1 /**************************************************************************
2 *
3 * Copyright 2007 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /**
29 * \brief Clipping stage
30 *
31 * \author Keith Whitwell <[email protected]>
32 */
33
34
35 #include "util/u_bitcast.h"
36 #include "util/u_memory.h"
37 #include "util/u_math.h"
38
39 #include "pipe/p_shader_tokens.h"
40
41 #include "draw_vs.h"
42 #include "draw_pipe.h"
43 #include "draw_fs.h"
44 #include "draw_gs.h"
45
46
47 /** Set to 1 to enable printing of coords before/after clipping */
48 #define DEBUG_CLIP 0
49
50 #define MAX_CLIPPED_VERTICES ((2 * (6 + PIPE_MAX_CLIP_PLANES))+1)
51
52
53 struct clip_stage {
54 struct draw_stage stage; /**< base class */
55
56 unsigned pos_attr;
57 bool have_clipdist;
58 int cv_attr;
59
60 /* List of the attributes to be constant interpolated. */
61 unsigned num_const_attribs;
62 uint8_t const_attribs[PIPE_MAX_SHADER_OUTPUTS];
63 /* List of the attributes to be linear interpolated. */
64 unsigned num_linear_attribs;
65 uint8_t linear_attribs[PIPE_MAX_SHADER_OUTPUTS];
66 /* List of the attributes to be perspective interpolated. */
67 unsigned num_perspect_attribs;
68 uint8_t perspect_attribs[PIPE_MAX_SHADER_OUTPUTS];
69
70 float (*plane)[4];
71 };
72
73
74 /** Cast wrapper */
75 static inline struct clip_stage *
clip_stage(struct draw_stage * stage)76 clip_stage(struct draw_stage *stage)
77 {
78 return (struct clip_stage *) stage;
79 }
80
81
82 static inline unsigned
draw_viewport_index(struct draw_context * draw,const struct vertex_header * leading_vertex)83 draw_viewport_index(struct draw_context *draw,
84 const struct vertex_header *leading_vertex)
85 {
86 if (draw_current_shader_uses_viewport_index(draw)) {
87 unsigned viewport_index_output =
88 draw_current_shader_viewport_index_output(draw);
89 unsigned viewport_index =
90 u_bitcast_f2u(leading_vertex->data[viewport_index_output][0]);
91 return draw_clamp_viewport_idx(viewport_index);
92 } else {
93 return 0;
94 }
95 }
96
97
98 #define LINTERP(T, OUT, IN) ((OUT) + (T) * ((IN) - (OUT)))
99
100
101 /* All attributes are float[4], so this is easy:
102 */
103 static void
interp_attr(float dst[4],float t,const float in[4],const float out[4])104 interp_attr(float dst[4],
105 float t,
106 const float in[4],
107 const float out[4])
108 {
109 dst[0] = LINTERP(t, out[0], in[0]);
110 dst[1] = LINTERP(t, out[1], in[1]);
111 dst[2] = LINTERP(t, out[2], in[2]);
112 dst[3] = LINTERP(t, out[3], in[3]);
113 }
114
115
116 /**
117 * Copy flat shaded attributes src vertex to dst vertex.
118 */
119 static void
copy_flat(struct draw_stage * stage,struct vertex_header * dst,const struct vertex_header * src)120 copy_flat(struct draw_stage *stage,
121 struct vertex_header *dst,
122 const struct vertex_header *src)
123 {
124 const struct clip_stage *clipper = clip_stage(stage);
125 for (unsigned i = 0; i < clipper->num_const_attribs; i++) {
126 const unsigned attr = clipper->const_attribs[i];
127 COPY_4FV(dst->data[attr], src->data[attr]);
128 }
129 }
130
131
132 /* Interpolate between two vertices to produce a third.
133 */
134 static void
interp(const struct clip_stage * clip,struct vertex_header * dst,float t,const struct vertex_header * out,const struct vertex_header * in,unsigned viewport_index)135 interp(const struct clip_stage *clip,
136 struct vertex_header *dst,
137 float t,
138 const struct vertex_header *out,
139 const struct vertex_header *in,
140 unsigned viewport_index)
141 {
142 const unsigned pos_attr = clip->pos_attr;
143
144 /* Vertex header.
145 */
146 dst->clipmask = 0;
147 dst->edgeflag = 0; /* will get overwritten later */
148 dst->pad = 0;
149 dst->vertex_id = UNDEFINED_VERTEX_ID;
150
151 /* Interpolate the clip-space coords.
152 */
153 if (clip->cv_attr >= 0) {
154 interp_attr(dst->data[clip->cv_attr], t,
155 in->data[clip->cv_attr], out->data[clip->cv_attr]);
156 }
157 /* interpolate the clip-space position */
158 interp_attr(dst->clip_pos, t, in->clip_pos, out->clip_pos);
159
160 /* Do the projective divide and viewport transformation to get
161 * new window coordinates:
162 */
163 {
164 const float *pos = dst->clip_pos;
165 const float *scale =
166 clip->stage.draw->viewports[viewport_index].scale;
167 const float *trans =
168 clip->stage.draw->viewports[viewport_index].translate;
169 const float oow = 1.0f / pos[3];
170
171 dst->data[pos_attr][0] = pos[0] * oow * scale[0] + trans[0];
172 dst->data[pos_attr][1] = pos[1] * oow * scale[1] + trans[1];
173 dst->data[pos_attr][2] = pos[2] * oow * scale[2] + trans[2];
174 dst->data[pos_attr][3] = oow;
175 }
176
177 /* interp perspective attribs */
178 for (unsigned j = 0; j < clip->num_perspect_attribs; j++) {
179 const unsigned attr = clip->perspect_attribs[j];
180 interp_attr(dst->data[attr], t, in->data[attr], out->data[attr]);
181 }
182
183 /**
184 * Compute the t in screen-space instead of 3d space to use
185 * for noperspective interpolation.
186 *
187 * The points can be aligned with the X axis, so in that case try
188 * the Y. When both points are at the same screen position, we can
189 * pick whatever value (the interpolated point won't be in front
190 * anyway), so just use the 3d t.
191 */
192 if (clip->num_linear_attribs) {
193 float t_nopersp = t;
194 /* find either in.x != out.x or in.y != out.y */
195 for (int k = 0; k < 2; k++) {
196 if (in->clip_pos[k] != out->clip_pos[k]) {
197 /* do divide by W, then compute linear interpolation factor */
198 float in_coord = in->clip_pos[k] / in->clip_pos[3];
199 float out_coord = out->clip_pos[k] / out->clip_pos[3];
200 float dst_coord = dst->clip_pos[k] / dst->clip_pos[3];
201 t_nopersp = (dst_coord - out_coord) / (in_coord - out_coord);
202 break;
203 }
204 }
205 for (unsigned j = 0; j < clip->num_linear_attribs; j++) {
206 const unsigned attr = clip->linear_attribs[j];
207 interp_attr(dst->data[attr], t_nopersp, in->data[attr], out->data[attr]);
208 }
209 }
210 }
211
212
213 /**
214 * Emit a post-clip polygon to the next pipeline stage. The polygon
215 * will be convex and the provoking vertex will always be vertex[0].
216 */
217 static void
emit_poly(struct draw_stage * stage,struct vertex_header ** inlist,const bool * edgeflags,unsigned n,const struct prim_header * origPrim)218 emit_poly(struct draw_stage *stage,
219 struct vertex_header **inlist,
220 const bool *edgeflags,
221 unsigned n,
222 const struct prim_header *origPrim)
223 {
224 const struct clip_stage *clipper = clip_stage(stage);
225 uint16_t edge_first, edge_middle, edge_last;
226
227 if (stage->draw->rasterizer->flatshade_first) {
228 edge_first = DRAW_PIPE_EDGE_FLAG_0;
229 edge_middle = DRAW_PIPE_EDGE_FLAG_1;
230 edge_last = DRAW_PIPE_EDGE_FLAG_2;
231 } else {
232 edge_first = DRAW_PIPE_EDGE_FLAG_2;
233 edge_middle = DRAW_PIPE_EDGE_FLAG_0;
234 edge_last = DRAW_PIPE_EDGE_FLAG_1;
235 }
236
237 if (!edgeflags[0])
238 edge_first = 0;
239
240 /* later stages may need the determinant, but only the sign matters */
241 struct prim_header header;
242 header.det = origPrim->det;
243 header.flags = DRAW_PIPE_RESET_STIPPLE | edge_first | edge_middle;
244 header.pad = 0;
245
246 for (unsigned i = 2; i < n; i++, header.flags = edge_middle) {
247 /* order the triangle verts to respect the provoking vertex mode */
248 if (stage->draw->rasterizer->flatshade_first) {
249 header.v[0] = inlist[0]; /* the provoking vertex */
250 header.v[1] = inlist[i-1];
251 header.v[2] = inlist[i];
252 } else {
253 header.v[0] = inlist[i-1];
254 header.v[1] = inlist[i];
255 header.v[2] = inlist[0]; /* the provoking vertex */
256 }
257
258 if (!edgeflags[i-1]) {
259 header.flags &= ~edge_middle;
260 }
261
262 if (i == n - 1 && edgeflags[i])
263 header.flags |= edge_last;
264
265 if (DEBUG_CLIP) {
266 debug_printf("Clipped tri: (flat-shade-first = %d)\n",
267 stage->draw->rasterizer->flatshade_first);
268 for (unsigned j = 0; j < 3; j++) {
269 debug_printf(" Vert %d: clip pos: %f %f %f %f\n", j,
270 header.v[j]->clip_pos[0],
271 header.v[j]->clip_pos[1],
272 header.v[j]->clip_pos[2],
273 header.v[j]->clip_pos[3]);
274 if (clipper->cv_attr >= 0) {
275 debug_printf(" Vert %d: cv: %f %f %f %f\n", j,
276 header.v[j]->data[clipper->cv_attr][0],
277 header.v[j]->data[clipper->cv_attr][1],
278 header.v[j]->data[clipper->cv_attr][2],
279 header.v[j]->data[clipper->cv_attr][3]);
280 }
281 for (unsigned k = 0; k < draw_num_shader_outputs(stage->draw); k++) {
282 debug_printf(" Vert %d: Attr %d: %f %f %f %f\n", j, k,
283 header.v[j]->data[k][0],
284 header.v[j]->data[k][1],
285 header.v[j]->data[k][2],
286 header.v[j]->data[k][3]);
287 }
288 }
289 }
290 stage->next->tri(stage->next, &header);
291 }
292 }
293
294
295 static inline float
dot4(const float * a,const float * b)296 dot4(const float *a, const float *b)
297 {
298 return a[0] * b[0] + a[1] * b[1] + a[2] * b[2] + a[3] * b[3];
299 }
300
301 /*
302 * this function extracts the clip distance for the current plane,
303 * it first checks if the shader provided a clip distance, otherwise
304 * it works out the value using the clipvertex
305 */
306 static inline float
getclipdist(const struct clip_stage * clipper,struct vertex_header * vert,int plane_idx)307 getclipdist(const struct clip_stage *clipper,
308 struct vertex_header *vert,
309 int plane_idx)
310 {
311 const float *plane;
312 float dp;
313
314 if (plane_idx < 6) {
315 /* ordinary xyz view volume clipping uses pos output */
316 plane = clipper->plane[plane_idx];
317 dp = dot4(vert->clip_pos, plane);
318 }
319 else if (clipper->have_clipdist) {
320 /* pick the correct clipdistance element from the output vectors */
321 int _idx = plane_idx - 6;
322 int cdi = _idx >= 4;
323 int vidx = cdi ? _idx - 4 : _idx;
324 dp = vert->data[draw_current_shader_ccdistance_output(clipper->stage.draw, cdi)][vidx];
325 } else {
326 /*
327 * legacy user clip planes or gl_ClipVertex
328 */
329 plane = clipper->plane[plane_idx];
330 if (clipper->cv_attr >= 0) {
331 dp = dot4(vert->data[clipper->cv_attr], plane);
332 }
333 else {
334 dp = dot4(vert->clip_pos, plane);
335 }
336 }
337 return dp;
338 }
339
340
341 /* Clip a triangle against the viewport and user clip planes.
342 */
343 static void
do_clip_tri(struct draw_stage * stage,struct prim_header * header,unsigned clipmask)344 do_clip_tri(struct draw_stage *stage,
345 struct prim_header *header,
346 unsigned clipmask)
347 {
348 struct clip_stage *clipper = clip_stage(stage);
349 struct vertex_header *a[MAX_CLIPPED_VERTICES];
350 struct vertex_header *b[MAX_CLIPPED_VERTICES];
351 struct vertex_header **inlist = a;
352 struct vertex_header **outlist = b;
353 struct vertex_header *prov_vertex;
354 unsigned tmpnr = 0;
355 unsigned n = 3;
356 bool aEdges[MAX_CLIPPED_VERTICES];
357 bool bEdges[MAX_CLIPPED_VERTICES];
358 bool *inEdges = aEdges;
359 bool *outEdges = bEdges;
360 int viewport_index = 0;
361
362 inlist[0] = header->v[0];
363 inlist[1] = header->v[1];
364 inlist[2] = header->v[2];
365
366 /*
367 * For d3d10, we need to take this from the leading (first) vertex.
368 * For GL, we could do anything (as long as we advertize
369 * GL_UNDEFINED_VERTEX for the VIEWPORT_INDEX_PROVOKING_VERTEX query),
370 * but it needs to be consistent with what other parts (i.e. driver)
371 * will do, and that seems easier with GL_PROVOKING_VERTEX logic.
372 */
373 if (stage->draw->rasterizer->flatshade_first) {
374 prov_vertex = inlist[0];
375 } else {
376 prov_vertex = inlist[2];
377 }
378 viewport_index = draw_viewport_index(clipper->stage.draw, prov_vertex);
379
380 if (DEBUG_CLIP) {
381 const float *v0 = header->v[0]->clip_pos;
382 const float *v1 = header->v[1]->clip_pos;
383 const float *v2 = header->v[2]->clip_pos;
384 debug_printf("Clip triangle pos:\n");
385 debug_printf(" %f, %f, %f, %f\n", v0[0], v0[1], v0[2], v0[3]);
386 debug_printf(" %f, %f, %f, %f\n", v1[0], v1[1], v1[2], v1[3]);
387 debug_printf(" %f, %f, %f, %f\n", v2[0], v2[1], v2[2], v2[3]);
388 if (clipper->cv_attr >= 0) {
389 const float *v0 = header->v[0]->data[clipper->cv_attr];
390 const float *v1 = header->v[1]->data[clipper->cv_attr];
391 const float *v2 = header->v[2]->data[clipper->cv_attr];
392 debug_printf("Clip triangle cv:\n");
393 debug_printf(" %f, %f, %f, %f\n", v0[0], v0[1], v0[2], v0[3]);
394 debug_printf(" %f, %f, %f, %f\n", v1[0], v1[1], v1[2], v1[3]);
395 debug_printf(" %f, %f, %f, %f\n", v2[0], v2[1], v2[2], v2[3]);
396 }
397 }
398
399 /*
400 * Note: at this point we can't just use the per-vertex edge flags.
401 * We have to observe the edge flag bits set in header->flags which
402 * were set during primitive decomposition. Put those flags into
403 * an edge flags array which parallels the vertex array.
404 * Later, in the 'unfilled' pipeline stage we'll draw the edge if both
405 * the header.flags bit is set AND the per-vertex edgeflag field is set.
406 */
407 inEdges[0] = !!(header->flags & DRAW_PIPE_EDGE_FLAG_0);
408 inEdges[1] = !!(header->flags & DRAW_PIPE_EDGE_FLAG_1);
409 inEdges[2] = !!(header->flags & DRAW_PIPE_EDGE_FLAG_2);
410
411 while (clipmask && n >= 3) {
412 const unsigned plane_idx = ffs(clipmask)-1;
413 const bool is_user_clip_plane = plane_idx >= 6;
414 struct vertex_header *vert_prev = inlist[0];
415 bool *edge_prev = &inEdges[0];
416 float dp_prev;
417 unsigned outcount = 0;
418
419 dp_prev = getclipdist(clipper, vert_prev, plane_idx);
420 clipmask &= ~(1<<plane_idx);
421
422 if (util_is_inf_or_nan(dp_prev))
423 return; //discard nan
424
425 assert(n < MAX_CLIPPED_VERTICES);
426 if (n >= MAX_CLIPPED_VERTICES)
427 return;
428 inlist[n] = inlist[0]; /* prevent rotation of vertices */
429 inEdges[n] = inEdges[0];
430
431 for (unsigned i = 1; i <= n; i++) {
432 struct vertex_header *vert = inlist[i];
433 bool *edge = &inEdges[i];
434 bool different_sign;
435
436 float dp = getclipdist(clipper, vert, plane_idx);
437
438 if (util_is_inf_or_nan(dp))
439 return; //discard nan
440
441 if (dp_prev >= 0.0f) {
442 assert(outcount < MAX_CLIPPED_VERTICES);
443 if (outcount >= MAX_CLIPPED_VERTICES)
444 return;
445 outEdges[outcount] = *edge_prev;
446 outlist[outcount++] = vert_prev;
447 different_sign = dp < 0.0f;
448 } else {
449 different_sign = !(dp < 0.0f);
450 }
451
452 if (different_sign) {
453 struct vertex_header *new_vert;
454 bool *new_edge;
455
456 assert(tmpnr < MAX_CLIPPED_VERTICES + 1);
457 if (tmpnr >= MAX_CLIPPED_VERTICES + 1)
458 return;
459 new_vert = clipper->stage.tmp[tmpnr++];
460
461 assert(outcount < MAX_CLIPPED_VERTICES);
462 if (outcount >= MAX_CLIPPED_VERTICES)
463 return;
464
465 new_edge = &outEdges[outcount];
466 outlist[outcount++] = new_vert;
467
468 float denom = dp - dp_prev;
469 if (dp < 0.0f) {
470 /* Going out of bounds. Avoid division by zero as we
471 * know dp != dp_prev from different_sign, above.
472 */
473 if (-dp < dp_prev) {
474 float t = dp / denom;
475 interp(clipper, new_vert, t, vert, vert_prev, viewport_index);
476 } else {
477 float t = -dp_prev / denom;
478 interp(clipper, new_vert, t, vert_prev, vert, viewport_index);
479 }
480
481 /* Whether or not to set edge flag for the new vert depends
482 * on whether it's a user-defined clipping plane. We're
483 * copying NVIDIA's behaviour here.
484 */
485 if (is_user_clip_plane) {
486 /* we want to see an edge along the clip plane */
487 *new_edge = true;
488 new_vert->edgeflag = true;
489 }
490 else {
491 /* we don't want to see an edge along the frustum clip plane */
492 *new_edge = *edge_prev;
493 new_vert->edgeflag = false;
494 }
495 }
496 else {
497 /* Coming back in.
498 */
499 if (-dp_prev < dp) {
500 float t = -dp_prev / denom;
501 interp(clipper, new_vert, t, vert_prev, vert, viewport_index);
502 } else {
503 float t = dp / denom;
504 interp(clipper, new_vert, t, vert, vert_prev, viewport_index);
505 }
506
507 /* Copy starting vert's edgeflag:
508 */
509 new_vert->edgeflag = vert_prev->edgeflag;
510 *new_edge = *edge_prev;
511 }
512 }
513
514 vert_prev = vert;
515 edge_prev = edge;
516 dp_prev = dp;
517 }
518
519 /* swap in/out lists */
520 {
521 struct vertex_header **tmp = inlist;
522 inlist = outlist;
523 outlist = tmp;
524 n = outcount;
525 }
526 {
527 bool *tmp = inEdges;
528 inEdges = outEdges;
529 outEdges = tmp;
530 }
531
532 }
533
534 /* If constant interpolated, copy provoking vertex attrib to polygon vertex[0]
535 */
536 if (n >= 3) {
537 if (clipper->num_const_attribs) {
538 if (stage->draw->rasterizer->flatshade_first) {
539 if (inlist[0] != header->v[0]) {
540 assert(tmpnr < MAX_CLIPPED_VERTICES + 1);
541 if (tmpnr >= MAX_CLIPPED_VERTICES + 1)
542 return;
543 inlist[0] = dup_vert(stage, inlist[0], tmpnr++);
544 copy_flat(stage, inlist[0], header->v[0]);
545 }
546 }
547 else {
548 if (inlist[0] != header->v[2]) {
549 assert(tmpnr < MAX_CLIPPED_VERTICES + 1);
550 if (tmpnr >= MAX_CLIPPED_VERTICES + 1)
551 return;
552 inlist[0] = dup_vert(stage, inlist[0], tmpnr++);
553 copy_flat(stage, inlist[0], header->v[2]);
554 }
555 }
556 }
557
558 /* Emit the polygon as triangles to the setup stage:
559 */
560 emit_poly(stage, inlist, inEdges, n, header);
561 }
562 }
563
564
565 /* Clip a line against the viewport and user clip planes.
566 */
567 static void
do_clip_line(struct draw_stage * stage,struct prim_header * header,unsigned clipmask)568 do_clip_line(struct draw_stage *stage,
569 struct prim_header *header,
570 unsigned clipmask)
571 {
572 const struct clip_stage *clipper = clip_stage(stage);
573 struct vertex_header *v0 = header->v[0];
574 struct vertex_header *v1 = header->v[1];
575 struct vertex_header *prov_vertex;
576 float t0 = 0.0F;
577 float t1 = 0.0F;
578 struct prim_header newprim;
579 int viewport_index;
580
581 newprim.flags = header->flags;
582
583 if (stage->draw->rasterizer->flatshade_first) {
584 prov_vertex = v0;
585 }
586 else {
587 prov_vertex = v1;
588 }
589 viewport_index = draw_viewport_index(clipper->stage.draw, prov_vertex);
590
591 while (clipmask) {
592 const unsigned plane_idx = ffs(clipmask)-1;
593 const float dp0 = getclipdist(clipper, v0, plane_idx);
594 const float dp1 = getclipdist(clipper, v1, plane_idx);
595
596 if (util_is_inf_or_nan(dp0) || util_is_inf_or_nan(dp1))
597 return; //discard nan
598
599 if (dp1 < 0.0F) {
600 float t = dp1 / (dp1 - dp0);
601 t1 = MAX2(t1, t);
602 }
603
604 if (dp0 < 0.0F) {
605 float t = dp0 / (dp0 - dp1);
606 t0 = MAX2(t0, t);
607 }
608
609 if (t0 + t1 >= 1.0F)
610 return; /* discard */
611
612 clipmask &= ~(1 << plane_idx); /* turn off this plane's bit */
613 }
614
615 if (v0->clipmask) {
616 interp(clipper, stage->tmp[0], t0, v0, v1, viewport_index);
617 if (stage->draw->rasterizer->flatshade_first) {
618 copy_flat(stage, stage->tmp[0], v0); /* copy v0 color to tmp[0] */
619 }
620 else {
621 copy_flat(stage, stage->tmp[0], v1); /* copy v1 color to tmp[0] */
622 }
623 newprim.v[0] = stage->tmp[0];
624 }
625 else {
626 newprim.v[0] = v0;
627 }
628
629 if (v1->clipmask) {
630 interp(clipper, stage->tmp[1], t1, v1, v0, viewport_index);
631 if (stage->draw->rasterizer->flatshade_first) {
632 copy_flat(stage, stage->tmp[1], v0); /* copy v0 color to tmp[1] */
633 }
634 else {
635 copy_flat(stage, stage->tmp[1], v1); /* copy v1 color to tmp[1] */
636 }
637 newprim.v[1] = stage->tmp[1];
638 }
639 else {
640 newprim.v[1] = v1;
641 }
642
643 stage->next->line(stage->next, &newprim);
644 }
645
646
647 static void
clip_point(struct draw_stage * stage,struct prim_header * header)648 clip_point(struct draw_stage *stage, struct prim_header *header)
649 {
650 if (header->v[0]->clipmask == 0)
651 stage->next->point(stage->next, header);
652 }
653
654
655 /*
656 * Clip points but ignore the first 4 (xy) clip planes.
657 * (Because the generated clip mask is completely unaffacted by guard band,
658 * we still need to manually evaluate the x/y planes if they are outside
659 * the guard band and not just outside the vp.)
660 */
661 static void
clip_point_guard_xy(struct draw_stage * stage,struct prim_header * header)662 clip_point_guard_xy(struct draw_stage *stage, struct prim_header *header)
663 {
664 unsigned clipmask = header->v[0]->clipmask;
665 if ((clipmask & 0xffffffff) == 0)
666 stage->next->point(stage->next, header);
667 else if ((clipmask & 0xfffffff0) == 0) {
668 while (clipmask) {
669 const unsigned plane_idx = ffs(clipmask)-1;
670 clipmask &= ~(1 << plane_idx); /* turn off this plane's bit */
671 /* TODO: this should really do proper guardband clipping,
672 * currently just throw out infs/nans.
673 * Also note that vertices with negative w values MUST be tossed
674 * out (not sure if proper guardband clipping would do this
675 * automatically). These would usually be captured by depth clip
676 * too but this can be disabled.
677 */
678 if (header->v[0]->clip_pos[3] <= 0.0f ||
679 util_is_inf_or_nan(header->v[0]->clip_pos[0]) ||
680 util_is_inf_or_nan(header->v[0]->clip_pos[1]))
681 return;
682 }
683 stage->next->point(stage->next, header);
684 }
685 }
686
687
688 static void
clip_first_point(struct draw_stage * stage,struct prim_header * header)689 clip_first_point(struct draw_stage *stage, struct prim_header *header)
690 {
691 stage->point = stage->draw->guard_band_points_lines_xy ? clip_point_guard_xy : clip_point;
692 stage->point(stage, header);
693 }
694
695
696 static void
clip_line(struct draw_stage * stage,struct prim_header * header)697 clip_line(struct draw_stage *stage, struct prim_header *header)
698 {
699 unsigned clipmask = (header->v[0]->clipmask |
700 header->v[1]->clipmask);
701
702 if (clipmask == 0) {
703 /* no clipping needed */
704 stage->next->line(stage->next, header);
705 }
706 else if ((header->v[0]->clipmask &
707 header->v[1]->clipmask) == 0) {
708 do_clip_line(stage, header, clipmask);
709 }
710 /* else, totally clipped */
711 }
712
713 static void
clip_line_guard_xy(struct draw_stage * stage,struct prim_header * header)714 clip_line_guard_xy(struct draw_stage *stage, struct prim_header *header)
715 {
716 unsigned clipmask = (header->v[0]->clipmask |
717 header->v[1]->clipmask);
718
719 if ((clipmask & 0xffffffff) == 0) {
720 stage->next->line(stage->next, header);
721 }
722 else if ((clipmask & 0xfffffff0) == 0) {
723 while (clipmask) {
724 const unsigned plane_idx = ffs(clipmask)-1;
725 clipmask &= ~(1 << plane_idx); /* turn off this plane's bit */
726 /* TODO: this should really do proper guardband clipping,
727 * currently just throw out infs/nans.
728 * Also note that vertices with negative w values MUST be tossed
729 * out (not sure if proper guardband clipping would do this
730 * automatically). These would usually be captured by depth clip
731 * too but this can be disabled.
732 */
733 if ((header->v[0]->clip_pos[3] <= 0.0f &&
734 header->v[1]->clip_pos[3] <= 0.0f) ||
735 util_is_nan(header->v[0]->clip_pos[0]) ||
736 util_is_nan(header->v[0]->clip_pos[1]) ||
737 util_is_nan(header->v[1]->clip_pos[0]) ||
738 util_is_nan(header->v[1]->clip_pos[1]))
739 return;
740 }
741 stage->next->line(stage->next, header);
742 } else if ((header->v[0]->clipmask &
743 header->v[1]->clipmask) == 0) {
744 do_clip_line(stage, header, clipmask & 0xfffffff0);
745 }
746 }
747
748 static void
clip_tri(struct draw_stage * stage,struct prim_header * header)749 clip_tri(struct draw_stage *stage, struct prim_header *header)
750 {
751 unsigned clipmask = (header->v[0]->clipmask |
752 header->v[1]->clipmask |
753 header->v[2]->clipmask);
754
755 if (clipmask == 0) {
756 /* no clipping needed */
757 stage->next->tri(stage->next, header);
758 }
759 else if ((header->v[0]->clipmask &
760 header->v[1]->clipmask &
761 header->v[2]->clipmask) == 0) {
762 do_clip_tri(stage, header, clipmask);
763 }
764 }
765
766
767 static enum tgsi_interpolate_mode
find_interp(const struct draw_fragment_shader * fs,enum tgsi_interpolate_mode * indexed_interp,enum tgsi_semantic semantic_name,unsigned semantic_index)768 find_interp(const struct draw_fragment_shader *fs,
769 enum tgsi_interpolate_mode *indexed_interp,
770 enum tgsi_semantic semantic_name, unsigned semantic_index)
771 {
772 enum tgsi_interpolate_mode interp;
773
774 /* If it's gl_{Front,Back}{,Secondary}Color, pick up the mode
775 * from the array we've filled before. */
776 if ((semantic_name == TGSI_SEMANTIC_COLOR ||
777 semantic_name == TGSI_SEMANTIC_BCOLOR) &&
778 semantic_index < 2) {
779 interp = indexed_interp[semantic_index];
780 } else if (semantic_name == TGSI_SEMANTIC_POSITION ||
781 semantic_name == TGSI_SEMANTIC_CLIPVERTEX) {
782 /* these inputs are handled specially always */
783 return -1;
784 } else {
785 /* Otherwise, search in the FS inputs, with a decent default
786 * if we don't find it.
787 * This probably only matters for layer, vpindex, culldist, maybe
788 * front_face.
789 */
790 unsigned j;
791 if (semantic_name == TGSI_SEMANTIC_LAYER ||
792 semantic_name == TGSI_SEMANTIC_VIEWPORT_INDEX) {
793 interp = TGSI_INTERPOLATE_CONSTANT;
794 }
795 else {
796 interp = TGSI_INTERPOLATE_PERSPECTIVE;
797 }
798 if (fs) {
799 for (j = 0; j < fs->info.num_inputs; j++) {
800 if (semantic_name == fs->info.input_semantic_name[j] &&
801 semantic_index == fs->info.input_semantic_index[j]) {
802 interp = fs->info.input_interpolate[j];
803 break;
804 }
805 }
806 }
807 }
808 return interp;
809 }
810
811
812 /* Update state. Could further delay this until we hit the first
813 * primitive that really requires clipping.
814 */
815 static void
clip_init_state(struct draw_stage * stage)816 clip_init_state(struct draw_stage *stage)
817 {
818 struct clip_stage *clipper = clip_stage(stage);
819 const struct draw_context *draw = stage->draw;
820 const struct draw_fragment_shader *fs = draw->fs.fragment_shader;
821 const struct tgsi_shader_info *info = draw_get_shader_info(draw);
822
823 clipper->pos_attr = draw_current_shader_position_output(draw);
824 clipper->have_clipdist = draw_current_shader_num_written_clipdistances(draw) > 0;
825 if (draw_current_shader_clipvertex_output(draw) != clipper->pos_attr) {
826 clipper->cv_attr = (int)draw_current_shader_clipvertex_output(draw);
827 }
828 else {
829 clipper->cv_attr = -1;
830 }
831
832 /* We need to know for each attribute what kind of interpolation is
833 * done on it (flat, smooth or noperspective). But the information
834 * is not directly accessible for outputs, only for inputs. So we
835 * have to match semantic name and index between the VS (or GS/ES)
836 * outputs and the FS inputs to get to the interpolation mode.
837 *
838 * The only hitch is with gl_FrontColor/gl_BackColor which map to
839 * gl_Color, and their Secondary versions. First there are (up to)
840 * two outputs for one input, so we tuck the information in a
841 * specific array. Second if they don't have qualifiers, the
842 * default value has to be picked from the global shade mode.
843 *
844 * Of course, if we don't have a fragment shader in the first
845 * place, defaults should be used.
846 */
847
848 /* First pick up the interpolation mode for
849 * gl_Color/gl_SecondaryColor, with the correct default.
850 */
851 enum tgsi_interpolate_mode indexed_interp[2];
852 indexed_interp[0] = indexed_interp[1] = draw->rasterizer->flatshade ?
853 TGSI_INTERPOLATE_CONSTANT : TGSI_INTERPOLATE_PERSPECTIVE;
854
855 if (fs) {
856 for (unsigned i = 0; i < fs->info.num_inputs; i++) {
857 if (fs->info.input_semantic_name[i] == TGSI_SEMANTIC_COLOR &&
858 fs->info.input_semantic_index[i] < 2) {
859 if (fs->info.input_interpolate[i] != TGSI_INTERPOLATE_COLOR)
860 indexed_interp[fs->info.input_semantic_index[i]] = fs->info.input_interpolate[i];
861 }
862 }
863 }
864
865 /* Then resolve the interpolation mode for every output attribute. */
866
867 clipper->num_const_attribs = 0;
868 clipper->num_linear_attribs = 0;
869 clipper->num_perspect_attribs = 0;
870 unsigned i;
871 for (i = 0; i < info->num_outputs; i++) {
872 /* Find the interpolation mode for a specific attribute */
873 int interp = find_interp(fs, indexed_interp,
874 info->output_semantic_name[i],
875 info->output_semantic_index[i]);
876 switch (interp) {
877 case TGSI_INTERPOLATE_CONSTANT:
878 clipper->const_attribs[clipper->num_const_attribs] = i;
879 clipper->num_const_attribs++;
880 break;
881 case TGSI_INTERPOLATE_LINEAR:
882 clipper->linear_attribs[clipper->num_linear_attribs] = i;
883 clipper->num_linear_attribs++;
884 break;
885 case TGSI_INTERPOLATE_PERSPECTIVE:
886 clipper->perspect_attribs[clipper->num_perspect_attribs] = i;
887 clipper->num_perspect_attribs++;
888 break;
889 case TGSI_INTERPOLATE_COLOR:
890 if (draw->rasterizer->flatshade) {
891 clipper->const_attribs[clipper->num_const_attribs] = i;
892 clipper->num_const_attribs++;
893 } else {
894 clipper->perspect_attribs[clipper->num_perspect_attribs] = i;
895 clipper->num_perspect_attribs++;
896 }
897 break;
898 default:
899 assert(interp == -1);
900 break;
901 }
902 }
903
904 /* Search the extra vertex attributes */
905 for (unsigned j = 0; j < draw->extra_shader_outputs.num; j++) {
906 /* Find the interpolation mode for a specific attribute */
907 enum tgsi_interpolate_mode interp =
908 find_interp(fs, indexed_interp,
909 draw->extra_shader_outputs.semantic_name[j],
910 draw->extra_shader_outputs.semantic_index[j]);
911 switch (interp) {
912 case TGSI_INTERPOLATE_CONSTANT:
913 clipper->const_attribs[clipper->num_const_attribs] = i + j;
914 clipper->num_const_attribs++;
915 break;
916 case TGSI_INTERPOLATE_LINEAR:
917 clipper->linear_attribs[clipper->num_linear_attribs] = i + j;
918 clipper->num_linear_attribs++;
919 break;
920 case TGSI_INTERPOLATE_PERSPECTIVE:
921 clipper->perspect_attribs[clipper->num_perspect_attribs] = i + j;
922 clipper->num_perspect_attribs++;
923 break;
924 default:
925 assert(interp == -1);
926 break;
927 }
928 }
929
930 stage->tri = clip_tri;
931 }
932
933
934 static void
clip_first_tri(struct draw_stage * stage,struct prim_header * header)935 clip_first_tri(struct draw_stage *stage,
936 struct prim_header *header)
937 {
938 clip_init_state(stage);
939 stage->tri(stage, header);
940 }
941
942
943 static void
clip_first_line(struct draw_stage * stage,struct prim_header * header)944 clip_first_line(struct draw_stage *stage,
945 struct prim_header *header)
946 {
947 clip_init_state(stage);
948 stage->line = stage->draw->guard_band_points_lines_xy ? clip_line_guard_xy : clip_line;
949 stage->line(stage, header);
950 }
951
952
953 static void
clip_flush(struct draw_stage * stage,unsigned flags)954 clip_flush(struct draw_stage *stage, unsigned flags)
955 {
956 stage->tri = clip_first_tri;
957 stage->line = clip_first_line;
958 stage->next->flush(stage->next, flags);
959 }
960
961
962 static void
clip_reset_stipple_counter(struct draw_stage * stage)963 clip_reset_stipple_counter(struct draw_stage *stage)
964 {
965 stage->next->reset_stipple_counter(stage->next);
966 }
967
968
969 static void
clip_destroy(struct draw_stage * stage)970 clip_destroy(struct draw_stage *stage)
971 {
972 draw_free_temp_verts(stage);
973 FREE(stage);
974 }
975
976
977 /**
978 * Allocate a new clipper stage.
979 * \return pointer to new stage object
980 */
981 struct draw_stage *
draw_clip_stage(struct draw_context * draw)982 draw_clip_stage(struct draw_context *draw)
983 {
984 struct clip_stage *clipper = CALLOC_STRUCT(clip_stage);
985 if (!clipper)
986 goto fail;
987
988 clipper->stage.draw = draw;
989 clipper->stage.name = "clipper";
990 clipper->stage.point = clip_first_point;
991 clipper->stage.line = clip_first_line;
992 clipper->stage.tri = clip_first_tri;
993 clipper->stage.flush = clip_flush;
994 clipper->stage.reset_stipple_counter = clip_reset_stipple_counter;
995 clipper->stage.destroy = clip_destroy;
996
997 clipper->plane = draw->plane;
998
999 if (!draw_alloc_temp_verts(&clipper->stage, MAX_CLIPPED_VERTICES+1))
1000 goto fail;
1001
1002 return &clipper->stage;
1003
1004 fail:
1005 if (clipper)
1006 clipper->stage.destroy(&clipper->stage);
1007
1008 return NULL;
1009 }
1010