
5172 ir3_declare_array(ctx, decl);
5173 }
5174
5175 /* And emit the body: */
5176 ctx->impl = fxn;
5177 emit_function(ctx, fxn);
5178
5179 if (ctx->so->type == MESA_SHADER_TESS_CTRL &&
5180 ctx->compiler->tess_use_shared) {
5181 /* Anything before shpe seems to be ignored in the main shader when early
5182 * preamble is enabled on a7xx, so we have to put the barrier after.
5183 */
5184 struct ir3_block *block = ir3_after_preamble(ctx->ir);
5185
5186 struct ir3_instruction *barrier = ir3_BAR(block);
5187 barrier->flags = IR3_INSTR_SS | IR3_INSTR_SY;
5188 barrier->barrier_class = IR3_BARRIER_EVERYTHING;
5189 array_insert(block, block->keeps, barrier);
5190 ctx->so->has_barrier = true;
5191
5192 /* Move the barrier to the beginning of the block but after any phi/input
5193 * meta instructions that must be at the beginning. It must be before we
5194 * load VS outputs.
5195 */
5196 foreach_instr (instr, &block->instr_list) {
5197 if (instr->opc != OPC_META_INPUT &&
5198 instr->opc != OPC_META_TEX_PREFETCH &&
5199 instr->opc != OPC_META_PHI) {
5200 ir3_instr_move_before(barrier, instr);
5201 break;
5202 }
5203 }
5204 }
5205 }
5206
5207 /* Fixup tex sampler state for astc/srgb workaround instructions. We
5208 * need to assign the tex state indexes for these after we know the
5209 * max tex index.
5210 */
5211 static void
fixup_astc_srgb(struct ir3_context * ctx)5212 fixup_astc_srgb(struct ir3_context *ctx)
5213 {
5214 struct ir3_shader_variant *so = ctx->so;
5215 /* indexed by original tex idx, value is newly assigned alpha sampler
5216 * state tex idx. Zero is invalid since there is at least one sampler
5217 * if we get here.
5218 */
5219 unsigned alt_tex_state[16] = {0};
5220 unsigned tex_idx = ctx->max_texture_index + 1;
5221 unsigned idx = 0;
5222
5223 so->astc_srgb.base = tex_idx;
5224
5225 for (unsigned i = 0; i < ctx->ir->astc_srgb_count; i++) {
5226 struct ir3_instruction *sam = ctx->ir->astc_srgb[i];
5227
5228 compile_assert(ctx, sam->cat5.tex < ARRAY_SIZE(alt_tex_state));
5229
5230 if (alt_tex_state[sam->cat5.tex] == 0) {
5231 /* assign new alternate/alpha tex state slot: */
5232 alt_tex_state[sam->cat5.tex] = tex_idx++;
5233 so->astc_srgb.orig_idx[idx++] = sam->cat5.tex;
5234 so->astc_srgb.count++;
5235 }
5236
5237 sam->cat5.tex = alt_tex_state[sam->cat5.tex];
5238 }
5239 }
5240
5241 /* Fixup tex sampler state for tg4 workaround instructions. We
5242 * need to assign the tex state indexes for these after we know the
5243 * max tex index.
5244 */
5245 static void
fixup_tg4(struct ir3_context * ctx)5246 fixup_tg4(struct ir3_context *ctx)
5247 {
5248 struct ir3_shader_variant *so = ctx->so;
5249 /* indexed by original tex idx, value is newly assigned alpha sampler
5250 * state tex idx. Zero is invalid since there is at least one sampler
5251 * if we get here.
5252 */
5253 unsigned alt_tex_state[16] = {0};
5254 unsigned tex_idx = ctx->max_texture_index + so->astc_srgb.count + 1;
5255 unsigned idx = 0;
5256
5257 so->tg4.base = tex_idx;
5258
5259 for (unsigned i = 0; i < ctx->ir->tg4_count; i++) {
5260 struct ir3_instruction *sam = ctx->ir->tg4[i];
5261
5262 compile_assert(ctx, sam->cat5.tex < ARRAY_SIZE(alt_tex_state));
5263
5264 if (alt_tex_state[sam->cat5.tex] == 0) {
5265 /* assign new alternate/alpha tex state slot: */
5266 alt_tex_state[sam->cat5.tex] = tex_idx++;
5267 so->tg4.orig_idx[idx++] = sam->cat5.tex;
5268 so->tg4.count++;
5269 }
5270
5271 sam->cat5.tex = alt_tex_state[sam->cat5.tex];
5272 }
5273 }
5274
5275 static struct ir3_instruction *
find_end(struct ir3 * ir)5276 find_end(struct ir3 *ir)
5277 {
5278 foreach_block_rev (block, &ir->block_list) {
5279 foreach_instr_rev (instr, &block->instr_list) {
5280 if (instr->opc == OPC_END || instr->opc == OPC_CHMASK)
5281 return instr;
5282 }
5283 }
5284 unreachable("couldn't find end instruction");
5285 }
5286
5287 static void
collect_tex_prefetches(struct ir3_context * ctx,struct ir3 * ir)5288 collect_tex_prefetches(struct ir3_context *ctx, struct ir3 *ir)
5289 {
5290 unsigned idx = 0;
5291
5292 /* Collect sampling instructions eligible for pre-dispatch. */
5293 foreach_block (block, &ir->block_list) {
5294 foreach_instr_safe (instr, &block->instr_list) {
5295 if (instr->opc == OPC_META_TEX_PREFETCH) {
5296 assert(idx < ARRAY_SIZE(ctx->so->sampler_prefetch));
5297 struct ir3_sampler_prefetch *fetch =
5298 &ctx->so->sampler_prefetch[idx];
5299 idx++;
5300
5301 fetch->bindless = instr->flags & IR3_INSTR_B;
5302 if (fetch->bindless) {
5303 /* In bindless mode, the index is actually the base */
5304 fetch->tex_id = instr->prefetch.tex_base;
5305 fetch->samp_id = instr->prefetch.samp_base;
5306 fetch->tex_bindless_id = instr->prefetch.tex;
5307 fetch->samp_bindless_id = instr->prefetch.samp;
5308 } else {
5309 fetch->tex_id = instr->prefetch.tex;
5310 fetch->samp_id = instr->prefetch.samp;
5311 }
5312 fetch->tex_opc = OPC_SAM;
5313 fetch->wrmask = instr->dsts[0]->wrmask;
5314 fetch->dst = instr->dsts[0]->num;
5315 fetch->src = instr->prefetch.input_offset;
5316
5317 /* These are the limits on a5xx/a6xx, we might need to
5318 * revisit if SP_FS_PREFETCH[n] changes on later gens:
5319 */
5320 assert(fetch->dst <= 0x3f);
5321 assert(fetch->tex_id <= 0x1f);
5322 assert(fetch->samp_id <= 0xf);
5323
5324 ctx->so->total_in =
5325 MAX2(ctx->so->total_in, instr->prefetch.input_offset + 2);
5326
5327 fetch->half_precision = !!(instr->dsts[0]->flags & IR3_REG_HALF);
5328
5329 /* Remove the prefetch placeholder instruction: */
5330 list_delinit(&instr->node);
5331 }
5332 }
5333 }
5334 }
5335
5336 int
ir3_compile_shader_nir(struct ir3_compiler * compiler,struct ir3_shader * shader,struct ir3_shader_variant * so)5337 ir3_compile_shader_nir(struct ir3_compiler *compiler,
5338 struct ir3_shader *shader,
5339 struct ir3_shader_variant *so)
5340 {
5341 struct ir3_context *ctx;
5342 struct ir3 *ir;
5343 int ret = 0, max_bary;
5344 bool progress;
5345
5346 MESA_TRACE_FUNC();
5347
5348 assert(!so->ir);
5349
5350 ctx = ir3_context_init(compiler, shader, so);
5351 if (!ctx) {
5352 DBG("INIT failed!");
5353 ret = -1;
5354 goto out;
5355 }
5356
5357 emit_instructions(ctx);
5358
5359 if (ctx->error) {
5360 DBG("EMIT failed!");
5361 ret = -1;
5362 goto out;
5363 }
5364
5365 ir = so->ir = ctx->ir;
5366
5367 if (gl_shader_stage_is_compute(so->type)) {
5368 so->local_size[0] = ctx->s->info.workgroup_size[0];
5369 so->local_size[1] = ctx->s->info.workgroup_size[1];
5370 so->local_size[2] = ctx->s->info.workgroup_size[2];
5371 so->local_size_variable = ctx->s->info.workgroup_size_variable;
5372 }
5373
5374 /* Vertex shaders in a tessellation or geometry pipeline treat END as a
5375 * NOP and has an epilogue that writes the VS outputs to local storage, to
5376 * be read by the HS. Then it resets execution mask (chmask) and chains
5377 * to the next shader (chsh). There are also a few output values which we
5378 * must send to the next stage via registers, and in order for both stages
5379 * to agree on the register used we must force these to be in specific
5380 * registers.
5381 */
5382 if ((so->type == MESA_SHADER_VERTEX &&
5383 (so->key.has_gs || so->key.tessellation)) ||
5384 (so->type == MESA_SHADER_TESS_EVAL && so->key.has_gs)) {
5385 struct ir3_instruction *outputs[3];
5386 unsigned outidxs[3];
5387 unsigned regids[3];
5388 unsigned outputs_count = 0;
5389
5390 if (ctx->primitive_id) {
5391 unsigned n = so->outputs_count++;
5392 so->outputs[n].slot = VARYING_SLOT_PRIMITIVE_ID;
5393
5394 struct ir3_instruction *out = ir3_collect(ctx->block, ctx->primitive_id);
5395 outputs[outputs_count] = out;
5396 outidxs[outputs_count] = n;
5397 if (so->type == MESA_SHADER_VERTEX && ctx->rel_patch_id)
5398 regids[outputs_count] = regid(0, 2);
5399 else
5400 regids[outputs_count] = regid(0, 1);
5401 outputs_count++;
5402 }
5403
5404 if (so->type == MESA_SHADER_VERTEX && ctx->rel_patch_id) {
5405 unsigned n = so->outputs_count++;
5406 so->outputs[n].slot = VARYING_SLOT_REL_PATCH_ID_IR3;
5407 struct ir3_instruction *out = ir3_collect(ctx->block, ctx->rel_patch_id);
5408 outputs[outputs_count] = out;
5409 outidxs[outputs_count] = n;
5410 regids[outputs_count] = regid(0, 1);
5411 outputs_count++;
5412 }
5413
5414 if (ctx->gs_header) {
5415 unsigned n = so->outputs_count++;
5416 so->outputs[n].slot = VARYING_SLOT_GS_HEADER_IR3;
5417 struct ir3_instruction *out = ir3_collect(ctx->block, ctx->gs_header);
5418 outputs[outputs_count] = out;
5419 outidxs[outputs_count] = n;
5420 regids[outputs_count] = regid(0, 0);
5421 outputs_count++;
5422 }
5423
5424 if (ctx->tcs_header) {
5425 unsigned n = so->outputs_count++;
5426 so->outputs[n].slot = VARYING_SLOT_TCS_HEADER_IR3;
5427 struct ir3_instruction *out = ir3_collect(ctx->block, ctx->tcs_header);
5428 outputs[outputs_count] = out;
5429 outidxs[outputs_count] = n;
5430 regids[outputs_count] = regid(0, 0);
5431 outputs_count++;
5432 }
5433
5434 struct ir3_instruction *chmask =
5435 ir3_instr_create(ctx->block, OPC_CHMASK, 0, outputs_count);
5436 chmask->barrier_class = IR3_BARRIER_EVERYTHING;
5437 chmask->barrier_conflict = IR3_BARRIER_EVERYTHING;
5438
5439 for (unsigned i = 0; i < outputs_count; i++)
5440 __ssa_src(chmask, outputs[i], 0)->num = regids[i];
5441
5442 chmask->end.outidxs = ralloc_array(chmask, unsigned, outputs_count);
5443 memcpy(chmask->end.outidxs, outidxs, sizeof(unsigned) * outputs_count);
5444
5445 array_insert(ctx->block, ctx->block->keeps, chmask);
5446
5447 struct ir3_instruction *chsh = ir3_CHSH(ctx->block);
5448 chsh->barrier_class = IR3_BARRIER_EVERYTHING;
5449 chsh->barrier_conflict = IR3_BARRIER_EVERYTHING;
5450 } else {
5451 assert((ctx->noutputs % 4) == 0);
5452 unsigned outidxs[ctx->noutputs / 4];
5453 struct ir3_instruction *outputs[ctx->noutputs / 4];
5454 unsigned outputs_count = 0;
5455
5456 struct ir3_block *b = ctx->block;
5457 /* Insert these collect's in the block before the end-block if
5458 * possible, so that any moves they generate can be shuffled around to
5459 * reduce nop's:
5460 */
5461 if (ctx->block->predecessors_count == 1)
5462 b = ctx->block->predecessors[0];
5463
5464 /* Setup IR level outputs, which are "collects" that gather
5465 * the scalar components of outputs.
5466 */
5467 for (unsigned i = 0; i < ctx->noutputs; i += 4) {
5468 unsigned ncomp = 0;
5469 /* figure out the # of components written:
5470 *
5471 * TODO do we need to handle holes, ie. if .x and .z
5472 * components written, but .y component not written?
5473 */
5474 for (unsigned j = 0; j < 4; j++) {
5475 if (!ctx->outputs[i + j])
5476 break;
5477 ncomp++;
5478 }
5479
5480 /* Note that in some stages, like TCS, store_output is
5481 * lowered to memory writes, so no components of the
5482 * are "written" from the PoV of traditional store-
5483 * output instructions:
5484 */
5485 if (!ncomp)
5486 continue;
5487
5488 struct ir3_instruction *out =
5489 ir3_create_collect(b, &ctx->outputs[i], ncomp);
5490
5491 int outidx = i / 4;
5492 assert(outidx < so->outputs_count);
5493
5494 outidxs[outputs_count] = outidx;
5495 outputs[outputs_count] = out;
5496 outputs_count++;
5497 }
5498
5499 /* for a6xx+, binning and draw pass VS use same VBO state, so we
5500 * need to make sure not to remove any inputs that are used by
5501 * the nonbinning VS.
5502 */
5503 if (ctx->compiler->gen >= 6 && so->binning_pass &&
5504 so->type == MESA_SHADER_VERTEX) {
5505 for (int i = 0; i < ctx->ninputs; i++) {
5506 struct ir3_instruction *in = ctx->inputs[i];
5507
5508 if (!in)
5509 continue;
5510
5511 unsigned n = i / 4;
5512 unsigned c = i % 4;
5513
5514 assert(n < so->nonbinning->inputs_count);
5515
5516 if (so->nonbinning->inputs[n].sysval)
5517 continue;
5518
5519 /* be sure to keep inputs, even if only used in VS */
5520 if (so->nonbinning->inputs[n].compmask & (1 << c))
5521 array_insert(in->block, in->block->keeps, in);
5522 }
5523 }
5524
5525 struct ir3_instruction *end =
5526 ir3_instr_create(ctx->block, OPC_END, 0, outputs_count);
5527
5528 for (unsigned i = 0; i < outputs_count; i++) {
5529 __ssa_src(end, outputs[i], 0);
5530 }
5531
5532 end->end.outidxs = ralloc_array(end, unsigned, outputs_count);
5533 memcpy(end->end.outidxs, outidxs, sizeof(unsigned) * outputs_count);
5534
5535 array_insert(ctx->block, ctx->block->keeps, end);
5536 }
5537
5538 if (so->type == MESA_SHADER_FRAGMENT &&
5539 ctx->s->info.fs.needs_quad_helper_invocations) {
5540 so->need_pixlod = true;
5541 so->need_full_quad = true;
5542 }
5543
5544 ir3_debug_print(ir, "AFTER: nir->ir3");
5545 ir3_validate(ir);
5546
5547 IR3_PASS(ir, ir3_remove_unreachable);
5548
5549 IR3_PASS(ir, ir3_array_to_ssa);
5550
5551 ir3_calc_reconvergence(so);
5552
5553 IR3_PASS(ir, ir3_lower_shared_phis);
5554
5555 do {
5556 progress = false;
5557
5558 /* the folding doesn't seem to work reliably on a4xx */
5559 if (ctx->compiler->gen != 4)
5560 progress |= IR3_PASS(ir, ir3_cf);
5561 progress |= IR3_PASS(ir, ir3_cp, so);
5562 progress |= IR3_PASS(ir, ir3_cse);
5563 progress |= IR3_PASS(ir, ir3_dce, so);
5564 progress |= IR3_PASS(ir, ir3_opt_predicates, so);
5565 progress |= IR3_PASS(ir, ir3_shared_fold);
5566 } while (progress);
5567
5568 IR3_PASS(ir, ir3_sched_add_deps);
5569
5570 /* At this point, all the dead code should be long gone: */
5571 assert(!IR3_PASS(ir, ir3_dce, so));
5572
5573 ret = ir3_sched(ir);
5574 if (ret) {
5575 DBG("SCHED failed!");
5576 goto out;
5577 }
5578
5579 ir3_debug_print(ir, "AFTER: ir3_sched");
5580
5581 /* Pre-assign VS inputs on a6xx+ binning pass shader, to align
5582 * with draw pass VS, so binning and draw pass can both use the
5583 * same VBO state.
5584 *
5585 * Note that VS inputs are expected to be full precision.
5586 */
5587 bool pre_assign_inputs = (ir->compiler->gen >= 6) &&
5588 (ir->type == MESA_SHADER_VERTEX) &&
5589 so->binning_pass;
5590
5591 if (pre_assign_inputs) {
5592 foreach_input (in, ir) {
5593 assert(in->opc == OPC_META_INPUT);
5594 unsigned inidx = in->input.inidx;
5595
5596 in->dsts[0]->num = so->nonbinning->inputs[inidx].regid;
5597 }
5598 } else if (ctx->tcs_header) {
5599 /* We need to have these values in the same registers between VS and TCS
5600 * since the VS chains to TCS and doesn't get the sysvals redelivered.
5601 */
5602
5603 ctx->tcs_header->dsts[0]->num = regid(0, 0);
5604 ctx->rel_patch_id->dsts[0]->num = regid(0, 1);
5605 if (ctx->primitive_id)
5606 ctx->primitive_id->dsts[0]->num = regid(0, 2);
5607 } else if (ctx->gs_header) {
5608 /* We need to have these values in the same registers between producer
5609 * (VS or DS) and GS since the producer chains to GS and doesn't get
5610 * the sysvals redelivered.
5611 */
5612
5613 ctx->gs_header->dsts[0]->num = regid(0, 0);
5614 if (ctx->primitive_id)
5615 ctx->primitive_id->dsts[0]->num = regid(0, 1);
5616 } else if (so->num_sampler_prefetch) {
5617 assert(so->type == MESA_SHADER_FRAGMENT);
5618 int idx = 0;
5619
5620 foreach_input (instr, ir) {
5621 if (instr->input.sysval != SYSTEM_VALUE_BARYCENTRIC_PERSP_PIXEL)
5622 continue;
5623
5624 assert(idx < 2);
5625 instr->dsts[0]->num = idx;
5626 idx++;
5627 }
5628 }
5629
5630 IR3_PASS(ir, ir3_cleanup_rpt, so);
5631 ret = ir3_ra(so);
5632
5633 if (ret) {
5634 mesa_loge("ir3_ra() failed!");
5635 goto out;
5636 }
5637
5638 IR3_PASS(ir, ir3_merge_rpt, so);
5639 IR3_PASS(ir, ir3_postsched, so);
5640
5641 IR3_PASS(ir, ir3_legalize_relative);
5642 IR3_PASS(ir, ir3_lower_subgroups);
5643
5644 /* This isn't valid to do when transform feedback is done in HW, which is
5645 * a4xx onward, because the VS may use components not read by the FS for
5646 * transform feedback. Ideally we'd delete this, but a5xx and earlier seem to
5647 * be broken without it.
5648 */
5649 if (so->type == MESA_SHADER_FRAGMENT && ctx->compiler->gen < 6)
5650 pack_inlocs(ctx);
5651
5652 /*
5653 * Fixup inputs/outputs to point to the actual registers assigned:
5654 *
5655 * 1) initialize to r63.x (invalid/unused)
5656 * 2) iterate IR level inputs/outputs and update the variants
5657 * inputs/outputs table based on the assigned registers for
5658 * the remaining inputs/outputs.
5659 */
5660
5661 for (unsigned i = 0; i < so->inputs_count; i++)
5662 so->inputs[i].regid = INVALID_REG;
5663 for (unsigned i = 0; i < so->outputs_count; i++)
5664 so->outputs[i].regid = INVALID_REG;
5665
5666 struct ir3_instruction *end = find_end(so->ir);
5667
5668 for (unsigned i = 0; i < end->srcs_count; i++) {
5669 unsigned outidx = end->end.outidxs[i];
5670 struct ir3_register *reg = end->srcs[i];
5671
5672 so->outputs[outidx].regid = reg->num;
5673 so->outputs[outidx].half = !!(reg->flags & IR3_REG_HALF);
5674 }
5675
5676 foreach_input (in, ir) {
5677 assert(in->opc == OPC_META_INPUT);
5678 unsigned inidx = in->input.inidx;
5679
5680 if (pre_assign_inputs && !so->inputs[inidx].sysval) {
5681 if (VALIDREG(so->nonbinning->inputs[inidx].regid)) {
5682 compile_assert(
5683 ctx, in->dsts[0]->num == so->nonbinning->inputs[inidx].regid);
5684 compile_assert(ctx, !!(in->dsts[0]->flags & IR3_REG_HALF) ==
5685 so->nonbinning->inputs[inidx].half);
5686 }
5687 so->inputs[inidx].regid = so->nonbinning->inputs[inidx].regid;
5688 so->inputs[inidx].half = so->nonbinning->inputs[inidx].half;
5689 } else {
5690 so->inputs[inidx].regid = in->dsts[0]->num;
5691 so->inputs[inidx].half = !!(in->dsts[0]->flags & IR3_REG_HALF);
5692 }
5693 }
5694
5695 uint8_t clip_cull_mask = ctx->so->clip_mask | ctx->so->cull_mask;
5696 /* Having non-zero clip/cull mask and not writting corresponding regs
5697 * leads to a GPU fault on A7XX.
5698 */
5699 if (clip_cull_mask &&
5700 ir3_find_output_regid(ctx->so, VARYING_SLOT_CLIP_DIST0) == regid(63, 0)) {
5701 ctx->so->clip_mask &= 0xf0;
5702 ctx->so->cull_mask &= 0xf0;
5703 }
5704 if ((clip_cull_mask >> 4) &&
5705 ir3_find_output_regid(ctx->so, VARYING_SLOT_CLIP_DIST1) == regid(63, 0)) {
5706 ctx->so->clip_mask &= 0xf;
5707 ctx->so->cull_mask &= 0xf;
5708 }
5709
5710 if (ctx->astc_srgb)
5711 fixup_astc_srgb(ctx);
5712
5713 if (ctx->compiler->gen == 4 && ctx->s->info.uses_texture_gather)
5714 fixup_tg4(ctx);
5715
5716 /* We need to do legalize after (for frag shader's) the "bary.f"
5717 * offsets (inloc) have been assigned.
5718 */
5719 IR3_PASS(ir, ir3_legalize, so, &max_bary);
5720
5721 /* Set (ss)(sy) on first TCS and GEOMETRY instructions, since we don't
5722 * know what we might have to wait on when coming in from VS chsh.
5723 */
5724 if (so->type == MESA_SHADER_TESS_CTRL || so->type == MESA_SHADER_GEOMETRY) {
5725 foreach_block (block, &ir->block_list) {
5726 foreach_instr (instr, &block->instr_list) {
5727 instr->flags |= IR3_INSTR_SS | IR3_INSTR_SY;
5728 break;
5729 }
5730 }
5731 }
5732
5733 if (ctx->compiler->gen >= 7 && so->type == MESA_SHADER_COMPUTE) {
5734 struct ir3_instruction *end = find_end(so->ir);
5735 struct ir3_instruction *lock =
5736 ir3_instr_create(ctx->block, OPC_LOCK, 0, 0);
5737 /* TODO: This flags should be set by scheduler only when needed */
5738 lock->flags = IR3_INSTR_SS | IR3_INSTR_SY | IR3_INSTR_JP;
5739 ir3_instr_move_before(lock, end);
5740 struct ir3_instruction *unlock =
5741 ir3_instr_create(ctx->block, OPC_UNLOCK, 0, 0);
5742 ir3_instr_move_before(unlock, end);
5743 }
5744
5745 so->pvtmem_size = ALIGN(so->pvtmem_size, compiler->pvtmem_per_fiber_align);
5746
5747 /* Note that max_bary counts inputs that are not bary.f'd for FS: */
5748 if (so->type == MESA_SHADER_FRAGMENT)
5749 so->total_in = max_bary + 1;
5750
5751 /* Collect sampling instructions eligible for pre-dispatch. */
5752 collect_tex_prefetches(ctx, ir);
5753
5754 if ((ctx->so->type == MESA_SHADER_FRAGMENT) &&
5755 !ctx->s->info.fs.early_fragment_tests)
5756 ctx->so->no_earlyz |= ctx->s->info.writes_memory;
5757
5758 if ((ctx->so->type == MESA_SHADER_FRAGMENT) &&
5759 ctx->s->info.fs.post_depth_coverage)
5760 so->post_depth_coverage = true;
5761
5762 ctx->so->per_samp = ctx->s->info.fs.uses_sample_shading;
5763
5764 if (ctx->so->type == MESA_SHADER_FRAGMENT &&
5765 compiler->fs_must_have_non_zero_constlen_quirk) {
5766 so->constlen = MAX2(so->constlen, 4);
5767 }
5768
5769 out:
5770 if (ret) {
5771 if (so->ir)
5772 ir3_destroy(so->ir);
5773 so->ir = NULL;
5774 }
5775 ir3_context_free(ctx);
5776
5777 return ret;
5778 }
5779