1 /*
2 * Copyright 2010 Red Hat Inc.
3 * Copyright 2014-2017 Broadcom
4 * Copyright 2019-2020 Collabora, Ltd.
5 * Copyright 2006 VMware, Inc.
6 * SPDX-License-Identifier: MIT
7 */
8 #include <errno.h>
9 #include <stdio.h>
10 #include <xf86drm.h>
11 #include "asahi/compiler/agx_compile.h"
12 #include "asahi/layout/layout.h"
13 #include "asahi/lib/decode.h"
14 #include "asahi/lib/unstable_asahi_drm.h"
15 #include "drm-uapi/drm_fourcc.h"
16 #include "frontend/winsys_handle.h"
17 #include "gallium/auxiliary/renderonly/renderonly.h"
18 #include "gallium/auxiliary/util/u_debug_cb.h"
19 #include "gallium/auxiliary/util/u_framebuffer.h"
20 #include "gallium/auxiliary/util/u_sample_positions.h"
21 #include "gallium/auxiliary/util/u_surface.h"
22 #include "gallium/auxiliary/util/u_transfer.h"
23 #include "gallium/auxiliary/util/u_transfer_helper.h"
24 #include "pipe/p_context.h"
25 #include "pipe/p_defines.h"
26 #include "pipe/p_screen.h"
27 #include "pipe/p_state.h"
28 #include "util/bitscan.h"
29 #include "util/format/u_format.h"
30 #include "util/format/u_formats.h"
31 #include "util/half_float.h"
32 #include "util/macros.h"
33 #include "util/simple_mtx.h"
34 #include "util/timespec.h"
35 #include "util/u_drm.h"
36 #include "util/u_gen_mipmap.h"
37 #include "util/u_helpers.h"
38 #include "util/u_inlines.h"
39 #include "util/u_memory.h"
40 #include "util/u_process.h"
41 #include "util/u_resource.h"
42 #include "util/u_screen.h"
43 #include "util/u_upload_mgr.h"
44 #include "util/xmlconfig.h"
45 #include "agx_bg_eot.h"
46 #include "agx_device.h"
47 #include "agx_disk_cache.h"
48 #include "agx_fence.h"
49 #include "agx_helpers.h"
50 #include "agx_pack.h"
51 #include "agx_public.h"
52 #include "agx_state.h"
53 #include "agx_tilebuffer.h"
54 #include "shader_enums.h"
55
56 /* Fake values, pending UAPI upstreaming */
57 #ifndef DRM_FORMAT_MOD_APPLE_TWIDDLED
58 #define DRM_FORMAT_MOD_APPLE_TWIDDLED (2)
59 #endif
60 #ifndef DRM_FORMAT_MOD_APPLE_TWIDDLED_COMPRESSED
61 #define DRM_FORMAT_MOD_APPLE_TWIDDLED_COMPRESSED (3)
62 #endif
63
64 uint64_t agx_best_modifiers[] = {
65 DRM_FORMAT_MOD_APPLE_TWIDDLED_COMPRESSED,
66 DRM_FORMAT_MOD_APPLE_TWIDDLED,
67 DRM_FORMAT_MOD_LINEAR,
68 };
69
70 /* These limits are arbitrarily chosen and subject to change as
71 * we discover more workloads with heavy shadowing.
72 *
73 * Maximum size of a shadowed object in bytes.
74 * Hint: 1024x1024xRGBA8 = 4 MiB. Go higher for compression.
75 */
76 #define MAX_SHADOW_BYTES (6 * 1024 * 1024)
77
78 /* Maximum cumulative size to shadow an object before we flush.
79 * Allows shadowing a 4MiB + meta object 8 times with the logic
80 * below (+1 shadow offset implied).
81 */
82 #define MAX_TOTAL_SHADOW_BYTES (32 * 1024 * 1024)
83
84 void agx_init_state_functions(struct pipe_context *ctx);
85
86 /*
87 * resource
88 */
89
90 static enum ail_tiling
ail_modifier_to_tiling(uint64_t modifier)91 ail_modifier_to_tiling(uint64_t modifier)
92 {
93 switch (modifier) {
94 case DRM_FORMAT_MOD_LINEAR:
95 return AIL_TILING_LINEAR;
96 case DRM_FORMAT_MOD_APPLE_TWIDDLED:
97 return AIL_TILING_TWIDDLED;
98 case DRM_FORMAT_MOD_APPLE_TWIDDLED_COMPRESSED:
99 return AIL_TILING_TWIDDLED_COMPRESSED;
100 default:
101 unreachable("Unsupported modifier");
102 }
103 }
104
105 const static char *s_tiling[] = {
106 [AIL_TILING_LINEAR] = "LINR",
107 [AIL_TILING_TWIDDLED] = "TWID",
108 [AIL_TILING_TWIDDLED_COMPRESSED] = "COMP",
109 };
110
111 #define rsrc_debug(res, ...) \
112 do { \
113 if (agx_device((res)->base.screen)->debug & AGX_DBG_RESOURCE) \
114 agx_msg(__VA_ARGS__); \
115 } while (0)
116
117 static void
agx_resource_debug(struct agx_resource * res,const char * msg)118 agx_resource_debug(struct agx_resource *res, const char *msg)
119 {
120 if (!(agx_device(res->base.screen)->debug & AGX_DBG_RESOURCE))
121 return;
122
123 int ino = -1;
124 if (res->bo->prime_fd >= 0) {
125 struct stat sb;
126 if (!fstat(res->bo->prime_fd, &sb))
127 ino = sb.st_ino;
128 }
129
130 agx_msg(
131 "%s%s %dx%dx%d %dL %d/%dM %dS M:%llx %s %s%s S:0x%llx LS:0x%llx CS:0x%llx "
132 "Base=0x%llx Size=0x%llx Meta=0x%llx/0x%llx (%s) %s%s%s%s%s%sfd:%d(%d) @ %p\n",
133 msg ?: "", util_format_short_name(res->base.format), res->base.width0,
134 res->base.height0, res->base.depth0, res->base.array_size,
135 res->base.last_level, res->layout.levels, res->layout.sample_count_sa,
136 (long long)res->modifier, s_tiling[res->layout.tiling],
137 res->layout.mipmapped_z ? "MZ " : "",
138 res->layout.page_aligned_layers ? "PL " : "",
139 (long long)res->layout.linear_stride_B,
140 (long long)res->layout.layer_stride_B,
141 (long long)res->layout.compression_layer_stride_B,
142 (long long)res->bo->va->addr, (long long)res->layout.size_B,
143 res->layout.metadata_offset_B
144 ? ((long long)res->bo->va->addr + res->layout.metadata_offset_B)
145 : 0,
146 (long long)res->layout.metadata_offset_B, res->bo->label,
147 res->bo->flags & AGX_BO_SHARED ? "SH " : "",
148 res->bo->flags & AGX_BO_LOW_VA ? "LO " : "",
149 res->bo->flags & AGX_BO_EXEC ? "EX " : "",
150 res->bo->flags & AGX_BO_WRITEBACK ? "WB " : "",
151 res->bo->flags & AGX_BO_SHAREABLE ? "SA " : "",
152 res->bo->flags & AGX_BO_READONLY ? "RO " : "", res->bo->prime_fd, ino,
153 res);
154 }
155
156 static void
agx_resource_setup(struct agx_device * dev,struct agx_resource * nresource)157 agx_resource_setup(struct agx_device *dev, struct agx_resource *nresource)
158 {
159 struct pipe_resource *templ = &nresource->base;
160
161 nresource->layout = (struct ail_layout){
162 .tiling = ail_modifier_to_tiling(nresource->modifier),
163 .mipmapped_z = templ->target == PIPE_TEXTURE_3D,
164 .format = templ->format,
165 .width_px = templ->width0,
166 .height_px = templ->height0,
167 .depth_px = templ->depth0 * templ->array_size,
168 .sample_count_sa = MAX2(templ->nr_samples, 1),
169 .levels = templ->last_level + 1,
170 .writeable_image = templ->bind & PIPE_BIND_SHADER_IMAGE,
171
172 /* Ostensibly this should be based on the bind, but Gallium bind flags are
173 * notoriously unreliable. The only cost of setting this excessively is a
174 * bit of extra memory use for layered textures, which isn't worth trying
175 * to optimize.
176 */
177 .renderable = true,
178 };
179 }
180
181 static struct pipe_resource *
agx_resource_from_handle(struct pipe_screen * pscreen,const struct pipe_resource * templat,struct winsys_handle * whandle,unsigned usage)182 agx_resource_from_handle(struct pipe_screen *pscreen,
183 const struct pipe_resource *templat,
184 struct winsys_handle *whandle, unsigned usage)
185 {
186 struct agx_device *dev = agx_device(pscreen);
187 struct agx_resource *rsc;
188 struct pipe_resource *prsc;
189
190 assert(whandle->type == WINSYS_HANDLE_TYPE_FD);
191
192 rsc = CALLOC_STRUCT(agx_resource);
193 if (!rsc)
194 return NULL;
195
196 rsc->modifier = whandle->modifier == DRM_FORMAT_MOD_INVALID
197 ? DRM_FORMAT_MOD_LINEAR
198 : whandle->modifier;
199
200 /* We need strides to be aligned. ail asserts this, but we want to fail
201 * gracefully so the app can handle the error.
202 */
203 if (rsc->modifier == DRM_FORMAT_MOD_LINEAR && (whandle->stride % 16) != 0) {
204 FREE(rsc);
205 return false;
206 }
207
208 prsc = &rsc->base;
209
210 *prsc = *templat;
211
212 pipe_reference_init(&prsc->reference, 1);
213 prsc->screen = pscreen;
214
215 rsc->bo = agx_bo_import(dev, whandle->handle);
216 /* Sometimes an import can fail e.g. on an invalid buffer fd, out of
217 * memory space to mmap it etc.
218 */
219 if (!rsc->bo) {
220 FREE(rsc);
221 return NULL;
222 }
223
224 agx_resource_setup(dev, rsc);
225
226 if (rsc->layout.tiling == AIL_TILING_LINEAR) {
227 rsc->layout.linear_stride_B = whandle->stride;
228 } else if (whandle->stride != ail_get_wsi_stride_B(&rsc->layout, 0)) {
229 FREE(rsc);
230 return NULL;
231 }
232
233 assert(whandle->offset == 0);
234
235 ail_make_miptree(&rsc->layout);
236
237 if (prsc->target == PIPE_BUFFER) {
238 assert(rsc->layout.tiling == AIL_TILING_LINEAR);
239 util_range_init(&rsc->valid_buffer_range);
240 }
241
242 agx_resource_debug(rsc, "Import: ");
243
244 return prsc;
245 }
246
247 static bool
agx_resource_get_handle(struct pipe_screen * pscreen,struct pipe_context * ctx,struct pipe_resource * pt,struct winsys_handle * handle,unsigned usage)248 agx_resource_get_handle(struct pipe_screen *pscreen, struct pipe_context *ctx,
249 struct pipe_resource *pt, struct winsys_handle *handle,
250 unsigned usage)
251 {
252 struct agx_device *dev = agx_device(pscreen);
253 struct pipe_resource *cur = pt;
254
255 /* Even though asahi doesn't support multi-planar formats, we
256 * can get here through GBM, which does. Walk the list of planes
257 * to find the right one.
258 */
259 for (int i = 0; i < handle->plane; i++) {
260 cur = cur->next;
261 if (!cur)
262 return false;
263 }
264
265 struct agx_resource *rsrc = agx_resource(cur);
266
267 if (handle->type == WINSYS_HANDLE_TYPE_KMS && dev->ro) {
268 rsrc_debug(rsrc, "Get handle: %p (KMS RO)\n", rsrc);
269
270 if (!rsrc->scanout && dev->ro && (rsrc->base.bind & PIPE_BIND_SCANOUT)) {
271 rsrc->scanout =
272 renderonly_scanout_for_resource(&rsrc->base, dev->ro, NULL);
273 }
274
275 if (!rsrc->scanout)
276 return false;
277
278 return renderonly_get_handle(rsrc->scanout, handle);
279 } else if (handle->type == WINSYS_HANDLE_TYPE_KMS) {
280 rsrc_debug(rsrc, "Get handle: %p (KMS)\n", rsrc);
281
282 handle->handle = rsrc->bo->handle;
283 } else if (handle->type == WINSYS_HANDLE_TYPE_FD) {
284 int fd = agx_bo_export(dev, rsrc->bo);
285
286 if (fd < 0)
287 return false;
288
289 handle->handle = fd;
290 if (dev->debug & AGX_DBG_RESOURCE) {
291 struct stat sb;
292 fstat(rsrc->bo->prime_fd, &sb);
293 agx_msg("Get handle: %p (FD %d/%ld)\n", rsrc, fd, (long)sb.st_ino);
294 }
295 } else {
296 /* Other handle types not supported */
297 return false;
298 }
299
300 handle->stride = ail_get_wsi_stride_B(&rsrc->layout, 0);
301 handle->size = rsrc->layout.size_B;
302 handle->offset = rsrc->layout.level_offsets_B[0];
303 handle->format = rsrc->layout.format;
304 handle->modifier = rsrc->modifier;
305
306 return true;
307 }
308
309 static bool
agx_resource_get_param(struct pipe_screen * pscreen,struct pipe_context * pctx,struct pipe_resource * prsc,unsigned plane,unsigned layer,unsigned level,enum pipe_resource_param param,unsigned usage,uint64_t * value)310 agx_resource_get_param(struct pipe_screen *pscreen, struct pipe_context *pctx,
311 struct pipe_resource *prsc, unsigned plane,
312 unsigned layer, unsigned level,
313 enum pipe_resource_param param, unsigned usage,
314 uint64_t *value)
315 {
316 struct agx_resource *rsrc = (struct agx_resource *)prsc;
317
318 switch (param) {
319 case PIPE_RESOURCE_PARAM_STRIDE:
320 *value = ail_get_wsi_stride_B(&rsrc->layout, level);
321 return true;
322 case PIPE_RESOURCE_PARAM_OFFSET:
323 *value = rsrc->layout.level_offsets_B[level];
324 return true;
325 case PIPE_RESOURCE_PARAM_MODIFIER:
326 *value = rsrc->modifier;
327 return true;
328 case PIPE_RESOURCE_PARAM_NPLANES:
329 /* We don't support multi-planar formats, but we should still handle
330 * this case for GBM shared resources.
331 */
332 *value = util_resource_num(prsc);
333 return true;
334 default:
335 return false;
336 }
337 }
338
339 static bool
agx_is_2d(enum pipe_texture_target target)340 agx_is_2d(enum pipe_texture_target target)
341 {
342 return (target == PIPE_TEXTURE_2D || target == PIPE_TEXTURE_RECT);
343 }
344
345 static bool
agx_linear_allowed(const struct agx_resource * pres)346 agx_linear_allowed(const struct agx_resource *pres)
347 {
348 /* Mipmapping not allowed with linear */
349 if (pres->base.last_level != 0)
350 return false;
351
352 /* Depth/stencil buffers must not be linear */
353 if (pres->base.bind & PIPE_BIND_DEPTH_STENCIL)
354 return false;
355
356 /* Multisampling not allowed with linear */
357 if (pres->base.nr_samples > 1)
358 return false;
359
360 /* Block compression not allowed with linear */
361 if (util_format_is_compressed(pres->base.format))
362 return false;
363
364 switch (pres->base.target) {
365 /* Buffers are always linear, even with image atomics */
366 case PIPE_BUFFER:
367
368 /* Linear textures require specifying their strides explicitly, which only
369 * works for 2D textures. Rectangle textures are a special case of 2D.
370 *
371 * 1D textures only exist in GLES and are lowered to 2D to bypass hardware
372 * limitations.
373 *
374 * However, we don't want to support this case in the image atomic
375 * implementation, so linear shader images are specially forbidden.
376 */
377 case PIPE_TEXTURE_1D:
378 case PIPE_TEXTURE_1D_ARRAY:
379 case PIPE_TEXTURE_2D:
380 case PIPE_TEXTURE_2D_ARRAY:
381 case PIPE_TEXTURE_RECT:
382 if (pres->base.bind & PIPE_BIND_SHADER_IMAGE)
383 return false;
384
385 break;
386
387 /* No other texture type can specify a stride */
388 default:
389 return false;
390 }
391
392 return true;
393 }
394
395 static bool
agx_twiddled_allowed(const struct agx_resource * pres)396 agx_twiddled_allowed(const struct agx_resource *pres)
397 {
398 /* Certain binds force linear */
399 if (pres->base.bind & (PIPE_BIND_DISPLAY_TARGET | PIPE_BIND_LINEAR))
400 return false;
401
402 /* Buffers must be linear */
403 if (pres->base.target == PIPE_BUFFER)
404 return false;
405
406 /* Anything else may be twiddled */
407 return true;
408 }
409
410 static bool
agx_compression_allowed(const struct agx_resource * pres)411 agx_compression_allowed(const struct agx_resource *pres)
412 {
413 /* Allow disabling compression for debugging */
414 if (agx_device(pres->base.screen)->debug & AGX_DBG_NOCOMPRESS) {
415 rsrc_debug(pres, "No compression: disabled\n");
416 return false;
417 }
418
419 /* Limited to renderable */
420 if (pres->base.bind &
421 ~(PIPE_BIND_SAMPLER_VIEW | PIPE_BIND_RENDER_TARGET |
422 PIPE_BIND_DEPTH_STENCIL | PIPE_BIND_SHARED | PIPE_BIND_SCANOUT)) {
423 rsrc_debug(pres, "No compression: not renderable\n");
424 return false;
425 }
426
427 if (!ail_can_compress(pres->base.format, pres->base.width0,
428 pres->base.height0, MAX2(pres->base.nr_samples, 1))) {
429 rsrc_debug(pres, "No compression: incompatible layout\n");
430 return false;
431 }
432
433 if (pres->base.format == PIPE_FORMAT_R9G9B9E5_FLOAT) {
434 rsrc_debug(pres, "No compression: RGB9E5 copies need work\n");
435 return false;
436 }
437
438 return true;
439 }
440
441 static uint64_t
agx_select_modifier_from_list(const struct agx_resource * pres,const uint64_t * modifiers,int count)442 agx_select_modifier_from_list(const struct agx_resource *pres,
443 const uint64_t *modifiers, int count)
444 {
445 if (agx_twiddled_allowed(pres) && agx_compression_allowed(pres) &&
446 drm_find_modifier(DRM_FORMAT_MOD_APPLE_TWIDDLED_COMPRESSED, modifiers,
447 count))
448 return DRM_FORMAT_MOD_APPLE_TWIDDLED_COMPRESSED;
449
450 if (agx_twiddled_allowed(pres) &&
451 drm_find_modifier(DRM_FORMAT_MOD_APPLE_TWIDDLED, modifiers, count))
452 return DRM_FORMAT_MOD_APPLE_TWIDDLED;
453
454 if (agx_linear_allowed(pres) &&
455 drm_find_modifier(DRM_FORMAT_MOD_LINEAR, modifiers, count))
456 return DRM_FORMAT_MOD_LINEAR;
457
458 /* We didn't find anything */
459 return DRM_FORMAT_MOD_INVALID;
460 }
461
462 static uint64_t
agx_select_best_modifier(const struct agx_resource * pres)463 agx_select_best_modifier(const struct agx_resource *pres)
464 {
465 /* Prefer linear for staging resources, which should be as fast as possible
466 * to write from the CPU.
467 */
468 if (agx_linear_allowed(pres) && pres->base.usage == PIPE_USAGE_STAGING)
469 return DRM_FORMAT_MOD_LINEAR;
470
471 /* For SCANOUT or SHARED resources with no explicit modifier selection, force
472 * linear since we cannot expect consumers to correctly pass through the
473 * modifier (unless linear is not allowed at all).
474 */
475 if (agx_linear_allowed(pres) &&
476 pres->base.bind & (PIPE_BIND_SCANOUT | PIPE_BIND_SHARED)) {
477 return DRM_FORMAT_MOD_LINEAR;
478 }
479
480 if (agx_twiddled_allowed(pres)) {
481 if (agx_compression_allowed(pres))
482 return DRM_FORMAT_MOD_APPLE_TWIDDLED_COMPRESSED;
483 else
484 return DRM_FORMAT_MOD_APPLE_TWIDDLED;
485 }
486
487 if (agx_linear_allowed(pres))
488 return DRM_FORMAT_MOD_LINEAR;
489 else
490 return DRM_FORMAT_MOD_INVALID;
491 }
492
493 static struct pipe_resource *
agx_resource_create_with_modifiers(struct pipe_screen * screen,const struct pipe_resource * templ,const uint64_t * modifiers,int count)494 agx_resource_create_with_modifiers(struct pipe_screen *screen,
495 const struct pipe_resource *templ,
496 const uint64_t *modifiers, int count)
497 {
498 struct agx_device *dev = agx_device(screen);
499 struct agx_resource *nresource;
500
501 nresource = CALLOC_STRUCT(agx_resource);
502 if (!nresource)
503 return NULL;
504
505 nresource->base = *templ;
506 nresource->base.screen = screen;
507
508 if (modifiers) {
509 nresource->modifier =
510 agx_select_modifier_from_list(nresource, modifiers, count);
511 } else {
512 nresource->modifier = agx_select_best_modifier(nresource);
513 }
514
515 /* There may not be a matching modifier, bail if so */
516 if (nresource->modifier == DRM_FORMAT_MOD_INVALID) {
517 free(nresource);
518 return NULL;
519 }
520
521 /* If there's only 1 layer and there's no compression, there's no harm in
522 * inferring the shader image flag. Do so to avoid reallocation in case the
523 * resource is later used as an image.
524 */
525 if (nresource->modifier != DRM_FORMAT_MOD_APPLE_TWIDDLED_COMPRESSED &&
526 templ->depth0 == 1) {
527
528 nresource->base.bind |= PIPE_BIND_SHADER_IMAGE;
529 }
530
531 nresource->mipmapped = (templ->last_level > 0);
532
533 assert(templ->format != PIPE_FORMAT_Z24X8_UNORM &&
534 templ->format != PIPE_FORMAT_Z24_UNORM_S8_UINT &&
535 "u_transfer_helper should have lowered");
536
537 agx_resource_setup(dev, nresource);
538
539 pipe_reference_init(&nresource->base.reference, 1);
540
541 ail_make_miptree(&nresource->layout);
542
543 /* Fail Piglit's obnoxious allocations */
544 if (nresource->layout.size_B >= (1ull << 32)) {
545 free(nresource);
546 return NULL;
547 }
548
549 if (templ->target == PIPE_BUFFER) {
550 assert(nresource->layout.tiling == AIL_TILING_LINEAR);
551 util_range_init(&nresource->valid_buffer_range);
552 }
553
554 /* Guess a label based on the bind */
555 unsigned bind = templ->bind;
556
557 const char *label = (bind & PIPE_BIND_INDEX_BUFFER) ? "Index buffer"
558 : (bind & PIPE_BIND_SCANOUT) ? "Scanout"
559 : (bind & PIPE_BIND_DISPLAY_TARGET) ? "Display target"
560 : (bind & PIPE_BIND_SHARED) ? "Shared resource"
561 : (bind & PIPE_BIND_RENDER_TARGET) ? "Render target"
562 : (bind & PIPE_BIND_DEPTH_STENCIL)
563 ? "Depth/stencil buffer"
564 : (bind & PIPE_BIND_SAMPLER_VIEW) ? "Texture"
565 : (bind & PIPE_BIND_VERTEX_BUFFER) ? "Vertex buffer"
566 : (bind & PIPE_BIND_CONSTANT_BUFFER) ? "Constant buffer"
567 : (bind & PIPE_BIND_GLOBAL) ? "Global memory"
568 : (bind & PIPE_BIND_SHADER_BUFFER) ? "Shader buffer"
569 : (bind & PIPE_BIND_SHADER_IMAGE) ? "Shader image"
570 : "Other resource";
571
572 uint32_t create_flags = 0;
573
574 /* Default to write-combine resources, but use writeback if that is expected
575 * to be beneficial.
576 */
577 if (nresource->base.usage == PIPE_USAGE_STAGING ||
578 (nresource->base.flags & PIPE_RESOURCE_FLAG_MAP_COHERENT)) {
579
580 create_flags |= AGX_BO_WRITEBACK;
581 }
582
583 /* Allow disabling write-combine to debug performance issues */
584 if (dev->debug & AGX_DBG_NOWC) {
585 create_flags |= AGX_BO_WRITEBACK;
586 }
587
588 /* Create buffers that might be shared with the SHAREABLE flag */
589 if (bind & (PIPE_BIND_SCANOUT | PIPE_BIND_DISPLAY_TARGET | PIPE_BIND_SHARED))
590 create_flags |= AGX_BO_SHAREABLE;
591
592 nresource->bo =
593 agx_bo_create(dev, nresource->layout.size_B, 0, create_flags, label);
594
595 if (!nresource->bo) {
596 FREE(nresource);
597 return NULL;
598 }
599
600 agx_resource_debug(nresource, "New: ");
601 return &nresource->base;
602 }
603
604 static struct pipe_resource *
agx_resource_create(struct pipe_screen * screen,const struct pipe_resource * templ)605 agx_resource_create(struct pipe_screen *screen,
606 const struct pipe_resource *templ)
607 {
608 return agx_resource_create_with_modifiers(screen, templ, NULL, 0);
609 }
610
611 static void
agx_resource_destroy(struct pipe_screen * screen,struct pipe_resource * prsrc)612 agx_resource_destroy(struct pipe_screen *screen, struct pipe_resource *prsrc)
613 {
614 struct agx_resource *rsrc = (struct agx_resource *)prsrc;
615 struct agx_screen *agx_screen = (struct agx_screen *)screen;
616
617 agx_resource_debug(rsrc, "Destroy: ");
618
619 if (prsrc->target == PIPE_BUFFER)
620 util_range_destroy(&rsrc->valid_buffer_range);
621
622 if (rsrc->scanout)
623 renderonly_scanout_destroy(rsrc->scanout, agx_screen->dev.ro);
624
625 agx_bo_unreference(&agx_screen->dev, rsrc->bo);
626 FREE(rsrc);
627 }
628
629 void
agx_batch_track_image(struct agx_batch * batch,struct pipe_image_view * image)630 agx_batch_track_image(struct agx_batch *batch, struct pipe_image_view *image)
631 {
632 struct agx_resource *rsrc = agx_resource(image->resource);
633
634 if (image->shader_access & PIPE_IMAGE_ACCESS_WRITE) {
635 batch->incoherent_writes = true;
636
637 if (rsrc->base.target == PIPE_BUFFER) {
638 agx_batch_writes_range(batch, rsrc, image->u.buf.offset,
639 image->u.buf.size);
640 } else {
641 agx_batch_writes(batch, rsrc, image->u.tex.level);
642 }
643 } else {
644 agx_batch_reads(batch, rsrc);
645 }
646 }
647
648 /*
649 * transfer
650 */
651
652 static void
agx_transfer_flush_region(struct pipe_context * pipe,struct pipe_transfer * transfer,const struct pipe_box * box)653 agx_transfer_flush_region(struct pipe_context *pipe,
654 struct pipe_transfer *transfer,
655 const struct pipe_box *box)
656 {
657 }
658
659 /* Reallocate the backing buffer of a resource, returns true if successful */
660 static bool
agx_shadow(struct agx_context * ctx,struct agx_resource * rsrc,bool needs_copy)661 agx_shadow(struct agx_context *ctx, struct agx_resource *rsrc, bool needs_copy)
662 {
663 struct agx_device *dev = agx_device(ctx->base.screen);
664 struct agx_bo *old = rsrc->bo;
665 size_t size = rsrc->layout.size_B;
666 unsigned flags = old->flags;
667
668 if (dev->debug & AGX_DBG_NOSHADOW)
669 return false;
670
671 /* If a resource is (or could be) shared, shadowing would desync across
672 * processes. (It's also not what this path is for.)
673 */
674 if (flags & (AGX_BO_SHARED | AGX_BO_SHAREABLE))
675 return false;
676
677 /* Do not shadow resources that are too large */
678 if (size > MAX_SHADOW_BYTES && needs_copy)
679 return false;
680
681 /* Do not shadow resources too much */
682 if (rsrc->shadowed_bytes >= MAX_TOTAL_SHADOW_BYTES && needs_copy)
683 return false;
684
685 rsrc->shadowed_bytes += size;
686
687 /* If we need to copy, we reallocate the resource with cached-coherent
688 * memory. This is a heuristic: it assumes that if the app needs a shadows
689 * (with a copy) now, it will again need to shadow-and-copy the same resource
690 * in the future. This accelerates the later copies, since otherwise the copy
691 * involves reading uncached memory.
692 */
693 if (needs_copy)
694 flags |= AGX_BO_WRITEBACK;
695
696 struct agx_bo *new_ = agx_bo_create(dev, size, 0, flags, old->label);
697
698 /* If allocation failed, we can fallback on a flush gracefully*/
699 if (new_ == NULL)
700 return false;
701
702 if (needs_copy) {
703 perf_debug_ctx(ctx, "Shadowing %zu bytes on the CPU (%s)", size,
704 (old->flags & AGX_BO_WRITEBACK) ? "cached" : "uncached");
705 agx_resource_debug(rsrc, "Shadowed: ");
706
707 memcpy(new_->map, old->map, size);
708 }
709
710 /* Swap the pointers, dropping a reference */
711 agx_bo_unreference(dev, rsrc->bo);
712 rsrc->bo = new_;
713
714 /* Reemit descriptors using this resource */
715 agx_dirty_all(ctx);
716 return true;
717 }
718
719 /*
720 * Perform the required synchronization before a transfer_map operation can
721 * complete. This may require syncing batches.
722 */
723 static void
agx_prepare_for_map(struct agx_context * ctx,struct agx_resource * rsrc,unsigned level,unsigned usage,const struct pipe_box * box,bool staging_blit)724 agx_prepare_for_map(struct agx_context *ctx, struct agx_resource *rsrc,
725 unsigned level,
726 unsigned usage, /* a combination of PIPE_MAP_x */
727 const struct pipe_box *box, bool staging_blit)
728 {
729 /* GPU access does not require explicit syncs, as the batch tracking logic
730 * will ensure correct ordering automatically.
731 */
732 if (staging_blit)
733 return;
734
735 /* If the level has not been written, we may freely do CPU access (writes),
736 * even if other levels are being written by the GPU. This lets us write some
737 * mip levels on the CPU and some on the GPU, without stalling.
738 */
739 if (!agx_resource_valid(rsrc, level))
740 return;
741
742 /* Upgrade DISCARD_RANGE to WHOLE_RESOURCE if the whole resource is
743 * being mapped.
744 */
745 if ((usage & PIPE_MAP_DISCARD_RANGE) &&
746 !(rsrc->base.flags & PIPE_RESOURCE_FLAG_MAP_PERSISTENT) &&
747 rsrc->base.last_level == 0 &&
748 util_texrange_covers_whole_level(&rsrc->base, 0, box->x, box->y, box->z,
749 box->width, box->height, box->depth)) {
750
751 usage |= PIPE_MAP_DISCARD_WHOLE_RESOURCE;
752 }
753
754 /* Shadowing doesn't work separate stencil or shared resources */
755 if (rsrc->separate_stencil || (rsrc->bo->flags & AGX_BO_SHARED))
756 usage &= ~PIPE_MAP_DISCARD_WHOLE_RESOURCE;
757
758 /* If the access is unsynchronized, there's nothing to do */
759 if (usage & PIPE_MAP_UNSYNCHRONIZED)
760 return;
761
762 /* If the range being accessed is uninitialized, we do not need to sync. */
763 if (rsrc->base.target == PIPE_BUFFER && !(rsrc->bo->flags & AGX_BO_SHARED) &&
764 !util_ranges_intersect(&rsrc->valid_buffer_range, box->x,
765 box->x + box->width))
766 return;
767
768 /* Everything after this needs the context, which is not safe for
769 * unsynchronized transfers when we claim
770 * PIPE_CAP_MAP_UNSYNCHRONIZED_THREAD_SAFE.
771 */
772 assert(!(usage & PIPE_MAP_UNSYNCHRONIZED));
773
774 /* Reading or writing from the CPU requires syncing writers. */
775 agx_sync_writer(ctx, rsrc, "Unsynchronized CPU transfer");
776
777 /* Additionally, writing needs readers synced. */
778 if (!(usage & PIPE_MAP_WRITE))
779 return;
780
781 /* If there are no readers, we're done. We check at the start to
782 * avoid expensive shadowing paths or duplicated checks in this hapyp path.
783 */
784 if (!agx_any_batch_uses_resource(ctx, rsrc)) {
785 rsrc->shadowed_bytes = 0;
786 return;
787 }
788
789 /* There are readers. Try to invalidate the resource to avoid a sync */
790 if ((usage & PIPE_MAP_DISCARD_WHOLE_RESOURCE) &&
791 agx_shadow(ctx, rsrc, false))
792 return;
793
794 /* Or try to shadow it */
795 if (!(rsrc->base.flags & PIPE_RESOURCE_FLAG_MAP_PERSISTENT) &&
796 agx_shadow(ctx, rsrc, true))
797 return;
798
799 /* Otherwise, we need to sync */
800 agx_sync_readers(ctx, rsrc, "Unsynchronized write");
801
802 rsrc->shadowed_bytes = 0;
803 }
804
805 /*
806 * Return a colour-renderable format compatible with a depth/stencil format, to
807 * be used as an interchange format for depth/stencil blits. For
808 * non-depth/stencil formats, returns the format itself, except when that format
809 * would not round-trip so we return a compatible roundtrippable format.
810 */
811 static enum pipe_format
agx_staging_format(enum pipe_format format)812 agx_staging_format(enum pipe_format format)
813 {
814 switch (format) {
815 case PIPE_FORMAT_Z16_UNORM:
816 return PIPE_FORMAT_R16_UNORM;
817 case PIPE_FORMAT_Z32_FLOAT:
818 return PIPE_FORMAT_R32_FLOAT;
819 case PIPE_FORMAT_S8_UINT:
820 return PIPE_FORMAT_R8_UINT;
821 default:
822 /* Z24 and combined Z/S are lowered to one of the above formats by
823 * u_transfer_helper. The caller needs to pass in the rsrc->layout.format
824 * and not the rsrc->base.format to get the lowered physical format
825 * (rather than the API logical format).
826 */
827 assert(!util_format_is_depth_or_stencil(format) &&
828 "no other depth/stencil formats allowed for staging");
829
830 /* However, snorm does not round trip, so don't use that for staging */
831 return util_format_snorm_to_sint(format);
832 }
833 }
834
835 /* Most of the time we can do CPU-side transfers, but sometimes we need to use
836 * the 3D pipe for this. Let's wrap u_blitter to blit to/from staging textures.
837 * Code adapted from panfrost */
838
839 static struct agx_resource *
agx_alloc_staging(struct pipe_screen * screen,struct agx_resource * rsc,unsigned level,const struct pipe_box * box)840 agx_alloc_staging(struct pipe_screen *screen, struct agx_resource *rsc,
841 unsigned level, const struct pipe_box *box)
842 {
843 struct pipe_resource tmpl = rsc->base;
844
845 tmpl.usage = PIPE_USAGE_STAGING;
846 tmpl.width0 = box->width;
847 tmpl.height0 = box->height;
848 tmpl.depth0 = 1;
849
850 /* We need a linear staging resource. We have linear 2D arrays, but not
851 * linear 3D or cube textures. So switch to 2D arrays if needed.
852 */
853 switch (tmpl.target) {
854 case PIPE_TEXTURE_2D_ARRAY:
855 case PIPE_TEXTURE_CUBE:
856 case PIPE_TEXTURE_CUBE_ARRAY:
857 case PIPE_TEXTURE_3D:
858 tmpl.target = PIPE_TEXTURE_2D_ARRAY;
859 tmpl.array_size = box->depth;
860 break;
861 default:
862 assert(tmpl.array_size == 1);
863 assert(box->depth == 1);
864 break;
865 }
866
867 tmpl.last_level = 0;
868
869 /* Linear is incompatible with depth/stencil, so we convert */
870 tmpl.format = agx_staging_format(rsc->layout.format);
871 tmpl.bind =
872 PIPE_BIND_LINEAR | PIPE_BIND_RENDER_TARGET | PIPE_BIND_SAMPLER_VIEW;
873
874 struct pipe_resource *pstaging = screen->resource_create(screen, &tmpl);
875 if (!pstaging)
876 return NULL;
877
878 return agx_resource(pstaging);
879 }
880
881 static void
agx_blit_from_staging(struct pipe_context * pctx,struct agx_transfer * trans)882 agx_blit_from_staging(struct pipe_context *pctx, struct agx_transfer *trans)
883 {
884 struct pipe_resource *dst = trans->base.resource;
885 struct pipe_blit_info blit = {0};
886
887 blit.dst.resource = dst;
888 blit.dst.format = agx_staging_format(agx_resource(dst)->layout.format);
889 blit.dst.level = trans->base.level;
890 blit.dst.box = trans->base.box;
891 blit.src.resource = trans->staging.rsrc;
892 blit.src.format = blit.dst.format;
893 blit.src.level = 0;
894 blit.src.box = trans->staging.box;
895 blit.mask = util_format_get_mask(blit.src.format);
896 blit.filter = PIPE_TEX_FILTER_NEAREST;
897
898 agx_blit(pctx, &blit);
899 }
900
901 static void
agx_blit_to_staging(struct pipe_context * pctx,struct agx_transfer * trans)902 agx_blit_to_staging(struct pipe_context *pctx, struct agx_transfer *trans)
903 {
904 struct pipe_resource *src = trans->base.resource;
905 struct pipe_blit_info blit = {0};
906
907 blit.src.resource = src;
908 blit.src.format = agx_staging_format(agx_resource(src)->layout.format);
909 blit.src.level = trans->base.level;
910 blit.src.box = trans->base.box;
911 blit.dst.resource = trans->staging.rsrc;
912 blit.dst.format = blit.src.format;
913 blit.dst.level = 0;
914 blit.dst.box = trans->staging.box;
915 blit.mask = util_format_get_mask(blit.dst.format);
916 blit.filter = PIPE_TEX_FILTER_NEAREST;
917
918 agx_blit(pctx, &blit);
919 }
920
921 static void *
agx_transfer_map(struct pipe_context * pctx,struct pipe_resource * resource,unsigned level,unsigned usage,const struct pipe_box * box,struct pipe_transfer ** out_transfer)922 agx_transfer_map(struct pipe_context *pctx, struct pipe_resource *resource,
923 unsigned level,
924 unsigned usage, /* a combination of PIPE_MAP_x */
925 const struct pipe_box *box,
926 struct pipe_transfer **out_transfer)
927 {
928 struct agx_context *ctx = agx_context(pctx);
929 struct agx_resource *rsrc = agx_resource(resource);
930 struct agx_device *dev = agx_device(ctx->base.screen);
931
932 /* Can't map tiled/compressed directly */
933 if ((usage & PIPE_MAP_DIRECTLY) && rsrc->modifier != DRM_FORMAT_MOD_LINEAR)
934 return NULL;
935
936 /* Can't transfer out of bounds mip levels */
937 if (level >= rsrc->layout.levels)
938 return NULL;
939
940 /* For compression, we use a staging blit as we do not implement AGX
941 * compression in software. In some cases, we could use this path for
942 * twiddled too, but we don't have a use case for that yet.
943 */
944 bool staging_blit = ail_is_level_compressed(&rsrc->layout, level);
945
946 agx_prepare_for_map(ctx, rsrc, level, usage, box, staging_blit);
947
948 /* Track the written buffer range */
949 if (resource->target == PIPE_BUFFER) {
950 /* Note the ordering: DISCARD|WRITE is valid, so clear before adding. */
951 if (usage & PIPE_MAP_DISCARD_WHOLE_RESOURCE)
952 util_range_set_empty(&rsrc->valid_buffer_range);
953 if (usage & PIPE_MAP_WRITE) {
954 util_range_add(resource, &rsrc->valid_buffer_range, box->x,
955 box->x + box->width);
956 }
957 }
958
959 struct agx_transfer *transfer = CALLOC_STRUCT(agx_transfer);
960 transfer->base.level = level;
961 transfer->base.usage = usage;
962 transfer->base.box = *box;
963
964 pipe_resource_reference(&transfer->base.resource, resource);
965 *out_transfer = &transfer->base;
966
967 if (staging_blit) {
968 /* Should never happen for buffers, and it's not safe */
969 assert(resource->target != PIPE_BUFFER);
970
971 struct agx_resource *staging =
972 agx_alloc_staging(pctx->screen, rsrc, level, box);
973 assert(staging);
974
975 /* Staging resources have one LOD: level 0. Query the strides
976 * on this LOD.
977 */
978 transfer->base.stride = ail_get_linear_stride_B(&staging->layout, 0);
979 transfer->base.layer_stride = staging->layout.layer_stride_B;
980 transfer->staging.rsrc = &staging->base;
981
982 transfer->staging.box = *box;
983 transfer->staging.box.x = 0;
984 transfer->staging.box.y = 0;
985 transfer->staging.box.z = 0;
986
987 assert(transfer->staging.rsrc != NULL);
988
989 if ((usage & PIPE_MAP_READ) && agx_resource_valid(rsrc, level)) {
990 agx_blit_to_staging(pctx, transfer);
991 agx_sync_writer(ctx, staging, "GPU read staging blit");
992 }
993
994 dev->ops.bo_mmap(dev, staging->bo);
995 return staging->bo->map;
996 }
997
998 dev->ops.bo_mmap(dev, rsrc->bo);
999
1000 if (ail_is_level_twiddled_uncompressed(&rsrc->layout, level)) {
1001 /* Should never happen for buffers, and it's not safe */
1002 assert(resource->target != PIPE_BUFFER);
1003
1004 transfer->base.stride =
1005 util_format_get_stride(rsrc->layout.format, box->width);
1006
1007 transfer->base.layer_stride = util_format_get_2d_size(
1008 rsrc->layout.format, transfer->base.stride, box->height);
1009
1010 transfer->map = calloc(transfer->base.layer_stride, box->depth);
1011
1012 if ((usage & PIPE_MAP_READ) && agx_resource_valid(rsrc, level)) {
1013 for (unsigned z = 0; z < box->depth; ++z) {
1014 uint8_t *map = agx_map_texture_cpu(rsrc, level, box->z + z);
1015 uint8_t *dst =
1016 (uint8_t *)transfer->map + transfer->base.layer_stride * z;
1017
1018 ail_detile(map, dst, &rsrc->layout, level, transfer->base.stride,
1019 box->x, box->y, box->width, box->height);
1020 }
1021 }
1022
1023 return transfer->map;
1024 } else {
1025 assert(rsrc->modifier == DRM_FORMAT_MOD_LINEAR);
1026
1027 transfer->base.stride = ail_get_linear_stride_B(&rsrc->layout, level);
1028 transfer->base.layer_stride = rsrc->layout.layer_stride_B;
1029
1030 /* Be conservative for direct writes */
1031 if ((usage & PIPE_MAP_WRITE) &&
1032 (usage &
1033 (PIPE_MAP_DIRECTLY | PIPE_MAP_PERSISTENT | PIPE_MAP_COHERENT))) {
1034 BITSET_SET(rsrc->data_valid, level);
1035 }
1036
1037 uint32_t offset =
1038 ail_get_linear_pixel_B(&rsrc->layout, level, box->x, box->y, box->z);
1039
1040 return ((uint8_t *)rsrc->bo->map) + offset;
1041 }
1042 }
1043
1044 static void
agx_transfer_unmap(struct pipe_context * pctx,struct pipe_transfer * transfer)1045 agx_transfer_unmap(struct pipe_context *pctx, struct pipe_transfer *transfer)
1046 {
1047 /* Gallium expects writeback here, so we tile */
1048
1049 struct agx_transfer *trans = agx_transfer(transfer);
1050 struct pipe_resource *prsrc = transfer->resource;
1051 struct agx_resource *rsrc = (struct agx_resource *)prsrc;
1052
1053 if (trans->staging.rsrc && (transfer->usage & PIPE_MAP_WRITE)) {
1054 assert(prsrc->target != PIPE_BUFFER);
1055 agx_blit_from_staging(pctx, trans);
1056 agx_flush_readers(agx_context(pctx), agx_resource(trans->staging.rsrc),
1057 "GPU write staging blit");
1058 } else if (trans->map && (transfer->usage & PIPE_MAP_WRITE)) {
1059 assert(
1060 ail_is_level_twiddled_uncompressed(&rsrc->layout, transfer->level));
1061
1062 for (unsigned z = 0; z < transfer->box.depth; ++z) {
1063 uint8_t *map =
1064 agx_map_texture_cpu(rsrc, transfer->level, transfer->box.z + z);
1065 uint8_t *src = (uint8_t *)trans->map + transfer->layer_stride * z;
1066
1067 ail_tile(map, src, &rsrc->layout, transfer->level, transfer->stride,
1068 transfer->box.x, transfer->box.y, transfer->box.width,
1069 transfer->box.height);
1070 }
1071 }
1072
1073 /* The level we wrote is now initialized. We do this at the end so
1074 * blit_from_staging can avoid reloading existing contents.
1075 */
1076 if (transfer->usage & PIPE_MAP_WRITE)
1077 BITSET_SET(rsrc->data_valid, transfer->level);
1078
1079 /* Free the transfer */
1080 free(trans->map);
1081 pipe_resource_reference(&trans->staging.rsrc, NULL);
1082 pipe_resource_reference(&transfer->resource, NULL);
1083 FREE(transfer);
1084 }
1085
1086 /*
1087 * clear/copy
1088 */
1089 static void
agx_clear(struct pipe_context * pctx,unsigned buffers,const struct pipe_scissor_state * scissor_state,const union pipe_color_union * color,double depth,unsigned stencil)1090 agx_clear(struct pipe_context *pctx, unsigned buffers,
1091 const struct pipe_scissor_state *scissor_state,
1092 const union pipe_color_union *color, double depth, unsigned stencil)
1093 {
1094 struct agx_context *ctx = agx_context(pctx);
1095 struct agx_batch *batch = agx_get_batch(ctx);
1096
1097 if (unlikely(!agx_render_condition_check(ctx)))
1098 return;
1099
1100 unsigned fastclear = buffers & ~(batch->draw | batch->load);
1101 unsigned slowclear = buffers & ~fastclear;
1102
1103 assert(scissor_state == NULL && "we don't support PIPE_CAP_CLEAR_SCISSORED");
1104
1105 /* Fast clears configure the batch */
1106 for (unsigned rt = 0; rt < PIPE_MAX_COLOR_BUFS; ++rt) {
1107 if (!(fastclear & (PIPE_CLEAR_COLOR0 << rt)))
1108 continue;
1109
1110 static_assert(sizeof(color->f) == 16, "mismatched structure");
1111
1112 /* Clear colour must be clamped to properly handle signed ints. */
1113 union pipe_color_union clamped =
1114 util_clamp_color(batch->key.cbufs[rt]->format, color);
1115
1116 batch->uploaded_clear_color[rt] = agx_pool_upload_aligned(
1117 &batch->pool, clamped.f, sizeof(clamped.f), 16);
1118 }
1119
1120 if (fastclear & PIPE_CLEAR_DEPTH)
1121 batch->clear_depth = depth;
1122
1123 if (fastclear & PIPE_CLEAR_STENCIL)
1124 batch->clear_stencil = stencil;
1125
1126 /* Slow clears draw a fullscreen rectangle */
1127 if (slowclear) {
1128 agx_blitter_save(ctx, ctx->blitter, false /* render cond */);
1129 util_blitter_clear(
1130 ctx->blitter, ctx->framebuffer.width, ctx->framebuffer.height,
1131 util_framebuffer_get_num_layers(&ctx->framebuffer), slowclear, color,
1132 depth, stencil,
1133 util_framebuffer_get_num_samples(&ctx->framebuffer) > 1);
1134 }
1135
1136 if (fastclear)
1137 agx_batch_init_state(batch);
1138
1139 batch->clear |= fastclear;
1140 batch->resolve |= buffers;
1141 assert((batch->draw & slowclear) == slowclear);
1142 }
1143
1144 static void
transition_resource(struct pipe_context * pctx,struct agx_resource * rsrc,struct pipe_resource * templ)1145 transition_resource(struct pipe_context *pctx, struct agx_resource *rsrc,
1146 struct pipe_resource *templ)
1147 {
1148 struct agx_resource *new_res =
1149 agx_resource(pctx->screen->resource_create(pctx->screen, templ));
1150
1151 assert(new_res);
1152 assert(!(rsrc->base.bind & PIPE_BIND_SHARED) && "cannot swap BOs if shared");
1153
1154 int level;
1155 BITSET_FOREACH_SET(level, rsrc->data_valid, PIPE_MAX_TEXTURE_LEVELS) {
1156 /* Copy each valid level */
1157 struct pipe_box box;
1158 u_box_3d(0, 0, 0, u_minify(rsrc->layout.width_px, level),
1159 u_minify(rsrc->layout.height_px, level),
1160 util_num_layers(&rsrc->base, level), &box);
1161
1162 agx_resource_copy_region(pctx, &new_res->base, level, 0, 0, 0,
1163 &rsrc->base, level, &box);
1164 }
1165
1166 /* Flush the blits out, to make sure the old resource is no longer used */
1167 agx_flush_writer(agx_context(pctx), new_res, "flush_resource");
1168
1169 /* Copy the bind flags and swap the BOs */
1170 struct agx_bo *old = rsrc->bo;
1171 rsrc->base.bind = new_res->base.bind;
1172 rsrc->layout = new_res->layout;
1173 rsrc->modifier = new_res->modifier;
1174 rsrc->bo = new_res->bo;
1175 new_res->bo = old;
1176
1177 /* Free the new resource, which now owns the old BO */
1178 pipe_resource_reference((struct pipe_resource **)&new_res, NULL);
1179 }
1180
1181 void
agx_decompress(struct agx_context * ctx,struct agx_resource * rsrc,const char * reason)1182 agx_decompress(struct agx_context *ctx, struct agx_resource *rsrc,
1183 const char *reason)
1184 {
1185 if (rsrc->layout.tiling == AIL_TILING_TWIDDLED_COMPRESSED) {
1186 perf_debug_ctx(ctx, "Decompressing resource due to %s", reason);
1187 } else if (!rsrc->layout.writeable_image) {
1188 perf_debug_ctx(ctx, "Reallocating image due to %s", reason);
1189 }
1190
1191 struct pipe_resource templ = rsrc->base;
1192 assert(!(templ.bind & PIPE_BIND_SHADER_IMAGE) && "currently compressed");
1193 templ.bind |= PIPE_BIND_SHADER_IMAGE /* forces off compression */;
1194 transition_resource(&ctx->base, rsrc, &templ);
1195 }
1196
1197 static void
agx_flush_resource(struct pipe_context * pctx,struct pipe_resource * pres)1198 agx_flush_resource(struct pipe_context *pctx, struct pipe_resource *pres)
1199 {
1200 struct agx_resource *rsrc = agx_resource(pres);
1201
1202 /* flush_resource is used to prepare resources for sharing, so if this is not
1203 * already a shareabe resource, make it so
1204 */
1205 struct agx_bo *old = rsrc->bo;
1206 if (!(old->flags & AGX_BO_SHAREABLE)) {
1207 assert(rsrc->layout.levels == 1 &&
1208 "Shared resources must not be mipmapped");
1209 assert(rsrc->layout.sample_count_sa == 1 &&
1210 "Shared resources must not be multisampled");
1211 assert(rsrc->bo);
1212 assert(!(pres->bind & PIPE_BIND_SHARED));
1213
1214 struct pipe_resource templ = *pres;
1215 templ.bind |= PIPE_BIND_SHARED;
1216 transition_resource(pctx, rsrc, &templ);
1217 } else {
1218 /* Otherwise just claim it's already shared */
1219 pres->bind |= PIPE_BIND_SHARED;
1220 agx_flush_writer(agx_context(pctx), rsrc, "flush_resource");
1221 }
1222 }
1223
1224 #define MAX_ATTACHMENTS 16
1225
1226 struct attachments {
1227 struct drm_asahi_attachment list[MAX_ATTACHMENTS];
1228 size_t count;
1229 };
1230
1231 static void
asahi_add_attachment(struct attachments * att,struct agx_resource * rsrc,struct pipe_surface * surf)1232 asahi_add_attachment(struct attachments *att, struct agx_resource *rsrc,
1233 struct pipe_surface *surf)
1234 {
1235 assert(att->count < MAX_ATTACHMENTS);
1236 int idx = att->count++;
1237
1238 att->list[idx].size = rsrc->layout.size_B;
1239 att->list[idx].pointer = rsrc->bo->va->addr;
1240 att->list[idx].order = 1; // TODO: What does this do?
1241 att->list[idx].flags = 0;
1242 }
1243
1244 static bool
is_aligned(unsigned x,unsigned pot_alignment)1245 is_aligned(unsigned x, unsigned pot_alignment)
1246 {
1247 assert(util_is_power_of_two_nonzero(pot_alignment));
1248 return (x & (pot_alignment - 1)) == 0;
1249 }
1250
1251 static void
agx_cmdbuf(struct agx_device * dev,struct drm_asahi_cmd_render * c,struct attachments * att,struct agx_pool * pool,struct agx_batch * batch,struct pipe_framebuffer_state * framebuffer,uint64_t encoder_ptr,uint64_t encoder_id,uint64_t cmd_ta_id,uint64_t cmd_3d_id,uint64_t scissor_ptr,uint64_t depth_bias_ptr,uint64_t visibility_result_ptr,struct asahi_bg_eot pipeline_clear,struct asahi_bg_eot pipeline_load,struct asahi_bg_eot pipeline_store,bool clear_pipeline_textures,double clear_depth,unsigned clear_stencil,struct agx_tilebuffer_layout * tib)1252 agx_cmdbuf(struct agx_device *dev, struct drm_asahi_cmd_render *c,
1253 struct attachments *att, struct agx_pool *pool,
1254 struct agx_batch *batch, struct pipe_framebuffer_state *framebuffer,
1255 uint64_t encoder_ptr, uint64_t encoder_id, uint64_t cmd_ta_id,
1256 uint64_t cmd_3d_id, uint64_t scissor_ptr, uint64_t depth_bias_ptr,
1257 uint64_t visibility_result_ptr, struct asahi_bg_eot pipeline_clear,
1258 struct asahi_bg_eot pipeline_load,
1259 struct asahi_bg_eot pipeline_store, bool clear_pipeline_textures,
1260 double clear_depth, unsigned clear_stencil,
1261 struct agx_tilebuffer_layout *tib)
1262 {
1263 memset(c, 0, sizeof(*c));
1264
1265 c->encoder_ptr = encoder_ptr;
1266 c->encoder_id = encoder_id;
1267 c->cmd_3d_id = cmd_3d_id;
1268 c->cmd_ta_id = cmd_ta_id;
1269
1270 c->fragment_usc_base = dev->shader_base;
1271 c->vertex_usc_base = dev->shader_base;
1272
1273 /* bit 0 specifies OpenGL clip behaviour. Since ARB_clip_control is
1274 * advertised, we don't set it and lower in the vertex shader.
1275 */
1276 c->ppp_ctrl = 0x202;
1277
1278 c->fb_width = framebuffer->width;
1279 c->fb_height = framebuffer->height;
1280
1281 c->iogpu_unk_214 = 0xc000;
1282
1283 c->isp_bgobjvals = 0x300;
1284
1285 struct agx_resource *zres = NULL, *sres = NULL;
1286
1287 agx_pack(&c->zls_ctrl, ZLS_CONTROL, zls_control) {
1288
1289 if (framebuffer->zsbuf) {
1290 struct pipe_surface *zsbuf = framebuffer->zsbuf;
1291 struct agx_resource *zsres = agx_resource(zsbuf->texture);
1292
1293 unsigned level = zsbuf->u.tex.level;
1294 unsigned first_layer = zsbuf->u.tex.first_layer;
1295
1296 const struct util_format_description *desc = util_format_description(
1297 agx_resource(zsbuf->texture)->layout.format);
1298
1299 assert(desc->format == PIPE_FORMAT_Z32_FLOAT ||
1300 desc->format == PIPE_FORMAT_Z16_UNORM ||
1301 desc->format == PIPE_FORMAT_Z32_FLOAT_S8X24_UINT ||
1302 desc->format == PIPE_FORMAT_S8_UINT);
1303
1304 c->depth_dimensions =
1305 (framebuffer->width - 1) | ((framebuffer->height - 1) << 15);
1306
1307 if (util_format_has_depth(desc))
1308 zres = zsres;
1309 else
1310 sres = zsres;
1311
1312 if (zsres->separate_stencil)
1313 sres = zsres->separate_stencil;
1314
1315 if (zres) {
1316 bool clear = (batch->clear & PIPE_CLEAR_DEPTH);
1317 bool load = (batch->load & PIPE_CLEAR_DEPTH);
1318
1319 zls_control.z_store_enable = (batch->resolve & PIPE_CLEAR_DEPTH);
1320 zls_control.z_load_enable = !clear && load;
1321
1322 c->depth_buffer_load = agx_map_texture_gpu(zres, first_layer) +
1323 ail_get_level_offset_B(&zres->layout, level);
1324
1325 c->depth_buffer_store = c->depth_buffer_load;
1326 c->depth_buffer_partial = c->depth_buffer_load;
1327
1328 /* Main stride in pages */
1329 assert((zres->layout.depth_px == 1 ||
1330 is_aligned(zres->layout.layer_stride_B, AIL_PAGESIZE)) &&
1331 "Page aligned Z layers");
1332
1333 unsigned stride_pages = zres->layout.layer_stride_B / AIL_PAGESIZE;
1334 c->depth_buffer_load_stride = ((stride_pages - 1) << 14) | 1;
1335 c->depth_buffer_store_stride = c->depth_buffer_load_stride;
1336 c->depth_buffer_partial_stride = c->depth_buffer_load_stride;
1337
1338 assert(zres->layout.tiling != AIL_TILING_LINEAR && "must tile");
1339
1340 if (ail_is_compressed(&zres->layout)) {
1341 c->depth_meta_buffer_load =
1342 agx_map_texture_gpu(zres, 0) +
1343 zres->layout.metadata_offset_B +
1344 (first_layer * zres->layout.compression_layer_stride_B) +
1345 zres->layout.level_offsets_compressed_B[level];
1346
1347 /* Meta stride in cache lines */
1348 assert(is_aligned(zres->layout.compression_layer_stride_B,
1349 AIL_CACHELINE) &&
1350 "Cacheline aligned Z meta layers");
1351 unsigned stride_lines =
1352 zres->layout.compression_layer_stride_B / AIL_CACHELINE;
1353 c->depth_meta_buffer_load_stride = (stride_lines - 1) << 14;
1354
1355 c->depth_meta_buffer_store = c->depth_meta_buffer_load;
1356 c->depth_meta_buffer_store_stride =
1357 c->depth_meta_buffer_load_stride;
1358 c->depth_meta_buffer_partial = c->depth_meta_buffer_load;
1359 c->depth_meta_buffer_partial_stride =
1360 c->depth_meta_buffer_load_stride;
1361
1362 zls_control.z_compress_1 = true;
1363 zls_control.z_compress_2 = true;
1364 }
1365
1366 if (zres->base.format == PIPE_FORMAT_Z16_UNORM) {
1367 const float scale = 0xffff;
1368 c->isp_bgobjdepth =
1369 (uint16_t)(SATURATE(clear_depth) * scale + 0.5f);
1370 zls_control.z_format = AGX_ZLS_FORMAT_16;
1371 c->iogpu_unk_214 |= 0x40000;
1372 } else {
1373 c->isp_bgobjdepth = fui(clear_depth);
1374 zls_control.z_format = AGX_ZLS_FORMAT_32F;
1375 }
1376 }
1377
1378 if (sres) {
1379 bool clear = (batch->clear & PIPE_CLEAR_STENCIL);
1380 bool load = (batch->load & PIPE_CLEAR_STENCIL);
1381
1382 zls_control.s_store_enable = (batch->resolve & PIPE_CLEAR_STENCIL);
1383 zls_control.s_load_enable = !clear && load;
1384
1385 c->stencil_buffer_load =
1386 agx_map_texture_gpu(sres, first_layer) +
1387 ail_get_level_offset_B(&sres->layout, level);
1388
1389 c->stencil_buffer_store = c->stencil_buffer_load;
1390 c->stencil_buffer_partial = c->stencil_buffer_load;
1391
1392 /* Main stride in pages */
1393 assert((sres->layout.depth_px == 1 ||
1394 is_aligned(sres->layout.layer_stride_B, AIL_PAGESIZE)) &&
1395 "Page aligned S layers");
1396 unsigned stride_pages = sres->layout.layer_stride_B / AIL_PAGESIZE;
1397 c->stencil_buffer_load_stride = ((stride_pages - 1) << 14) | 1;
1398 c->stencil_buffer_store_stride = c->stencil_buffer_load_stride;
1399 c->stencil_buffer_partial_stride = c->stencil_buffer_load_stride;
1400
1401 if (ail_is_compressed(&sres->layout)) {
1402 c->stencil_meta_buffer_load =
1403 agx_map_texture_gpu(sres, 0) +
1404 sres->layout.metadata_offset_B +
1405 (first_layer * sres->layout.compression_layer_stride_B) +
1406 sres->layout.level_offsets_compressed_B[level];
1407
1408 /* Meta stride in cache lines */
1409 assert(is_aligned(sres->layout.compression_layer_stride_B,
1410 AIL_CACHELINE) &&
1411 "Cacheline aligned S meta layers");
1412 unsigned stride_lines =
1413 sres->layout.compression_layer_stride_B / AIL_CACHELINE;
1414 c->stencil_meta_buffer_load_stride = (stride_lines - 1) << 14;
1415
1416 c->stencil_meta_buffer_store = c->stencil_meta_buffer_load;
1417 c->stencil_meta_buffer_store_stride =
1418 c->stencil_meta_buffer_load_stride;
1419 c->stencil_meta_buffer_partial = c->stencil_meta_buffer_load;
1420 c->stencil_meta_buffer_partial_stride =
1421 c->stencil_meta_buffer_load_stride;
1422
1423 zls_control.s_compress_1 = true;
1424 zls_control.s_compress_2 = true;
1425 }
1426
1427 c->isp_bgobjvals |= clear_stencil;
1428 }
1429 }
1430 }
1431
1432 if (clear_pipeline_textures)
1433 c->flags |= ASAHI_RENDER_SET_WHEN_RELOADING_Z_OR_S;
1434 else
1435 c->flags |= ASAHI_RENDER_NO_CLEAR_PIPELINE_TEXTURES;
1436
1437 if (zres && !(batch->clear & PIPE_CLEAR_DEPTH))
1438 c->flags |= ASAHI_RENDER_SET_WHEN_RELOADING_Z_OR_S;
1439
1440 if (sres && !(batch->clear & PIPE_CLEAR_STENCIL))
1441 c->flags |= ASAHI_RENDER_SET_WHEN_RELOADING_Z_OR_S;
1442
1443 if (dev->debug & AGX_DBG_NOCLUSTER)
1444 c->flags |= ASAHI_RENDER_NO_VERTEX_CLUSTERING;
1445
1446 /* XXX is this for just MSAA+Z+S or MSAA+(Z|S)? */
1447 if (tib->nr_samples > 1 && framebuffer->zsbuf)
1448 c->flags |= ASAHI_RENDER_MSAA_ZS;
1449
1450 memcpy(&c->load_pipeline_bind, &pipeline_clear.counts,
1451 sizeof(struct agx_counts_packed));
1452
1453 memcpy(&c->store_pipeline_bind, &pipeline_store.counts,
1454 sizeof(struct agx_counts_packed));
1455
1456 memcpy(&c->partial_reload_pipeline_bind, &pipeline_load.counts,
1457 sizeof(struct agx_counts_packed));
1458
1459 memcpy(&c->partial_store_pipeline_bind, &pipeline_store.counts,
1460 sizeof(struct agx_counts_packed));
1461
1462 /* XXX is this correct? */
1463 c->load_pipeline = pipeline_clear.usc | (framebuffer->nr_cbufs >= 4 ? 8 : 4);
1464 c->store_pipeline = pipeline_store.usc | 4;
1465 c->partial_reload_pipeline = pipeline_load.usc | 4;
1466 c->partial_store_pipeline = pipeline_store.usc | 4;
1467
1468 c->utile_width = tib->tile_size.width;
1469 c->utile_height = tib->tile_size.height;
1470
1471 c->samples = tib->nr_samples;
1472 c->layers = MAX2(util_framebuffer_get_num_layers(framebuffer), 1);
1473
1474 c->ppp_multisamplectl = batch->uniforms.ppp_multisamplectl;
1475 c->sample_size = tib->sample_size_B;
1476
1477 /* XXX OR 0x80 with eMRT? */
1478 c->tib_blocks = ALIGN_POT(agx_tilebuffer_total_size(tib), 2048) / 2048;
1479
1480 float tan_60 = 1.732051f;
1481 c->merge_upper_x = fui(tan_60 / framebuffer->width);
1482 c->merge_upper_y = fui(tan_60 / framebuffer->height);
1483
1484 c->scissor_array = scissor_ptr;
1485 c->depth_bias_array = depth_bias_ptr;
1486 c->visibility_result_buffer = visibility_result_ptr;
1487
1488 c->vertex_sampler_array =
1489 batch->sampler_heap.bo ? batch->sampler_heap.bo->va->addr : 0;
1490 c->vertex_sampler_count = batch->sampler_heap.count;
1491 c->vertex_sampler_max = batch->sampler_heap.count + 1;
1492
1493 /* In the future we could split the heaps if useful */
1494 c->fragment_sampler_array = c->vertex_sampler_array;
1495 c->fragment_sampler_count = c->vertex_sampler_count;
1496 c->fragment_sampler_max = c->vertex_sampler_max;
1497
1498 /* If a tile is empty, we do not want to process it, as the redundant
1499 * roundtrip of memory-->tilebuffer-->memory wastes a tremendous amount of
1500 * memory bandwidth. Any draw marks a tile as non-empty, so we only need to
1501 * process empty tiles if the background+EOT programs have a side effect.
1502 * This is the case exactly when there is an attachment we are clearing (some
1503 * attachment A in clear and in resolve <==> non-empty intersection).
1504 *
1505 * This case matters a LOT for performance in workloads that split batches.
1506 */
1507 if (batch->clear & batch->resolve)
1508 c->flags |= ASAHI_RENDER_PROCESS_EMPTY_TILES;
1509
1510 for (unsigned i = 0; i < framebuffer->nr_cbufs; ++i) {
1511 if (!framebuffer->cbufs[i])
1512 continue;
1513
1514 asahi_add_attachment(att, agx_resource(framebuffer->cbufs[i]->texture),
1515 framebuffer->cbufs[i]);
1516 }
1517
1518 if (framebuffer->zsbuf) {
1519 struct agx_resource *rsrc = agx_resource(framebuffer->zsbuf->texture);
1520
1521 asahi_add_attachment(att, rsrc, framebuffer->zsbuf);
1522
1523 if (rsrc->separate_stencil) {
1524 asahi_add_attachment(att, rsrc->separate_stencil, framebuffer->zsbuf);
1525 }
1526 }
1527
1528 c->fragment_attachments = (uint64_t)(uintptr_t)&att->list[0];
1529 c->fragment_attachment_count = att->count;
1530
1531 if (batch->vs_scratch) {
1532 c->flags |= ASAHI_RENDER_VERTEX_SPILLS;
1533 c->vertex_helper_arg = batch->ctx->scratch_vs.buf->va->addr;
1534 c->vertex_helper_cfg = batch->vs_preamble_scratch << 16;
1535 c->vertex_helper_program = dev->helper->va->addr | 1;
1536 }
1537 if (batch->fs_scratch) {
1538 c->fragment_helper_arg = batch->ctx->scratch_fs.buf->va->addr;
1539 c->fragment_helper_cfg = batch->fs_preamble_scratch << 16;
1540 c->fragment_helper_program = dev->helper->va->addr | 1;
1541 }
1542 }
1543
1544 /*
1545 * context
1546 */
1547 static void
agx_flush(struct pipe_context * pctx,struct pipe_fence_handle ** fence,unsigned flags)1548 agx_flush(struct pipe_context *pctx, struct pipe_fence_handle **fence,
1549 unsigned flags)
1550 {
1551 struct agx_context *ctx = agx_context(pctx);
1552 struct agx_screen *screen = agx_screen(ctx->base.screen);
1553
1554 agx_flush_all(ctx, "Gallium flush");
1555
1556 if (!(flags & (PIPE_FLUSH_DEFERRED | PIPE_FLUSH_ASYNC)) &&
1557 ctx->flush_last_seqid) {
1558 /* Ensure other contexts in this screen serialize against the last
1559 * submission (and all prior submissions).
1560 */
1561 simple_mtx_lock(&screen->flush_seqid_lock);
1562
1563 uint64_t val = p_atomic_read(&screen->flush_wait_seqid);
1564 if (val < ctx->flush_last_seqid)
1565 p_atomic_set(&screen->flush_wait_seqid, ctx->flush_last_seqid);
1566
1567 /* Note: it's possible for the max() logic above to be "wrong" due
1568 * to a race in agx_batch_submit causing out-of-order timeline point
1569 * updates, making the larger value not actually a later submission.
1570 * However, see the comment in agx_batch.c for why this doesn't matter
1571 * because this corner case is handled conservatively in the kernel.
1572 */
1573
1574 simple_mtx_unlock(&screen->flush_seqid_lock);
1575
1576 /* Optimization: Avoid serializing against our own queue by
1577 * recording the last seen foreign seqid when flushing, and our own
1578 * flush seqid. If we then try to sync against our own seqid, we'll
1579 * instead sync against the last possible foreign one. This is *not*
1580 * the `val` we got above, because another context might flush with a
1581 * seqid between `val` and `flush_last_seqid` (which would not update
1582 * `flush_wait_seqid` per the logic above). This is somewhat
1583 * conservative: it means that if *any* foreign context flushes, then
1584 * on next flush of this context we will start waiting for *all*
1585 * prior submits on *all* contexts (even if unflushed) at that point,
1586 * including any local submissions prior to the latest one. That's
1587 * probably fine, it creates a one-time "wait for the second-previous
1588 * batch" wait on this queue but that still allows for at least
1589 * the previous batch to pipeline on the GPU and it's one-time
1590 * until another foreign flush happens. Phew.
1591 */
1592 if (val && val != ctx->flush_my_seqid)
1593 ctx->flush_other_seqid = ctx->flush_last_seqid - 1;
1594
1595 ctx->flush_my_seqid = ctx->flush_last_seqid;
1596 }
1597
1598 /* At this point all pending work has been submitted. Since jobs are
1599 * started and completed sequentially from a UAPI perspective, and since
1600 * we submit all jobs with compute+render barriers on the prior job,
1601 * waiting on the last submitted job is sufficient to guarantee completion
1602 * of all GPU work thus far, so we can create a fence out of the latest
1603 * syncobj.
1604 *
1605 * See this page for more info on how the GPU/UAPI queueing works:
1606 * https://github.com/AsahiLinux/docs/wiki/SW:AGX-driver-notes#queues
1607 */
1608
1609 if (fence) {
1610 struct pipe_fence_handle *f = agx_fence_create(ctx);
1611 pctx->screen->fence_reference(pctx->screen, fence, NULL);
1612 *fence = f;
1613 }
1614 }
1615
1616 static void
agx_flush_compute(struct agx_context * ctx,struct agx_batch * batch,struct drm_asahi_cmd_compute * cmdbuf)1617 agx_flush_compute(struct agx_context *ctx, struct agx_batch *batch,
1618 struct drm_asahi_cmd_compute *cmdbuf)
1619 {
1620 struct agx_device *dev = agx_device(ctx->base.screen);
1621
1622 /* Finalize the encoder */
1623 agx_pack(batch->cdm.current, CDM_STREAM_TERMINATE, _)
1624 ;
1625
1626 agx_batch_add_bo(batch, batch->cdm.bo);
1627
1628 if (batch->cs_scratch)
1629 agx_batch_add_bo(batch, ctx->scratch_cs.buf);
1630
1631 unsigned cmdbuf_id = agx_get_global_id(dev);
1632 unsigned encoder_id = agx_get_global_id(dev);
1633
1634 *cmdbuf = (struct drm_asahi_cmd_compute){
1635 .flags = 0,
1636 .encoder_ptr = batch->cdm.bo->va->addr,
1637 .encoder_end = batch->cdm.bo->va->addr +
1638 (batch->cdm.current - (uint8_t *)batch->cdm.bo->map),
1639 .usc_base = dev->shader_base,
1640 .helper_arg = 0,
1641 .helper_cfg = 0,
1642 .helper_program = 0,
1643 .iogpu_unk_40 = 0,
1644 .sampler_array =
1645 batch->sampler_heap.bo ? batch->sampler_heap.bo->va->addr : 0,
1646 .sampler_count = batch->sampler_heap.count,
1647 .sampler_max = batch->sampler_heap.count + 1,
1648 .encoder_id = encoder_id,
1649 .cmd_id = cmdbuf_id,
1650 .unk_mask = 0xffffffff,
1651 };
1652
1653 if (batch->cs_scratch) {
1654 // The commented out lines *may* be related to subgroup-level preemption,
1655 // which we can't support without implementing threadgroup memory in the
1656 // helper. Disable them for now.
1657
1658 // cmdbuf->iogpu_unk_40 = 0x1c;
1659 cmdbuf->helper_arg = ctx->scratch_cs.buf->va->addr;
1660 cmdbuf->helper_cfg = batch->cs_preamble_scratch << 16;
1661 // cmdbuf->helper_cfg |= 0x40;
1662 cmdbuf->helper_program = dev->helper->va->addr | 1;
1663 }
1664 }
1665
1666 static void
agx_flush_render(struct agx_context * ctx,struct agx_batch * batch,struct drm_asahi_cmd_render * cmdbuf,struct attachments * att)1667 agx_flush_render(struct agx_context *ctx, struct agx_batch *batch,
1668 struct drm_asahi_cmd_render *cmdbuf, struct attachments *att)
1669 {
1670 struct agx_device *dev = agx_device(ctx->base.screen);
1671
1672 if (batch->vs_scratch)
1673 agx_batch_add_bo(batch, ctx->scratch_vs.buf);
1674 if (batch->fs_scratch)
1675 agx_batch_add_bo(batch, ctx->scratch_fs.buf);
1676
1677 assert(batch->initialized);
1678
1679 /* Finalize the encoder */
1680 uint8_t stop[5 + 64] = {0x00, 0x00, 0x00, 0xc0, 0x00};
1681 memcpy(batch->vdm.current, stop, sizeof(stop));
1682
1683 struct asahi_bg_eot pipeline_background =
1684 agx_build_bg_eot(batch, false, false);
1685
1686 struct asahi_bg_eot pipeline_background_partial =
1687 agx_build_bg_eot(batch, false, true);
1688
1689 struct asahi_bg_eot pipeline_store = agx_build_bg_eot(batch, true, false);
1690
1691 bool clear_pipeline_textures =
1692 agx_tilebuffer_spills(&batch->tilebuffer_layout);
1693
1694 for (unsigned i = 0; i < batch->key.nr_cbufs; ++i) {
1695 struct pipe_surface *surf = batch->key.cbufs[i];
1696
1697 clear_pipeline_textures |=
1698 surf && surf->texture && !(batch->clear & (PIPE_CLEAR_COLOR0 << i));
1699 }
1700
1701 /* Scissor and depth bias arrays are staged to dynamic arrays on the CPU. At
1702 * submit time, they're done growing and are uploaded to GPU memory attached
1703 * to the batch.
1704 */
1705 uint64_t scissor = agx_pool_upload_aligned(&batch->pool, batch->scissor.data,
1706 batch->scissor.size, 64);
1707 uint64_t zbias = agx_pool_upload_aligned(
1708 &batch->pool, batch->depth_bias.data, batch->depth_bias.size, 64);
1709
1710 /* BO list for a given batch consists of:
1711 * - BOs for the batch's pools
1712 * - BOs for the encoder
1713 * - BO for internal shaders
1714 * - BOs added to the batch explicitly
1715 */
1716 agx_batch_add_bo(batch, batch->vdm.bo);
1717
1718 unsigned cmd_ta_id = agx_get_global_id(dev);
1719 unsigned cmd_3d_id = agx_get_global_id(dev);
1720 unsigned encoder_id = agx_get_global_id(dev);
1721
1722 agx_cmdbuf(dev, cmdbuf, att, &batch->pool, batch, &batch->key,
1723 batch->vdm.bo->va->addr, encoder_id, cmd_ta_id, cmd_3d_id,
1724 scissor, zbias, agx_get_occlusion_heap(batch),
1725 pipeline_background, pipeline_background_partial, pipeline_store,
1726 clear_pipeline_textures, batch->clear_depth, batch->clear_stencil,
1727 &batch->tilebuffer_layout);
1728 }
1729
1730 void
agx_flush_batch(struct agx_context * ctx,struct agx_batch * batch)1731 agx_flush_batch(struct agx_context *ctx, struct agx_batch *batch)
1732 {
1733 assert(agx_batch_is_active(batch));
1734 assert(!agx_batch_is_submitted(batch));
1735
1736 struct attachments att = {.count = 0};
1737 struct drm_asahi_cmd_render render;
1738 struct drm_asahi_cmd_compute compute;
1739 bool has_vdm = false, has_cdm = false;
1740
1741 if (batch->cdm.bo) {
1742 agx_flush_compute(ctx, batch, &compute);
1743 has_cdm = true;
1744 }
1745
1746 if (batch->vdm.bo && (batch->clear || batch->initialized)) {
1747 agx_flush_render(ctx, batch, &render, &att);
1748 has_vdm = true;
1749 }
1750
1751 if (!has_cdm && !has_vdm) {
1752 agx_batch_reset(ctx, batch);
1753 return;
1754 }
1755
1756 agx_batch_submit(ctx, batch, has_cdm ? &compute : NULL,
1757 has_vdm ? &render : NULL);
1758 }
1759
1760 static void
agx_destroy_context(struct pipe_context * pctx)1761 agx_destroy_context(struct pipe_context *pctx)
1762 {
1763 struct agx_device *dev = agx_device(pctx->screen);
1764 struct agx_context *ctx = agx_context(pctx);
1765 struct agx_screen *screen = agx_screen(pctx->screen);
1766
1767 /* Batch state needs to be freed on completion, and we don't want to yank
1768 * buffers out from in-progress GPU jobs to avoid faults, so just wait until
1769 * everything in progress is actually done on context destroy. This will
1770 * ensure everything is cleaned up properly.
1771 */
1772 agx_sync_all(ctx, "destroy context");
1773
1774 if (pctx->stream_uploader)
1775 u_upload_destroy(pctx->stream_uploader);
1776
1777 if (ctx->blitter)
1778 util_blitter_destroy(ctx->blitter);
1779
1780 util_unreference_framebuffer_state(&ctx->framebuffer);
1781
1782 agx_bg_eot_cleanup(&ctx->bg_eot);
1783 agx_destroy_meta_shaders(ctx);
1784
1785 agx_bo_unreference(dev, ctx->result_buf);
1786
1787 /* Lock around the syncobj destruction, to avoid racing
1788 * command submission in another context.
1789 **/
1790 u_rwlock_wrlock(&screen->destroy_lock);
1791
1792 drmSyncobjDestroy(dev->fd, ctx->in_sync_obj);
1793 drmSyncobjDestroy(dev->fd, ctx->dummy_syncobj);
1794 if (ctx->in_sync_fd != -1)
1795 close(ctx->in_sync_fd);
1796
1797 for (unsigned i = 0; i < AGX_MAX_BATCHES; ++i) {
1798 if (ctx->batches.slots[i].syncobj)
1799 drmSyncobjDestroy(dev->fd, ctx->batches.slots[i].syncobj);
1800 }
1801
1802 u_rwlock_wrunlock(&screen->destroy_lock);
1803
1804 pipe_resource_reference(&ctx->heap, NULL);
1805
1806 agx_scratch_fini(&ctx->scratch_vs);
1807 agx_scratch_fini(&ctx->scratch_fs);
1808 agx_scratch_fini(&ctx->scratch_cs);
1809
1810 agx_destroy_command_queue(dev, ctx->queue_id);
1811
1812 ralloc_free(ctx);
1813 }
1814
1815 static void
agx_invalidate_resource(struct pipe_context * pctx,struct pipe_resource * resource)1816 agx_invalidate_resource(struct pipe_context *pctx,
1817 struct pipe_resource *resource)
1818 {
1819 struct agx_context *ctx = agx_context(pctx);
1820 struct agx_batch *batch = agx_get_batch(ctx);
1821
1822 /* Handle the glInvalidateFramebuffer case */
1823 if (batch->key.zsbuf && batch->key.zsbuf->texture == resource)
1824 batch->resolve &= ~PIPE_CLEAR_DEPTHSTENCIL;
1825
1826 for (unsigned i = 0; i < batch->key.nr_cbufs; ++i) {
1827 struct pipe_surface *surf = batch->key.cbufs[i];
1828
1829 if (surf && surf->texture == resource)
1830 batch->resolve &= ~(PIPE_CLEAR_COLOR0 << i);
1831 }
1832 }
1833
1834 static enum pipe_reset_status
asahi_get_device_reset_status(struct pipe_context * pipe)1835 asahi_get_device_reset_status(struct pipe_context *pipe)
1836 {
1837 struct agx_context *ctx = agx_context(pipe);
1838
1839 return ctx->any_faults ? PIPE_GUILTY_CONTEXT_RESET : PIPE_NO_RESET;
1840 }
1841
1842 static struct pipe_context *
agx_create_context(struct pipe_screen * screen,void * priv,unsigned flags)1843 agx_create_context(struct pipe_screen *screen, void *priv, unsigned flags)
1844 {
1845 struct agx_context *ctx = rzalloc(NULL, struct agx_context);
1846 struct pipe_context *pctx = &ctx->base;
1847 int ret;
1848
1849 if (!ctx)
1850 return NULL;
1851
1852 pctx->screen = screen;
1853 pctx->priv = priv;
1854
1855 util_dynarray_init(&ctx->writer, ctx);
1856 util_dynarray_init(&ctx->global_buffers, ctx);
1857
1858 pctx->stream_uploader = u_upload_create_default(pctx);
1859 if (!pctx->stream_uploader) {
1860 FREE(pctx);
1861 return NULL;
1862 }
1863 pctx->const_uploader = pctx->stream_uploader;
1864
1865 uint32_t priority = 2;
1866 if (flags & PIPE_CONTEXT_PRIORITY_LOW)
1867 priority = 3;
1868 else if (flags & PIPE_CONTEXT_PRIORITY_MEDIUM)
1869 priority = 2;
1870 else if (flags & PIPE_CONTEXT_PRIORITY_HIGH)
1871 priority = 1;
1872
1873 ctx->queue_id = agx_create_command_queue(agx_device(screen),
1874 DRM_ASAHI_QUEUE_CAP_RENDER |
1875 DRM_ASAHI_QUEUE_CAP_BLIT |
1876 DRM_ASAHI_QUEUE_CAP_COMPUTE,
1877 priority);
1878
1879 pctx->destroy = agx_destroy_context;
1880 pctx->flush = agx_flush;
1881 pctx->clear = agx_clear;
1882 pctx->resource_copy_region = agx_resource_copy_region;
1883 pctx->blit = agx_blit;
1884 pctx->flush_resource = agx_flush_resource;
1885
1886 pctx->buffer_map = u_transfer_helper_transfer_map;
1887 pctx->buffer_unmap = u_transfer_helper_transfer_unmap;
1888 pctx->texture_map = u_transfer_helper_transfer_map;
1889 pctx->texture_unmap = u_transfer_helper_transfer_unmap;
1890 pctx->transfer_flush_region = u_transfer_helper_transfer_flush_region;
1891
1892 pctx->buffer_subdata = u_default_buffer_subdata;
1893 pctx->clear_buffer = u_default_clear_buffer;
1894 pctx->texture_subdata = u_default_texture_subdata;
1895 pctx->set_debug_callback = u_default_set_debug_callback;
1896 pctx->get_sample_position = u_default_get_sample_position;
1897 pctx->invalidate_resource = agx_invalidate_resource;
1898 pctx->memory_barrier = agx_memory_barrier;
1899
1900 pctx->create_fence_fd = agx_create_fence_fd;
1901 pctx->fence_server_sync = agx_fence_server_sync;
1902
1903 pctx->get_device_reset_status = asahi_get_device_reset_status;
1904
1905 agx_init_state_functions(pctx);
1906 agx_init_query_functions(pctx);
1907 agx_init_streamout_functions(pctx);
1908
1909 agx_bg_eot_init(&ctx->bg_eot, agx_device(screen));
1910 agx_init_meta_shaders(ctx);
1911
1912 ctx->blitter = util_blitter_create(pctx);
1913 ctx->compute_blitter.blit_cs = asahi_blit_key_table_create(ctx);
1914
1915 ctx->result_buf =
1916 agx_bo_create(agx_device(screen),
1917 (2 * sizeof(union agx_batch_result)) * AGX_MAX_BATCHES, 0,
1918 AGX_BO_WRITEBACK, "Batch result buffer");
1919 assert(ctx->result_buf);
1920
1921 /* Sync object/FD used for NATIVE_FENCE_FD. */
1922 ctx->in_sync_fd = -1;
1923 ret = drmSyncobjCreate(agx_device(screen)->fd, 0, &ctx->in_sync_obj);
1924 assert(!ret);
1925
1926 /* Dummy sync object used before any work has been submitted. */
1927 ret = drmSyncobjCreate(agx_device(screen)->fd, DRM_SYNCOBJ_CREATE_SIGNALED,
1928 &ctx->dummy_syncobj);
1929 assert(!ret);
1930 ctx->syncobj = ctx->dummy_syncobj;
1931
1932 /* By default all samples are enabled */
1933 ctx->sample_mask = ~0;
1934
1935 ctx->support_lod_bias = !(flags & PIPE_CONTEXT_NO_LOD_BIAS);
1936 ctx->robust = (flags & PIPE_CONTEXT_ROBUST_BUFFER_ACCESS);
1937
1938 agx_scratch_init(agx_device(screen), &ctx->scratch_vs);
1939 agx_scratch_init(agx_device(screen), &ctx->scratch_fs);
1940 agx_scratch_init(agx_device(screen), &ctx->scratch_cs);
1941
1942 return pctx;
1943 }
1944
1945 static const char *
agx_get_vendor(struct pipe_screen * pscreen)1946 agx_get_vendor(struct pipe_screen *pscreen)
1947 {
1948 return "Mesa";
1949 }
1950
1951 static const char *
agx_get_device_vendor(struct pipe_screen * pscreen)1952 agx_get_device_vendor(struct pipe_screen *pscreen)
1953 {
1954 return "Apple";
1955 }
1956
1957 static const char *
agx_get_name(struct pipe_screen * pscreen)1958 agx_get_name(struct pipe_screen *pscreen)
1959 {
1960 struct agx_device *dev = agx_device(pscreen);
1961
1962 return dev->name;
1963 }
1964
1965 static void
agx_query_memory_info(struct pipe_screen * pscreen,struct pipe_memory_info * info)1966 agx_query_memory_info(struct pipe_screen *pscreen,
1967 struct pipe_memory_info *info)
1968 {
1969 uint64_t mem_B = 0;
1970 os_get_total_physical_memory(&mem_B);
1971
1972 uint64_t mem_kB = mem_B / 1024;
1973
1974 *info = (struct pipe_memory_info){
1975 .total_device_memory = mem_kB,
1976 .avail_device_memory = mem_kB,
1977 };
1978 }
1979
1980 static int
agx_get_param(struct pipe_screen * pscreen,enum pipe_cap param)1981 agx_get_param(struct pipe_screen *pscreen, enum pipe_cap param)
1982 {
1983 struct agx_device *dev = agx_device(pscreen);
1984
1985 switch (param) {
1986 case PIPE_CAP_CLIP_HALFZ:
1987 case PIPE_CAP_NPOT_TEXTURES:
1988 case PIPE_CAP_SHADER_STENCIL_EXPORT:
1989 case PIPE_CAP_MIXED_COLOR_DEPTH_BITS:
1990 case PIPE_CAP_FRAGMENT_SHADER_TEXTURE_LOD:
1991 case PIPE_CAP_VERTEX_COLOR_UNCLAMPED:
1992 case PIPE_CAP_DEPTH_CLIP_DISABLE:
1993 case PIPE_CAP_MIXED_FRAMEBUFFER_SIZES:
1994 case PIPE_CAP_FRAGMENT_SHADER_DERIVATIVES:
1995 case PIPE_CAP_FRAMEBUFFER_NO_ATTACHMENT:
1996 case PIPE_CAP_SHADER_PACK_HALF_FLOAT:
1997 case PIPE_CAP_FS_FINE_DERIVATIVE:
1998 case PIPE_CAP_GLSL_TESS_LEVELS_AS_INPUTS:
1999 case PIPE_CAP_DOUBLES:
2000 return 1;
2001
2002 case PIPE_CAP_MAX_RENDER_TARGETS:
2003 case PIPE_CAP_FBFETCH:
2004 case PIPE_CAP_FBFETCH_COHERENT:
2005 return 8;
2006 case PIPE_CAP_MAX_DUAL_SOURCE_RENDER_TARGETS:
2007 return 1;
2008
2009 case PIPE_CAP_OCCLUSION_QUERY:
2010 case PIPE_CAP_QUERY_TIMESTAMP:
2011 case PIPE_CAP_QUERY_TIME_ELAPSED:
2012 case PIPE_CAP_QUERY_SO_OVERFLOW:
2013 case PIPE_CAP_QUERY_MEMORY_INFO:
2014 case PIPE_CAP_PRIMITIVE_RESTART:
2015 case PIPE_CAP_PRIMITIVE_RESTART_FIXED_INDEX:
2016 case PIPE_CAP_ANISOTROPIC_FILTER:
2017 case PIPE_CAP_NATIVE_FENCE_FD:
2018 case PIPE_CAP_TEXTURE_BARRIER:
2019 return true;
2020
2021 case PIPE_CAP_TIMER_RESOLUTION:
2022 /* Timer resolution is the length of a single tick in nanos */
2023 return agx_gpu_time_to_ns(dev, 1);
2024
2025 case PIPE_CAP_SAMPLER_VIEW_TARGET:
2026 case PIPE_CAP_TEXTURE_SWIZZLE:
2027 case PIPE_CAP_BLEND_EQUATION_SEPARATE:
2028 case PIPE_CAP_INDEP_BLEND_ENABLE:
2029 case PIPE_CAP_INDEP_BLEND_FUNC:
2030 case PIPE_CAP_ACCELERATED:
2031 case PIPE_CAP_UMA:
2032 case PIPE_CAP_TEXTURE_FLOAT_LINEAR:
2033 case PIPE_CAP_TEXTURE_HALF_FLOAT_LINEAR:
2034 case PIPE_CAP_TEXTURE_MIRROR_CLAMP_TO_EDGE:
2035 case PIPE_CAP_SHADER_ARRAY_COMPONENTS:
2036 case PIPE_CAP_PACKED_UNIFORMS:
2037 case PIPE_CAP_QUADS_FOLLOW_PROVOKING_VERTEX_CONVENTION:
2038 case PIPE_CAP_VS_INSTANCEID:
2039 case PIPE_CAP_VERTEX_ELEMENT_INSTANCE_DIVISOR:
2040 case PIPE_CAP_CONDITIONAL_RENDER:
2041 case PIPE_CAP_CONDITIONAL_RENDER_INVERTED:
2042 case PIPE_CAP_SEAMLESS_CUBE_MAP:
2043 case PIPE_CAP_LOAD_CONSTBUF:
2044 case PIPE_CAP_SEAMLESS_CUBE_MAP_PER_TEXTURE:
2045 case PIPE_CAP_TEXTURE_BUFFER_OBJECTS:
2046 case PIPE_CAP_NULL_TEXTURES:
2047 case PIPE_CAP_TEXTURE_MULTISAMPLE:
2048 case PIPE_CAP_IMAGE_LOAD_FORMATTED:
2049 case PIPE_CAP_IMAGE_STORE_FORMATTED:
2050 case PIPE_CAP_COMPUTE:
2051 case PIPE_CAP_INT64:
2052 case PIPE_CAP_SAMPLE_SHADING:
2053 case PIPE_CAP_START_INSTANCE:
2054 case PIPE_CAP_DRAW_PARAMETERS:
2055 case PIPE_CAP_MULTI_DRAW_INDIRECT:
2056 case PIPE_CAP_MULTI_DRAW_INDIRECT_PARAMS:
2057 case PIPE_CAP_CULL_DISTANCE:
2058 case PIPE_CAP_GL_SPIRV:
2059 case PIPE_CAP_POLYGON_OFFSET_CLAMP:
2060 return 1;
2061 case PIPE_CAP_SURFACE_SAMPLE_COUNT:
2062 /* TODO: MSRTT */
2063 return 0;
2064
2065 case PIPE_CAP_CUBE_MAP_ARRAY:
2066 return 1;
2067
2068 case PIPE_CAP_COPY_BETWEEN_COMPRESSED_AND_PLAIN_FORMATS:
2069 return 1;
2070
2071 case PIPE_CAP_MAX_STREAM_OUTPUT_BUFFERS:
2072 return PIPE_MAX_SO_BUFFERS;
2073
2074 case PIPE_CAP_MAX_STREAM_OUTPUT_SEPARATE_COMPONENTS:
2075 case PIPE_CAP_MAX_STREAM_OUTPUT_INTERLEAVED_COMPONENTS:
2076 return PIPE_MAX_SO_OUTPUTS;
2077
2078 case PIPE_CAP_STREAM_OUTPUT_PAUSE_RESUME:
2079 case PIPE_CAP_STREAM_OUTPUT_INTERLEAVE_BUFFERS:
2080 return 1;
2081
2082 case PIPE_CAP_MAX_TEXTURE_ARRAY_LAYERS:
2083 return 2048;
2084
2085 case PIPE_CAP_GLSL_FEATURE_LEVEL:
2086 case PIPE_CAP_GLSL_FEATURE_LEVEL_COMPATIBILITY:
2087 return 460;
2088 case PIPE_CAP_ESSL_FEATURE_LEVEL:
2089 return 320;
2090
2091 /* Settings from iris, may need tuning */
2092 case PIPE_CAP_MAX_VERTEX_STREAMS:
2093 return 4;
2094 case PIPE_CAP_MAX_GEOMETRY_OUTPUT_VERTICES:
2095 return 256;
2096 case PIPE_CAP_MAX_GEOMETRY_TOTAL_OUTPUT_COMPONENTS:
2097 return 1024;
2098 case PIPE_CAP_MAX_GS_INVOCATIONS:
2099 return 32;
2100 case PIPE_CAP_CONSTANT_BUFFER_OFFSET_ALIGNMENT:
2101 return 16;
2102
2103 case PIPE_CAP_MAX_TEXEL_BUFFER_ELEMENTS_UINT:
2104 return AGX_TEXTURE_BUFFER_MAX_SIZE;
2105
2106 case PIPE_CAP_TEXTURE_BUFFER_OFFSET_ALIGNMENT:
2107 return 64;
2108
2109 case PIPE_CAP_VERTEX_ATTRIB_ELEMENT_ALIGNED_ONLY:
2110 return 1;
2111
2112 case PIPE_CAP_QUERY_PIPELINE_STATISTICS_SINGLE:
2113 return true;
2114
2115 case PIPE_CAP_MAX_TEXTURE_2D_SIZE:
2116 return 16384;
2117 case PIPE_CAP_MAX_TEXTURE_CUBE_LEVELS:
2118 /* Max 16384x16384 */
2119 return 15;
2120 case PIPE_CAP_MAX_TEXTURE_3D_LEVELS:
2121 /* Max 2048x2048x2048 */
2122 return 12;
2123
2124 case PIPE_CAP_FS_COORD_ORIGIN_UPPER_LEFT:
2125 case PIPE_CAP_FS_COORD_PIXEL_CENTER_INTEGER:
2126 case PIPE_CAP_TGSI_TEXCOORD:
2127 case PIPE_CAP_FS_FACE_IS_INTEGER_SYSVAL:
2128 case PIPE_CAP_FS_POSITION_IS_SYSVAL:
2129 return true;
2130 case PIPE_CAP_FS_COORD_ORIGIN_LOWER_LEFT:
2131 case PIPE_CAP_FS_COORD_PIXEL_CENTER_HALF_INTEGER:
2132 case PIPE_CAP_FS_POINT_IS_SYSVAL:
2133 return false;
2134
2135 case PIPE_CAP_MAX_VERTEX_ELEMENT_SRC_OFFSET:
2136 return 0xffff;
2137
2138 case PIPE_CAP_TEXTURE_TRANSFER_MODES:
2139 return PIPE_TEXTURE_TRANSFER_BLIT;
2140
2141 case PIPE_CAP_ENDIANNESS:
2142 return PIPE_ENDIAN_LITTLE;
2143
2144 case PIPE_CAP_SHADER_GROUP_VOTE:
2145 case PIPE_CAP_SHADER_BALLOT:
2146 return true;
2147
2148 case PIPE_CAP_MAX_TEXTURE_GATHER_COMPONENTS:
2149 return 4;
2150 case PIPE_CAP_MIN_TEXTURE_GATHER_OFFSET:
2151 return -8;
2152 case PIPE_CAP_MAX_TEXTURE_GATHER_OFFSET:
2153 return 7;
2154 case PIPE_CAP_DRAW_INDIRECT:
2155 case PIPE_CAP_TEXTURE_QUERY_SAMPLES:
2156 case PIPE_CAP_TEXTURE_QUERY_LOD:
2157 case PIPE_CAP_TEXTURE_SHADOW_LOD:
2158 return true;
2159
2160 case PIPE_CAP_MAX_VIEWPORTS:
2161 return AGX_MAX_VIEWPORTS;
2162
2163 case PIPE_CAP_VIDEO_MEMORY: {
2164 uint64_t system_memory;
2165
2166 if (!os_get_total_physical_memory(&system_memory))
2167 return 0;
2168
2169 return (int)(system_memory >> 20);
2170 }
2171
2172 case PIPE_CAP_DEVICE_RESET_STATUS_QUERY:
2173 case PIPE_CAP_ROBUST_BUFFER_ACCESS_BEHAVIOR:
2174 return true;
2175
2176 case PIPE_CAP_SHADER_BUFFER_OFFSET_ALIGNMENT:
2177 return 4;
2178
2179 case PIPE_CAP_MAX_SHADER_PATCH_VARYINGS:
2180 return 32;
2181 case PIPE_CAP_MAX_VARYINGS:
2182 /* TODO: Probably should bump to 32? */
2183 return 16;
2184
2185 case PIPE_CAP_FLATSHADE:
2186 case PIPE_CAP_TWO_SIDED_COLOR:
2187 case PIPE_CAP_ALPHA_TEST:
2188 case PIPE_CAP_CLIP_PLANES:
2189 case PIPE_CAP_NIR_IMAGES_AS_DEREF:
2190 return 0;
2191
2192 case PIPE_CAP_QUERY_BUFFER_OBJECT:
2193 return true;
2194
2195 case PIPE_CAP_TEXTURE_BORDER_COLOR_QUIRK:
2196 return PIPE_QUIRK_TEXTURE_BORDER_COLOR_SWIZZLE_FREEDRENO;
2197
2198 case PIPE_CAP_SUPPORTED_PRIM_MODES:
2199 case PIPE_CAP_SUPPORTED_PRIM_MODES_WITH_RESTART:
2200 return BITFIELD_BIT(MESA_PRIM_POINTS) | BITFIELD_BIT(MESA_PRIM_LINES) |
2201 BITFIELD_BIT(MESA_PRIM_LINE_STRIP) |
2202 BITFIELD_BIT(MESA_PRIM_LINE_LOOP) |
2203 BITFIELD_BIT(MESA_PRIM_TRIANGLES) |
2204 BITFIELD_BIT(MESA_PRIM_TRIANGLE_STRIP) |
2205 BITFIELD_BIT(MESA_PRIM_TRIANGLE_FAN) |
2206 BITFIELD_BIT(MESA_PRIM_LINES_ADJACENCY) |
2207 BITFIELD_BIT(MESA_PRIM_LINE_STRIP_ADJACENCY) |
2208 BITFIELD_BIT(MESA_PRIM_TRIANGLES_ADJACENCY) |
2209 BITFIELD_BIT(MESA_PRIM_TRIANGLE_STRIP_ADJACENCY) |
2210 BITFIELD_BIT(MESA_PRIM_PATCHES);
2211
2212 case PIPE_CAP_MAP_UNSYNCHRONIZED_THREAD_SAFE:
2213 return 1;
2214
2215 case PIPE_CAP_VS_LAYER_VIEWPORT:
2216 case PIPE_CAP_TES_LAYER_VIEWPORT:
2217 return true;
2218
2219 case PIPE_CAP_CONTEXT_PRIORITY_MASK:
2220 return PIPE_CONTEXT_PRIORITY_LOW | PIPE_CONTEXT_PRIORITY_MEDIUM |
2221 PIPE_CONTEXT_PRIORITY_HIGH;
2222
2223 default:
2224 return u_pipe_screen_get_param_defaults(pscreen, param);
2225 }
2226 }
2227
2228 static float
agx_get_paramf(struct pipe_screen * pscreen,enum pipe_capf param)2229 agx_get_paramf(struct pipe_screen *pscreen, enum pipe_capf param)
2230 {
2231 switch (param) {
2232 case PIPE_CAPF_MIN_LINE_WIDTH:
2233 case PIPE_CAPF_MIN_LINE_WIDTH_AA:
2234 case PIPE_CAPF_MIN_POINT_SIZE:
2235 case PIPE_CAPF_MIN_POINT_SIZE_AA:
2236 return 1;
2237
2238 case PIPE_CAPF_POINT_SIZE_GRANULARITY:
2239 case PIPE_CAPF_LINE_WIDTH_GRANULARITY:
2240 return 0.1;
2241
2242 case PIPE_CAPF_MAX_LINE_WIDTH:
2243 case PIPE_CAPF_MAX_LINE_WIDTH_AA:
2244 return 16.0; /* Off-by-one fixed point 4:4 encoding */
2245
2246 case PIPE_CAPF_MAX_POINT_SIZE:
2247 case PIPE_CAPF_MAX_POINT_SIZE_AA:
2248 return 511.95f;
2249
2250 case PIPE_CAPF_MAX_TEXTURE_ANISOTROPY:
2251 return 16.0;
2252
2253 case PIPE_CAPF_MAX_TEXTURE_LOD_BIAS:
2254 return 16.0; /* arbitrary */
2255
2256 case PIPE_CAPF_MIN_CONSERVATIVE_RASTER_DILATE:
2257 case PIPE_CAPF_MAX_CONSERVATIVE_RASTER_DILATE:
2258 case PIPE_CAPF_CONSERVATIVE_RASTER_DILATE_GRANULARITY:
2259 return 0.0f;
2260
2261 default:
2262 debug_printf("Unexpected PIPE_CAPF %d query\n", param);
2263 return 0.0;
2264 }
2265 }
2266
2267 static int
agx_get_shader_param(struct pipe_screen * pscreen,enum pipe_shader_type shader,enum pipe_shader_cap param)2268 agx_get_shader_param(struct pipe_screen *pscreen, enum pipe_shader_type shader,
2269 enum pipe_shader_cap param)
2270 {
2271 bool is_no16 = agx_device(pscreen)->debug & AGX_DBG_NO16;
2272
2273 switch (shader) {
2274 case PIPE_SHADER_VERTEX:
2275 case PIPE_SHADER_FRAGMENT:
2276 case PIPE_SHADER_COMPUTE:
2277 case PIPE_SHADER_GEOMETRY:
2278 case PIPE_SHADER_TESS_CTRL:
2279 case PIPE_SHADER_TESS_EVAL:
2280 break;
2281 default:
2282 return false;
2283 }
2284
2285 /* this is probably not totally correct.. but it's a start: */
2286 switch (param) {
2287 case PIPE_SHADER_CAP_MAX_INSTRUCTIONS:
2288 case PIPE_SHADER_CAP_MAX_ALU_INSTRUCTIONS:
2289 case PIPE_SHADER_CAP_MAX_TEX_INSTRUCTIONS:
2290 case PIPE_SHADER_CAP_MAX_TEX_INDIRECTIONS:
2291 return 16384;
2292
2293 case PIPE_SHADER_CAP_MAX_CONTROL_FLOW_DEPTH:
2294 return 1024;
2295
2296 case PIPE_SHADER_CAP_MAX_INPUTS:
2297 return shader == PIPE_SHADER_VERTEX ? 16 : 32;
2298
2299 case PIPE_SHADER_CAP_MAX_OUTPUTS:
2300 /* For vertex, the spec min/max is 16. We need more to handle dmat3
2301 * correctly, though. The full 32 is undesirable since it would require
2302 * shenanigans to handle.
2303 */
2304 return shader == PIPE_SHADER_FRAGMENT ? 8
2305 : shader == PIPE_SHADER_VERTEX ? 24
2306 : 32;
2307
2308 case PIPE_SHADER_CAP_MAX_TEMPS:
2309 return 256; /* GL_MAX_PROGRAM_TEMPORARIES_ARB */
2310
2311 case PIPE_SHADER_CAP_MAX_CONST_BUFFER0_SIZE:
2312 return 16 * 1024 * sizeof(float);
2313
2314 case PIPE_SHADER_CAP_MAX_CONST_BUFFERS:
2315 return 16;
2316
2317 case PIPE_SHADER_CAP_CONT_SUPPORTED:
2318 return 1;
2319
2320 case PIPE_SHADER_CAP_SUBROUTINES:
2321 case PIPE_SHADER_CAP_TGSI_SQRT_SUPPORTED:
2322 return 0;
2323
2324 case PIPE_SHADER_CAP_INDIRECT_INPUT_ADDR:
2325 case PIPE_SHADER_CAP_INDIRECT_OUTPUT_ADDR:
2326 case PIPE_SHADER_CAP_INDIRECT_TEMP_ADDR:
2327 case PIPE_SHADER_CAP_INDIRECT_CONST_ADDR:
2328 case PIPE_SHADER_CAP_INTEGERS:
2329 return true;
2330
2331 case PIPE_SHADER_CAP_FP16:
2332 case PIPE_SHADER_CAP_GLSL_16BIT_CONSTS:
2333 case PIPE_SHADER_CAP_FP16_DERIVATIVES:
2334 return !is_no16;
2335 case PIPE_SHADER_CAP_INT16:
2336 /* GLSL compiler is broken. Flip this on when Panfrost does. */
2337 return false;
2338 case PIPE_SHADER_CAP_FP16_CONST_BUFFERS:
2339 /* This cap is broken, see 9a38dab2d18 ("zink: disable
2340 * PIPE_SHADER_CAP_FP16_CONST_BUFFERS") */
2341 return false;
2342
2343 case PIPE_SHADER_CAP_INT64_ATOMICS:
2344 case PIPE_SHADER_CAP_TGSI_ANY_INOUT_DECL_RANGE:
2345 return 0;
2346
2347 case PIPE_SHADER_CAP_MAX_TEXTURE_SAMPLERS:
2348 /* TODO: Enable when fully baked */
2349 if (strcmp(util_get_process_name(), "blender") == 0)
2350 return PIPE_MAX_SAMPLERS;
2351 else if (strcmp(util_get_process_name(), "run") == 0)
2352 return PIPE_MAX_SAMPLERS;
2353 else if (strcasestr(util_get_process_name(), "ryujinx") != NULL)
2354 return PIPE_MAX_SAMPLERS;
2355 else
2356 return 16;
2357
2358 case PIPE_SHADER_CAP_MAX_SAMPLER_VIEWS:
2359 return PIPE_MAX_SHADER_SAMPLER_VIEWS;
2360
2361 case PIPE_SHADER_CAP_SUPPORTED_IRS:
2362 return (1 << PIPE_SHADER_IR_NIR);
2363
2364 case PIPE_SHADER_CAP_MAX_SHADER_BUFFERS:
2365 return PIPE_MAX_SHADER_BUFFERS;
2366
2367 case PIPE_SHADER_CAP_MAX_SHADER_IMAGES:
2368 return PIPE_MAX_SHADER_IMAGES;
2369
2370 case PIPE_SHADER_CAP_MAX_HW_ATOMIC_COUNTERS:
2371 case PIPE_SHADER_CAP_MAX_HW_ATOMIC_COUNTER_BUFFERS:
2372 return 0;
2373
2374 default:
2375 /* Other params are unknown */
2376 return 0;
2377 }
2378
2379 return 0;
2380 }
2381
2382 static int
agx_get_compute_param(struct pipe_screen * pscreen,enum pipe_shader_ir ir_type,enum pipe_compute_cap param,void * ret)2383 agx_get_compute_param(struct pipe_screen *pscreen, enum pipe_shader_ir ir_type,
2384 enum pipe_compute_cap param, void *ret)
2385 {
2386 #define RET(x) \
2387 do { \
2388 if (ret) \
2389 memcpy(ret, x, sizeof(x)); \
2390 return sizeof(x); \
2391 } while (0)
2392
2393 switch (param) {
2394 case PIPE_COMPUTE_CAP_ADDRESS_BITS:
2395 RET((uint32_t[]){64});
2396
2397 case PIPE_COMPUTE_CAP_IR_TARGET:
2398 if (ret)
2399 sprintf(ret, "agx");
2400 return strlen("agx") * sizeof(char);
2401
2402 case PIPE_COMPUTE_CAP_GRID_DIMENSION:
2403 RET((uint64_t[]){3});
2404
2405 case PIPE_COMPUTE_CAP_MAX_GRID_SIZE:
2406 RET(((uint64_t[]){65535, 65535, 65535}));
2407
2408 case PIPE_COMPUTE_CAP_MAX_BLOCK_SIZE:
2409 RET(((uint64_t[]){1024, 1024, 1024}));
2410
2411 case PIPE_COMPUTE_CAP_MAX_THREADS_PER_BLOCK:
2412 RET((uint64_t[]){1024});
2413
2414 case PIPE_COMPUTE_CAP_MAX_GLOBAL_SIZE:
2415 case PIPE_COMPUTE_CAP_MAX_MEM_ALLOC_SIZE: {
2416 uint64_t system_memory;
2417
2418 if (!os_get_total_physical_memory(&system_memory))
2419 return 0;
2420
2421 RET((uint64_t[]){system_memory});
2422 }
2423
2424 case PIPE_COMPUTE_CAP_MAX_LOCAL_SIZE:
2425 RET((uint64_t[]){32768});
2426
2427 case PIPE_COMPUTE_CAP_MAX_PRIVATE_SIZE:
2428 case PIPE_COMPUTE_CAP_MAX_INPUT_SIZE:
2429 RET((uint64_t[]){4096});
2430
2431 case PIPE_COMPUTE_CAP_MAX_CLOCK_FREQUENCY:
2432 RET((uint32_t[]){800 /* MHz -- TODO */});
2433
2434 case PIPE_COMPUTE_CAP_MAX_COMPUTE_UNITS:
2435 RET((uint32_t[]){4 /* TODO */});
2436
2437 case PIPE_COMPUTE_CAP_IMAGES_SUPPORTED:
2438 RET((uint32_t[]){1});
2439
2440 case PIPE_COMPUTE_CAP_SUBGROUP_SIZES:
2441 RET((uint32_t[]){32});
2442
2443 case PIPE_COMPUTE_CAP_MAX_SUBGROUPS:
2444 RET((uint32_t[]){0 /* TODO */});
2445
2446 case PIPE_COMPUTE_CAP_MAX_VARIABLE_THREADS_PER_BLOCK:
2447 RET((uint64_t[]){1024}); // TODO
2448 }
2449
2450 return 0;
2451 }
2452
2453 static bool
agx_is_format_supported(struct pipe_screen * pscreen,enum pipe_format format,enum pipe_texture_target target,unsigned sample_count,unsigned storage_sample_count,unsigned usage)2454 agx_is_format_supported(struct pipe_screen *pscreen, enum pipe_format format,
2455 enum pipe_texture_target target, unsigned sample_count,
2456 unsigned storage_sample_count, unsigned usage)
2457 {
2458 assert(target == PIPE_BUFFER || target == PIPE_TEXTURE_1D ||
2459 target == PIPE_TEXTURE_1D_ARRAY || target == PIPE_TEXTURE_2D ||
2460 target == PIPE_TEXTURE_2D_ARRAY || target == PIPE_TEXTURE_RECT ||
2461 target == PIPE_TEXTURE_3D || target == PIPE_TEXTURE_CUBE ||
2462 target == PIPE_TEXTURE_CUBE_ARRAY);
2463
2464 if (sample_count > 1 && sample_count != 4 && sample_count != 2)
2465 return false;
2466
2467 if (sample_count > 1 && agx_device(pscreen)->debug & AGX_DBG_NOMSAA)
2468 return false;
2469
2470 if (MAX2(sample_count, 1) != MAX2(storage_sample_count, 1))
2471 return false;
2472
2473 if ((usage & PIPE_BIND_VERTEX_BUFFER) && !agx_vbo_supports_format(format))
2474 return false;
2475
2476 /* For framebuffer_no_attachments, fake support for "none" images */
2477 if (format == PIPE_FORMAT_NONE)
2478 return true;
2479
2480 if (usage & (PIPE_BIND_RENDER_TARGET | PIPE_BIND_SAMPLER_VIEW |
2481 PIPE_BIND_SHADER_IMAGE)) {
2482 enum pipe_format tex_format = format;
2483
2484 /* Mimic the fixup done in create_sampler_view and u_transfer_helper so we
2485 * advertise GL_OES_texture_stencil8. Alternatively, we could make mesa/st
2486 * less stupid?
2487 */
2488 if (tex_format == PIPE_FORMAT_X24S8_UINT)
2489 tex_format = PIPE_FORMAT_S8_UINT;
2490
2491 struct ail_pixel_format_entry ent = ail_pixel_format[tex_format];
2492
2493 if (!ail_is_valid_pixel_format(tex_format))
2494 return false;
2495
2496 /* RGB32, luminance/alpha/intensity emulated for texture buffers only */
2497 if ((ent.channels == AGX_CHANNELS_R32G32B32_EMULATED ||
2498 util_format_is_luminance(tex_format) ||
2499 util_format_is_alpha(tex_format) ||
2500 util_format_is_luminance_alpha(tex_format) ||
2501 util_format_is_intensity(tex_format)) &&
2502 target != PIPE_BUFFER)
2503 return false;
2504
2505 /* XXX: sort out rgb9e5 rendering */
2506 if ((usage & PIPE_BIND_RENDER_TARGET) &&
2507 (!ent.renderable || (tex_format == PIPE_FORMAT_R9G9B9E5_FLOAT)))
2508 return false;
2509 }
2510
2511 if (usage & PIPE_BIND_DEPTH_STENCIL) {
2512 switch (format) {
2513 /* natively supported */
2514 case PIPE_FORMAT_Z16_UNORM:
2515 case PIPE_FORMAT_Z32_FLOAT:
2516 case PIPE_FORMAT_S8_UINT:
2517
2518 /* lowered by u_transfer_helper to one of the above */
2519 case PIPE_FORMAT_Z24X8_UNORM:
2520 case PIPE_FORMAT_Z24_UNORM_S8_UINT:
2521 case PIPE_FORMAT_Z32_FLOAT_S8X24_UINT:
2522 break;
2523
2524 default:
2525 return false;
2526 }
2527 }
2528
2529 return true;
2530 }
2531
2532 static void
agx_query_dmabuf_modifiers(struct pipe_screen * screen,enum pipe_format format,int max,uint64_t * modifiers,unsigned int * external_only,int * out_count)2533 agx_query_dmabuf_modifiers(struct pipe_screen *screen, enum pipe_format format,
2534 int max, uint64_t *modifiers,
2535 unsigned int *external_only, int *out_count)
2536 {
2537 int i;
2538
2539 if (max == 0) {
2540 *out_count = ARRAY_SIZE(agx_best_modifiers);
2541 return;
2542 }
2543
2544 for (i = 0; i < ARRAY_SIZE(agx_best_modifiers) && i < max; i++) {
2545 if (external_only)
2546 external_only[i] = 0;
2547
2548 modifiers[i] = agx_best_modifiers[i];
2549 }
2550
2551 /* Return the number of modifiers copied */
2552 *out_count = i;
2553 }
2554
2555 static bool
agx_is_dmabuf_modifier_supported(struct pipe_screen * screen,uint64_t modifier,enum pipe_format format,bool * external_only)2556 agx_is_dmabuf_modifier_supported(struct pipe_screen *screen, uint64_t modifier,
2557 enum pipe_format format, bool *external_only)
2558 {
2559 if (external_only)
2560 *external_only = false;
2561
2562 for (unsigned i = 0; i < ARRAY_SIZE(agx_best_modifiers); ++i) {
2563 if (agx_best_modifiers[i] == modifier)
2564 return true;
2565 }
2566
2567 return false;
2568 }
2569
2570 static void
agx_destroy_screen(struct pipe_screen * pscreen)2571 agx_destroy_screen(struct pipe_screen *pscreen)
2572 {
2573 struct agx_screen *screen = agx_screen(pscreen);
2574
2575 drmSyncobjDestroy(screen->dev.fd, screen->flush_syncobj);
2576
2577 if (screen->dev.ro)
2578 screen->dev.ro->destroy(screen->dev.ro);
2579
2580 u_transfer_helper_destroy(pscreen->transfer_helper);
2581 agx_close_device(&screen->dev);
2582 disk_cache_destroy(screen->disk_cache);
2583 ralloc_free(screen);
2584 }
2585
2586 static const void *
agx_get_compiler_options(struct pipe_screen * pscreen,enum pipe_shader_ir ir,enum pipe_shader_type shader)2587 agx_get_compiler_options(struct pipe_screen *pscreen, enum pipe_shader_ir ir,
2588 enum pipe_shader_type shader)
2589 {
2590 return &agx_nir_options;
2591 }
2592
2593 static void
agx_resource_set_stencil(struct pipe_resource * prsrc,struct pipe_resource * stencil)2594 agx_resource_set_stencil(struct pipe_resource *prsrc,
2595 struct pipe_resource *stencil)
2596 {
2597 agx_resource(prsrc)->separate_stencil = agx_resource(stencil);
2598 }
2599
2600 static struct pipe_resource *
agx_resource_get_stencil(struct pipe_resource * prsrc)2601 agx_resource_get_stencil(struct pipe_resource *prsrc)
2602 {
2603 return (struct pipe_resource *)agx_resource(prsrc)->separate_stencil;
2604 }
2605
2606 static enum pipe_format
agx_resource_get_internal_format(struct pipe_resource * prsrc)2607 agx_resource_get_internal_format(struct pipe_resource *prsrc)
2608 {
2609 return agx_resource(prsrc)->layout.format;
2610 }
2611
2612 static struct disk_cache *
agx_get_disk_shader_cache(struct pipe_screen * pscreen)2613 agx_get_disk_shader_cache(struct pipe_screen *pscreen)
2614 {
2615 return agx_screen(pscreen)->disk_cache;
2616 }
2617
2618 static const struct u_transfer_vtbl transfer_vtbl = {
2619 .resource_create = agx_resource_create,
2620 .resource_destroy = agx_resource_destroy,
2621 .transfer_map = agx_transfer_map,
2622 .transfer_unmap = agx_transfer_unmap,
2623 .transfer_flush_region = agx_transfer_flush_region,
2624 .get_internal_format = agx_resource_get_internal_format,
2625 .set_stencil = agx_resource_set_stencil,
2626 .get_stencil = agx_resource_get_stencil,
2627 };
2628
2629 static int
agx_screen_get_fd(struct pipe_screen * pscreen)2630 agx_screen_get_fd(struct pipe_screen *pscreen)
2631 {
2632 return agx_device(pscreen)->fd;
2633 }
2634
2635 static uint64_t
agx_get_timestamp(struct pipe_screen * pscreen)2636 agx_get_timestamp(struct pipe_screen *pscreen)
2637 {
2638 struct agx_device *dev = agx_device(pscreen);
2639 return agx_gpu_time_to_ns(dev, agx_get_gpu_timestamp(dev));
2640 }
2641
2642 static void
agx_screen_get_device_uuid(struct pipe_screen * pscreen,char * uuid)2643 agx_screen_get_device_uuid(struct pipe_screen *pscreen, char *uuid)
2644 {
2645 agx_get_device_uuid(agx_device(pscreen), uuid);
2646 }
2647
2648 static void
agx_screen_get_driver_uuid(struct pipe_screen * pscreen,char * uuid)2649 agx_screen_get_driver_uuid(struct pipe_screen *pscreen, char *uuid)
2650 {
2651 agx_get_driver_uuid(uuid);
2652 }
2653
2654 struct pipe_screen *
agx_screen_create(int fd,struct renderonly * ro,const struct pipe_screen_config * config)2655 agx_screen_create(int fd, struct renderonly *ro,
2656 const struct pipe_screen_config *config)
2657 {
2658 struct agx_screen *agx_screen;
2659 struct pipe_screen *screen;
2660
2661 /* Refuse to probe. There is no stable UAPI yet. Upstream Mesa cannot be used
2662 * yet with Asahi. Do not try. Do not patch out this check. Do not teach
2663 * others about patching this check. Do not distribute upstream Mesa with
2664 * this check patched out.
2665 */
2666 return NULL;
2667
2668 agx_screen = rzalloc(NULL, struct agx_screen);
2669 if (!agx_screen)
2670 return NULL;
2671
2672 screen = &agx_screen->pscreen;
2673
2674 /* parse driconf configuration now for device specific overrides */
2675 driParseConfigFiles(config->options, config->options_info, 0, "asahi", NULL,
2676 NULL, NULL, 0, NULL, 0);
2677
2678 /* Forward no16 flag from driconf */
2679 if (driQueryOptionb(config->options, "no_fp16"))
2680 agx_screen->dev.debug |= AGX_DBG_NO16;
2681
2682 agx_screen->dev.fd = fd;
2683 agx_screen->dev.ro = ro;
2684 u_rwlock_init(&agx_screen->destroy_lock);
2685
2686 /* Try to open an AGX device */
2687 if (!agx_open_device(agx_screen, &agx_screen->dev)) {
2688 ralloc_free(agx_screen);
2689 return NULL;
2690 }
2691
2692 int ret =
2693 drmSyncobjCreate(agx_device(screen)->fd, 0, &agx_screen->flush_syncobj);
2694 assert(!ret);
2695
2696 simple_mtx_init(&agx_screen->flush_seqid_lock, mtx_plain);
2697
2698 screen->destroy = agx_destroy_screen;
2699 screen->get_screen_fd = agx_screen_get_fd;
2700 screen->get_name = agx_get_name;
2701 screen->get_vendor = agx_get_vendor;
2702 screen->get_device_vendor = agx_get_device_vendor;
2703 screen->get_param = agx_get_param;
2704 screen->get_shader_param = agx_get_shader_param;
2705 screen->get_compute_param = agx_get_compute_param;
2706 screen->get_paramf = agx_get_paramf;
2707 screen->get_device_uuid = agx_screen_get_device_uuid;
2708 screen->get_driver_uuid = agx_screen_get_driver_uuid;
2709 screen->is_format_supported = agx_is_format_supported;
2710 screen->query_dmabuf_modifiers = agx_query_dmabuf_modifiers;
2711 screen->query_memory_info = agx_query_memory_info;
2712 screen->is_dmabuf_modifier_supported = agx_is_dmabuf_modifier_supported;
2713 screen->context_create = agx_create_context;
2714 screen->resource_from_handle = agx_resource_from_handle;
2715 screen->resource_get_handle = agx_resource_get_handle;
2716 screen->resource_get_param = agx_resource_get_param;
2717 screen->resource_create_with_modifiers = agx_resource_create_with_modifiers;
2718 screen->get_timestamp = agx_get_timestamp;
2719 screen->fence_reference = agx_fence_reference;
2720 screen->fence_finish = agx_fence_finish;
2721 screen->fence_get_fd = agx_fence_get_fd;
2722 screen->get_compiler_options = agx_get_compiler_options;
2723 screen->get_disk_shader_cache = agx_get_disk_shader_cache;
2724
2725 screen->resource_create = u_transfer_helper_resource_create;
2726 screen->resource_destroy = u_transfer_helper_resource_destroy;
2727 screen->transfer_helper = u_transfer_helper_create(
2728 &transfer_vtbl,
2729 U_TRANSFER_HELPER_SEPARATE_Z32S8 | U_TRANSFER_HELPER_SEPARATE_STENCIL |
2730 U_TRANSFER_HELPER_MSAA_MAP | U_TRANSFER_HELPER_Z24_IN_Z32F);
2731
2732 agx_disk_cache_init(agx_screen);
2733
2734 return screen;
2735 }
2736