xref: /aosp_15_r20/external/mesa3d/src/intel/vulkan/anv_pipeline.c (revision 6104692788411f58d303aa86923a9ff6ecaded22)
1 /*
2  * Copyright © 2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23 
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <unistd.h>
28 #include <fcntl.h>
29 
30 #include "util/mesa-sha1.h"
31 #include "util/os_time.h"
32 #include "common/intel_compute_slm.h"
33 #include "common/intel_l3_config.h"
34 #include "common/intel_sample_positions.h"
35 #include "compiler/brw_disasm.h"
36 #include "anv_private.h"
37 #include "compiler/brw_nir.h"
38 #include "compiler/brw_nir_rt.h"
39 #include "compiler/intel_nir.h"
40 #include "anv_nir.h"
41 #include "nir/nir_xfb_info.h"
42 #include "spirv/nir_spirv.h"
43 #include "vk_nir_convert_ycbcr.h"
44 #include "vk_nir.h"
45 #include "vk_pipeline.h"
46 #include "vk_render_pass.h"
47 #include "vk_util.h"
48 
49 struct lower_set_vtx_and_prim_count_state {
50    nir_variable *primitive_count;
51 };
52 
53 static nir_variable *
anv_nir_prim_count_store(nir_builder * b,nir_def * val)54 anv_nir_prim_count_store(nir_builder *b, nir_def *val)
55 {
56    nir_variable *primitive_count =
57          nir_variable_create(b->shader,
58                              nir_var_shader_out,
59                              glsl_uint_type(),
60                              "gl_PrimitiveCountNV");
61    primitive_count->data.location = VARYING_SLOT_PRIMITIVE_COUNT;
62    primitive_count->data.interpolation = INTERP_MODE_NONE;
63 
64    nir_def *local_invocation_index = nir_load_local_invocation_index(b);
65 
66    nir_def *cmp = nir_ieq_imm(b, local_invocation_index, 0);
67    nir_if *if_stmt = nir_push_if(b, cmp);
68    {
69       nir_deref_instr *prim_count_deref = nir_build_deref_var(b, primitive_count);
70       nir_store_deref(b, prim_count_deref, val, 1);
71    }
72    nir_pop_if(b, if_stmt);
73 
74    return primitive_count;
75 }
76 
77 static bool
anv_nir_lower_set_vtx_and_prim_count_instr(nir_builder * b,nir_intrinsic_instr * intrin,void * data)78 anv_nir_lower_set_vtx_and_prim_count_instr(nir_builder *b,
79                                            nir_intrinsic_instr *intrin,
80                                            void *data)
81 {
82    if (intrin->intrinsic != nir_intrinsic_set_vertex_and_primitive_count)
83       return false;
84 
85    /* Detect some cases of invalid primitive count. They might lead to URB
86     * memory corruption, where workgroups overwrite each other output memory.
87     */
88    if (nir_src_is_const(intrin->src[1]) &&
89          nir_src_as_uint(intrin->src[1]) > b->shader->info.mesh.max_primitives_out) {
90       assert(!"number of primitives bigger than max specified");
91    }
92 
93    struct lower_set_vtx_and_prim_count_state *state = data;
94    /* this intrinsic should show up only once */
95    assert(state->primitive_count == NULL);
96 
97    b->cursor = nir_before_instr(&intrin->instr);
98 
99    state->primitive_count = anv_nir_prim_count_store(b, intrin->src[1].ssa);
100 
101    nir_instr_remove(&intrin->instr);
102 
103    return true;
104 }
105 
106 static bool
anv_nir_lower_set_vtx_and_prim_count(nir_shader * nir)107 anv_nir_lower_set_vtx_and_prim_count(nir_shader *nir)
108 {
109    struct lower_set_vtx_and_prim_count_state state = { NULL, };
110 
111    nir_shader_intrinsics_pass(nir, anv_nir_lower_set_vtx_and_prim_count_instr,
112                                 nir_metadata_none,
113                                 &state);
114 
115    /* If we didn't find set_vertex_and_primitive_count, then we have to
116     * insert store of value 0 to primitive_count.
117     */
118    if (state.primitive_count == NULL) {
119       nir_builder b;
120       nir_function_impl *entrypoint = nir_shader_get_entrypoint(nir);
121       b = nir_builder_at(nir_before_impl(entrypoint));
122       nir_def *zero = nir_imm_int(&b, 0);
123       state.primitive_count = anv_nir_prim_count_store(&b, zero);
124    }
125 
126    assert(state.primitive_count != NULL);
127    return true;
128 }
129 
130 /* Eventually, this will become part of anv_CreateShader.  Unfortunately,
131  * we can't do that yet because we don't have the ability to copy nir.
132  */
133 static nir_shader *
anv_shader_stage_to_nir(struct anv_device * device,VkPipelineCreateFlags2KHR pipeline_flags,const VkPipelineShaderStageCreateInfo * stage_info,enum brw_robustness_flags robust_flags,void * mem_ctx)134 anv_shader_stage_to_nir(struct anv_device *device,
135                         VkPipelineCreateFlags2KHR pipeline_flags,
136                         const VkPipelineShaderStageCreateInfo *stage_info,
137                         enum brw_robustness_flags robust_flags,
138                         void *mem_ctx)
139 {
140    const struct anv_physical_device *pdevice = device->physical;
141    const struct brw_compiler *compiler = pdevice->compiler;
142    gl_shader_stage stage = vk_to_mesa_shader_stage(stage_info->stage);
143    const nir_shader_compiler_options *nir_options =
144       compiler->nir_options[stage];
145 
146    const struct spirv_to_nir_options spirv_options = {
147       .ubo_addr_format = anv_nir_ubo_addr_format(pdevice, robust_flags),
148       .ssbo_addr_format = anv_nir_ssbo_addr_format(pdevice, robust_flags),
149       .phys_ssbo_addr_format = nir_address_format_64bit_global,
150       .push_const_addr_format = nir_address_format_logical,
151 
152       /* TODO: Consider changing this to an address format that has the NULL
153        * pointer equals to 0.  That might be a better format to play nice
154        * with certain code / code generators.
155        */
156       .shared_addr_format = nir_address_format_32bit_offset,
157 
158       .min_ubo_alignment = ANV_UBO_ALIGNMENT,
159       .min_ssbo_alignment = ANV_SSBO_ALIGNMENT,
160    };
161 
162    nir_shader *nir;
163    VkResult result =
164       vk_pipeline_shader_stage_to_nir(&device->vk, pipeline_flags, stage_info,
165                                       &spirv_options, nir_options,
166                                       mem_ctx, &nir);
167    if (result != VK_SUCCESS)
168       return NULL;
169 
170    if (INTEL_DEBUG(intel_debug_flag_for_shader_stage(stage))) {
171       fprintf(stderr, "NIR (from SPIR-V) for %s shader:\n",
172               gl_shader_stage_name(stage));
173       nir_print_shader(nir, stderr);
174    }
175 
176    NIR_PASS_V(nir, nir_lower_io_to_temporaries,
177               nir_shader_get_entrypoint(nir), true, false);
178 
179    return nir;
180 }
181 
182 static VkResult
anv_pipeline_init(struct anv_pipeline * pipeline,struct anv_device * device,enum anv_pipeline_type type,VkPipelineCreateFlags2KHR flags,const VkAllocationCallbacks * pAllocator)183 anv_pipeline_init(struct anv_pipeline *pipeline,
184                   struct anv_device *device,
185                   enum anv_pipeline_type type,
186                   VkPipelineCreateFlags2KHR flags,
187                   const VkAllocationCallbacks *pAllocator)
188 {
189    VkResult result;
190 
191    memset(pipeline, 0, sizeof(*pipeline));
192 
193    vk_object_base_init(&device->vk, &pipeline->base,
194                        VK_OBJECT_TYPE_PIPELINE);
195    pipeline->device = device;
196 
197    /* It's the job of the child class to provide actual backing storage for
198     * the batch by setting batch.start, batch.next, and batch.end.
199     */
200    pipeline->batch.alloc = pAllocator ? pAllocator : &device->vk.alloc;
201    pipeline->batch.relocs = &pipeline->batch_relocs;
202    pipeline->batch.status = VK_SUCCESS;
203 
204    const bool uses_relocs = device->physical->uses_relocs;
205    result = anv_reloc_list_init(&pipeline->batch_relocs,
206                                 pipeline->batch.alloc, uses_relocs);
207    if (result != VK_SUCCESS)
208       return result;
209 
210    pipeline->mem_ctx = ralloc_context(NULL);
211 
212    pipeline->type = type;
213    pipeline->flags = flags;
214 
215    util_dynarray_init(&pipeline->executables, pipeline->mem_ctx);
216 
217    anv_pipeline_sets_layout_init(&pipeline->layout, device,
218                                  false /* independent_sets */);
219 
220    return VK_SUCCESS;
221 }
222 
223 static void
anv_pipeline_init_layout(struct anv_pipeline * pipeline,struct anv_pipeline_layout * pipeline_layout)224 anv_pipeline_init_layout(struct anv_pipeline *pipeline,
225                          struct anv_pipeline_layout *pipeline_layout)
226 {
227    if (pipeline_layout) {
228       struct anv_pipeline_sets_layout *layout = &pipeline_layout->sets_layout;
229       for (uint32_t s = 0; s < layout->num_sets; s++) {
230          if (layout->set[s].layout == NULL)
231             continue;
232 
233          anv_pipeline_sets_layout_add(&pipeline->layout, s,
234                                       layout->set[s].layout);
235       }
236    }
237 
238    anv_pipeline_sets_layout_hash(&pipeline->layout);
239    assert(!pipeline_layout ||
240           !memcmp(pipeline->layout.sha1,
241                   pipeline_layout->sets_layout.sha1,
242                   sizeof(pipeline_layout->sets_layout.sha1)));
243 }
244 
245 static void
anv_pipeline_finish(struct anv_pipeline * pipeline,struct anv_device * device)246 anv_pipeline_finish(struct anv_pipeline *pipeline,
247                     struct anv_device *device)
248 {
249    anv_pipeline_sets_layout_fini(&pipeline->layout);
250    anv_reloc_list_finish(&pipeline->batch_relocs);
251    ralloc_free(pipeline->mem_ctx);
252    vk_object_base_finish(&pipeline->base);
253 }
254 
anv_DestroyPipeline(VkDevice _device,VkPipeline _pipeline,const VkAllocationCallbacks * pAllocator)255 void anv_DestroyPipeline(
256     VkDevice                                    _device,
257     VkPipeline                                  _pipeline,
258     const VkAllocationCallbacks*                pAllocator)
259 {
260    ANV_FROM_HANDLE(anv_device, device, _device);
261    ANV_FROM_HANDLE(anv_pipeline, pipeline, _pipeline);
262 
263    if (!pipeline)
264       return;
265 
266    ANV_RMV(resource_destroy, device, pipeline);
267 
268    switch (pipeline->type) {
269    case ANV_PIPELINE_GRAPHICS:
270    case ANV_PIPELINE_GRAPHICS_LIB: {
271       struct anv_graphics_base_pipeline *gfx_pipeline =
272          anv_pipeline_to_graphics_base(pipeline);
273 
274       for (unsigned s = 0; s < ARRAY_SIZE(gfx_pipeline->shaders); s++) {
275          if (gfx_pipeline->shaders[s])
276             anv_shader_bin_unref(device, gfx_pipeline->shaders[s]);
277       }
278       break;
279    }
280 
281    case ANV_PIPELINE_COMPUTE: {
282       struct anv_compute_pipeline *compute_pipeline =
283          anv_pipeline_to_compute(pipeline);
284 
285       if (compute_pipeline->cs)
286          anv_shader_bin_unref(device, compute_pipeline->cs);
287 
288       break;
289    }
290 
291    case ANV_PIPELINE_RAY_TRACING: {
292       struct anv_ray_tracing_pipeline *rt_pipeline =
293          anv_pipeline_to_ray_tracing(pipeline);
294 
295       util_dynarray_foreach(&rt_pipeline->shaders,
296                             struct anv_shader_bin *, shader) {
297          anv_shader_bin_unref(device, *shader);
298       }
299       break;
300    }
301 
302    default:
303       unreachable("invalid pipeline type");
304    }
305 
306    anv_pipeline_finish(pipeline, device);
307    vk_free2(&device->vk.alloc, pAllocator, pipeline);
308 }
309 
310 struct anv_pipeline_stage {
311    gl_shader_stage stage;
312 
313    VkPipelineCreateFlags2KHR pipeline_flags;
314    struct vk_pipeline_robustness_state rstate;
315 
316    /* VkComputePipelineCreateInfo, VkGraphicsPipelineCreateInfo or
317     * VkRayTracingPipelineCreateInfoKHR pNext field
318     */
319    const void *pipeline_pNext;
320    const VkPipelineShaderStageCreateInfo *info;
321 
322    unsigned char shader_sha1[20];
323    uint32_t      source_hash;
324 
325    union brw_any_prog_key key;
326 
327    struct {
328       gl_shader_stage stage;
329       unsigned char sha1[20];
330    } cache_key;
331 
332    nir_shader *nir;
333 
334    struct {
335       nir_shader *nir;
336       struct anv_shader_bin *bin;
337    } imported;
338 
339    struct anv_push_descriptor_info push_desc_info;
340 
341    enum gl_subgroup_size subgroup_size_type;
342 
343    enum brw_robustness_flags robust_flags;
344 
345    struct anv_pipeline_bind_map bind_map;
346 
347    bool uses_bt_for_push_descs;
348 
349    enum anv_dynamic_push_bits dynamic_push_values;
350 
351    union brw_any_prog_data prog_data;
352 
353    uint32_t num_stats;
354    struct brw_compile_stats stats[3];
355    char *disasm[3];
356 
357    VkPipelineCreationFeedback feedback;
358    uint32_t feedback_idx;
359 
360    const unsigned *code;
361 
362    struct anv_shader_bin *bin;
363 };
364 
365 static void
anv_stage_allocate_bind_map_tables(struct anv_pipeline * pipeline,struct anv_pipeline_stage * stage,void * mem_ctx)366 anv_stage_allocate_bind_map_tables(struct anv_pipeline *pipeline,
367                                    struct anv_pipeline_stage *stage,
368                                    void *mem_ctx)
369 {
370    struct anv_pipeline_binding *surface_bindings =
371       brw_shader_stage_requires_bindless_resources(stage->stage) ? NULL :
372       rzalloc_array(mem_ctx, struct anv_pipeline_binding, 256);
373    struct anv_pipeline_binding *sampler_bindings =
374       brw_shader_stage_requires_bindless_resources(stage->stage) ? NULL :
375       rzalloc_array(mem_ctx, struct anv_pipeline_binding, 256);
376    struct anv_pipeline_embedded_sampler_binding *embedded_sampler_bindings =
377       rzalloc_array(mem_ctx, struct anv_pipeline_embedded_sampler_binding,
378                     anv_pipeline_sets_layout_embedded_sampler_count(
379                        &pipeline->layout));
380 
381    stage->bind_map = (struct anv_pipeline_bind_map) {
382       .surface_to_descriptor = surface_bindings,
383       .sampler_to_descriptor = sampler_bindings,
384       .embedded_sampler_to_binding = embedded_sampler_bindings,
385    };
386 }
387 
388 static enum brw_robustness_flags
anv_get_robust_flags(const struct vk_pipeline_robustness_state * rstate)389 anv_get_robust_flags(const struct vk_pipeline_robustness_state *rstate)
390 {
391    return
392       ((rstate->storage_buffers !=
393         VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_DISABLED_EXT) ?
394        BRW_ROBUSTNESS_SSBO : 0) |
395       ((rstate->uniform_buffers !=
396         VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_DISABLED_EXT) ?
397        BRW_ROBUSTNESS_UBO : 0);
398 }
399 
400 static void
populate_base_prog_key(struct anv_pipeline_stage * stage,const struct anv_device * device)401 populate_base_prog_key(struct anv_pipeline_stage *stage,
402                        const struct anv_device *device)
403 {
404    stage->key.base.robust_flags = anv_get_robust_flags(&stage->rstate);
405    stage->key.base.limit_trig_input_range =
406       device->physical->instance->limit_trig_input_range;
407 }
408 
409 static void
populate_vs_prog_key(struct anv_pipeline_stage * stage,const struct anv_device * device)410 populate_vs_prog_key(struct anv_pipeline_stage *stage,
411                      const struct anv_device *device)
412 {
413    memset(&stage->key, 0, sizeof(stage->key));
414 
415    populate_base_prog_key(stage, device);
416 }
417 
418 static void
populate_tcs_prog_key(struct anv_pipeline_stage * stage,const struct anv_device * device,unsigned input_vertices)419 populate_tcs_prog_key(struct anv_pipeline_stage *stage,
420                       const struct anv_device *device,
421                       unsigned input_vertices)
422 {
423    memset(&stage->key, 0, sizeof(stage->key));
424 
425    populate_base_prog_key(stage, device);
426 
427    stage->key.tcs.input_vertices = input_vertices;
428 }
429 
430 static void
populate_tes_prog_key(struct anv_pipeline_stage * stage,const struct anv_device * device)431 populate_tes_prog_key(struct anv_pipeline_stage *stage,
432                       const struct anv_device *device)
433 {
434    memset(&stage->key, 0, sizeof(stage->key));
435 
436    populate_base_prog_key(stage, device);
437 }
438 
439 static void
populate_gs_prog_key(struct anv_pipeline_stage * stage,const struct anv_device * device)440 populate_gs_prog_key(struct anv_pipeline_stage *stage,
441                      const struct anv_device *device)
442 {
443    memset(&stage->key, 0, sizeof(stage->key));
444 
445    populate_base_prog_key(stage, device);
446 }
447 
448 static bool
pipeline_has_coarse_pixel(const BITSET_WORD * dynamic,const struct vk_multisample_state * ms,const struct vk_fragment_shading_rate_state * fsr)449 pipeline_has_coarse_pixel(const BITSET_WORD *dynamic,
450                           const struct vk_multisample_state *ms,
451                           const struct vk_fragment_shading_rate_state *fsr)
452 {
453    /* The Vulkan 1.2.199 spec says:
454     *
455     *    "If any of the following conditions are met, Cxy' must be set to
456     *    {1,1}:
457     *
458     *     * If Sample Shading is enabled.
459     *     * [...]"
460     *
461     * And "sample shading" is defined as follows:
462     *
463     *    "Sample shading is enabled for a graphics pipeline:
464     *
465     *     * If the interface of the fragment shader entry point of the
466     *       graphics pipeline includes an input variable decorated with
467     *       SampleId or SamplePosition. In this case minSampleShadingFactor
468     *       takes the value 1.0.
469     *
470     *     * Else if the sampleShadingEnable member of the
471     *       VkPipelineMultisampleStateCreateInfo structure specified when
472     *       creating the graphics pipeline is set to VK_TRUE. In this case
473     *       minSampleShadingFactor takes the value of
474     *       VkPipelineMultisampleStateCreateInfo::minSampleShading.
475     *
476     *    Otherwise, sample shading is considered disabled."
477     *
478     * The first bullet above is handled by the back-end compiler because those
479     * inputs both force per-sample dispatch.  The second bullet is handled
480     * here.  Note that this sample shading being enabled has nothing to do
481     * with minSampleShading.
482     */
483    if (ms != NULL && ms->sample_shading_enable)
484       return false;
485 
486    /* Not dynamic & pipeline has a 1x1 fragment shading rate with no
487     * possibility for element of the pipeline to change the value or fragment
488     * shading rate not specified at all.
489     */
490    if (!BITSET_TEST(dynamic, MESA_VK_DYNAMIC_FSR) &&
491        (fsr == NULL ||
492         (fsr->fragment_size.width <= 1 &&
493          fsr->fragment_size.height <= 1 &&
494          fsr->combiner_ops[0] == VK_FRAGMENT_SHADING_RATE_COMBINER_OP_KEEP_KHR &&
495          fsr->combiner_ops[1] == VK_FRAGMENT_SHADING_RATE_COMBINER_OP_KEEP_KHR)))
496       return false;
497 
498    return true;
499 }
500 
501 static void
populate_task_prog_key(struct anv_pipeline_stage * stage,const struct anv_device * device)502 populate_task_prog_key(struct anv_pipeline_stage *stage,
503                        const struct anv_device *device)
504 {
505    memset(&stage->key, 0, sizeof(stage->key));
506 
507    populate_base_prog_key(stage, device);
508 }
509 
510 static void
populate_mesh_prog_key(struct anv_pipeline_stage * stage,const struct anv_device * device,bool compact_mue)511 populate_mesh_prog_key(struct anv_pipeline_stage *stage,
512                        const struct anv_device *device,
513                        bool compact_mue)
514 {
515    memset(&stage->key, 0, sizeof(stage->key));
516 
517    populate_base_prog_key(stage, device);
518 
519    stage->key.mesh.compact_mue = compact_mue;
520 }
521 
522 static uint32_t
rp_color_mask(const struct vk_render_pass_state * rp)523 rp_color_mask(const struct vk_render_pass_state *rp)
524 {
525    if (rp == NULL || !vk_render_pass_state_has_attachment_info(rp))
526       return ((1u << MAX_RTS) - 1);
527 
528    uint32_t color_mask = 0;
529    for (uint32_t i = 0; i < rp->color_attachment_count; i++) {
530       if (rp->color_attachment_formats[i] != VK_FORMAT_UNDEFINED)
531          color_mask |= BITFIELD_BIT(i);
532    }
533 
534    return color_mask;
535 }
536 
537 static void
populate_wm_prog_key(struct anv_pipeline_stage * stage,const struct anv_graphics_base_pipeline * pipeline,const BITSET_WORD * dynamic,const struct vk_multisample_state * ms,const struct vk_fragment_shading_rate_state * fsr,const struct vk_render_pass_state * rp,const enum brw_sometimes is_mesh)538 populate_wm_prog_key(struct anv_pipeline_stage *stage,
539                      const struct anv_graphics_base_pipeline *pipeline,
540                      const BITSET_WORD *dynamic,
541                      const struct vk_multisample_state *ms,
542                      const struct vk_fragment_shading_rate_state *fsr,
543                      const struct vk_render_pass_state *rp,
544                      const enum brw_sometimes is_mesh)
545 {
546    const struct anv_device *device = pipeline->base.device;
547 
548    memset(&stage->key, 0, sizeof(stage->key));
549 
550    populate_base_prog_key(stage, device);
551 
552    struct brw_wm_prog_key *key = &stage->key.wm;
553 
554    /* We set this to 0 here and set to the actual value before we call
555     * brw_compile_fs.
556     */
557    key->input_slots_valid = 0;
558 
559    /* XXX Vulkan doesn't appear to specify */
560    key->clamp_fragment_color = false;
561 
562    key->ignore_sample_mask_out = false;
563 
564    assert(rp == NULL || rp->color_attachment_count <= MAX_RTS);
565    /* Consider all inputs as valid until look at the NIR variables. */
566    key->color_outputs_valid = rp_color_mask(rp);
567    key->nr_color_regions = util_last_bit(key->color_outputs_valid);
568 
569    /* To reduce possible shader recompilations we would need to know if
570     * there is a SampleMask output variable to compute if we should emit
571     * code to workaround the issue that hardware disables alpha to coverage
572     * when there is SampleMask output.
573     *
574     * If the pipeline we compile the fragment shader in includes the output
575     * interface, then we can be sure whether alpha_coverage is enabled or not.
576     * If we don't have that output interface, then we have to compile the
577     * shader with some conditionals.
578     */
579    if (ms != NULL) {
580       /* VUID-VkGraphicsPipelineCreateInfo-rasterizerDiscardEnable-00751:
581        *
582        *   "If the pipeline is being created with fragment shader state,
583        *    pMultisampleState must be a valid pointer to a valid
584        *    VkPipelineMultisampleStateCreateInfo structure"
585        *
586        * It's also required for the fragment output interface.
587        */
588       key->multisample_fbo =
589          BITSET_TEST(dynamic, MESA_VK_DYNAMIC_MS_RASTERIZATION_SAMPLES) ?
590          BRW_SOMETIMES :
591          ms->rasterization_samples > 1 ? BRW_ALWAYS : BRW_NEVER;
592       key->persample_interp =
593          BITSET_TEST(dynamic, MESA_VK_DYNAMIC_MS_RASTERIZATION_SAMPLES) ?
594          BRW_SOMETIMES :
595          (ms->sample_shading_enable &&
596           (ms->min_sample_shading * ms->rasterization_samples) > 1) ?
597          BRW_ALWAYS : BRW_NEVER;
598       key->alpha_to_coverage =
599          BITSET_TEST(dynamic, MESA_VK_DYNAMIC_MS_ALPHA_TO_COVERAGE_ENABLE) ?
600          BRW_SOMETIMES :
601          (ms->alpha_to_coverage_enable ? BRW_ALWAYS : BRW_NEVER);
602 
603       /* TODO: We should make this dynamic */
604       if (device->physical->instance->sample_mask_out_opengl_behaviour)
605          key->ignore_sample_mask_out = !key->multisample_fbo;
606    } else {
607       /* Consider all inputs as valid until we look at the NIR variables. */
608       key->color_outputs_valid = (1u << MAX_RTS) - 1;
609       key->nr_color_regions = MAX_RTS;
610 
611       key->alpha_to_coverage = BRW_SOMETIMES;
612       key->multisample_fbo = BRW_SOMETIMES;
613       key->persample_interp = BRW_SOMETIMES;
614    }
615 
616    key->mesh_input = is_mesh;
617 
618    /* Vulkan doesn't support fixed-function alpha test */
619    key->alpha_test_replicate_alpha = false;
620 
621   key->coarse_pixel =
622      device->vk.enabled_extensions.KHR_fragment_shading_rate &&
623      pipeline_has_coarse_pixel(dynamic, ms, fsr);
624 
625   key->null_push_constant_tbimr_workaround =
626      device->info->needs_null_push_constant_tbimr_workaround;
627 }
628 
629 static void
populate_cs_prog_key(struct anv_pipeline_stage * stage,const struct anv_device * device)630 populate_cs_prog_key(struct anv_pipeline_stage *stage,
631                      const struct anv_device *device)
632 {
633    memset(&stage->key, 0, sizeof(stage->key));
634 
635    populate_base_prog_key(stage, device);
636 }
637 
638 static void
populate_bs_prog_key(struct anv_pipeline_stage * stage,const struct anv_device * device,uint32_t ray_flags)639 populate_bs_prog_key(struct anv_pipeline_stage *stage,
640                      const struct anv_device *device,
641                      uint32_t ray_flags)
642 {
643    memset(&stage->key, 0, sizeof(stage->key));
644 
645    populate_base_prog_key(stage, device);
646 
647    stage->key.bs.pipeline_ray_flags = ray_flags;
648    stage->key.bs.pipeline_ray_flags = ray_flags;
649 }
650 
651 static void
anv_stage_write_shader_hash(struct anv_pipeline_stage * stage,const struct anv_device * device)652 anv_stage_write_shader_hash(struct anv_pipeline_stage *stage,
653                             const struct anv_device *device)
654 {
655    vk_pipeline_robustness_state_fill(&device->vk,
656                                      &stage->rstate,
657                                      stage->pipeline_pNext,
658                                      stage->info->pNext);
659 
660    vk_pipeline_hash_shader_stage(stage->pipeline_flags, stage->info,
661                                  &stage->rstate, stage->shader_sha1);
662 
663    stage->robust_flags = anv_get_robust_flags(&stage->rstate);
664 
665    /* Use lowest dword of source shader sha1 for shader hash. */
666    stage->source_hash = ((uint32_t*)stage->shader_sha1)[0];
667 }
668 
669 static bool
anv_graphics_pipeline_stage_fragment_dynamic(const struct anv_pipeline_stage * stage)670 anv_graphics_pipeline_stage_fragment_dynamic(const struct anv_pipeline_stage *stage)
671 {
672    if (stage->stage != MESA_SHADER_FRAGMENT)
673       return false;
674 
675    return stage->key.wm.persample_interp == BRW_SOMETIMES ||
676           stage->key.wm.multisample_fbo == BRW_SOMETIMES ||
677           stage->key.wm.alpha_to_coverage == BRW_SOMETIMES;
678 }
679 
680 static void
anv_pipeline_hash_common(struct mesa_sha1 * ctx,const struct anv_pipeline * pipeline)681 anv_pipeline_hash_common(struct mesa_sha1 *ctx,
682                          const struct anv_pipeline *pipeline)
683 {
684    struct anv_device *device = pipeline->device;
685 
686    _mesa_sha1_update(ctx, pipeline->layout.sha1, sizeof(pipeline->layout.sha1));
687 
688    const bool indirect_descriptors = device->physical->indirect_descriptors;
689    _mesa_sha1_update(ctx, &indirect_descriptors, sizeof(indirect_descriptors));
690 
691    const bool rba = device->robust_buffer_access;
692    _mesa_sha1_update(ctx, &rba, sizeof(rba));
693 
694    const int spilling_rate = device->physical->compiler->spilling_rate;
695    _mesa_sha1_update(ctx, &spilling_rate, sizeof(spilling_rate));
696 }
697 
698 static void
anv_pipeline_hash_graphics(struct anv_graphics_base_pipeline * pipeline,struct anv_pipeline_stage * stages,uint32_t view_mask,unsigned char * sha1_out)699 anv_pipeline_hash_graphics(struct anv_graphics_base_pipeline *pipeline,
700                            struct anv_pipeline_stage *stages,
701                            uint32_t view_mask,
702                            unsigned char *sha1_out)
703 {
704    const struct anv_device *device = pipeline->base.device;
705    struct mesa_sha1 ctx;
706    _mesa_sha1_init(&ctx);
707 
708    anv_pipeline_hash_common(&ctx, &pipeline->base);
709 
710    _mesa_sha1_update(&ctx, &view_mask, sizeof(view_mask));
711 
712    for (uint32_t s = 0; s < ANV_GRAPHICS_SHADER_STAGE_COUNT; s++) {
713       if (pipeline->base.active_stages & BITFIELD_BIT(s)) {
714          _mesa_sha1_update(&ctx, stages[s].shader_sha1,
715                            sizeof(stages[s].shader_sha1));
716          _mesa_sha1_update(&ctx, &stages[s].key, brw_prog_key_size(s));
717       }
718    }
719 
720    if (stages[MESA_SHADER_MESH].info || stages[MESA_SHADER_TASK].info) {
721       const uint8_t afs = device->physical->instance->assume_full_subgroups;
722       _mesa_sha1_update(&ctx, &afs, sizeof(afs));
723    }
724 
725    _mesa_sha1_final(&ctx, sha1_out);
726 }
727 
728 static void
anv_pipeline_hash_compute(struct anv_compute_pipeline * pipeline,struct anv_pipeline_stage * stage,unsigned char * sha1_out)729 anv_pipeline_hash_compute(struct anv_compute_pipeline *pipeline,
730                           struct anv_pipeline_stage *stage,
731                           unsigned char *sha1_out)
732 {
733    const struct anv_device *device = pipeline->base.device;
734    struct mesa_sha1 ctx;
735    _mesa_sha1_init(&ctx);
736 
737    anv_pipeline_hash_common(&ctx, &pipeline->base);
738 
739    const uint8_t afs = device->physical->instance->assume_full_subgroups;
740    _mesa_sha1_update(&ctx, &afs, sizeof(afs));
741 
742    const bool afswb = device->physical->instance->assume_full_subgroups_with_barrier;
743    _mesa_sha1_update(&ctx, &afswb, sizeof(afswb));
744 
745    _mesa_sha1_update(&ctx, stage->shader_sha1,
746                      sizeof(stage->shader_sha1));
747    _mesa_sha1_update(&ctx, &stage->key.cs, sizeof(stage->key.cs));
748 
749    _mesa_sha1_final(&ctx, sha1_out);
750 }
751 
752 static void
anv_pipeline_hash_ray_tracing_shader(struct anv_ray_tracing_pipeline * pipeline,struct anv_pipeline_stage * stage,unsigned char * sha1_out)753 anv_pipeline_hash_ray_tracing_shader(struct anv_ray_tracing_pipeline *pipeline,
754                                      struct anv_pipeline_stage *stage,
755                                      unsigned char *sha1_out)
756 {
757    struct mesa_sha1 ctx;
758    _mesa_sha1_init(&ctx);
759 
760    anv_pipeline_hash_common(&ctx, &pipeline->base);
761 
762    _mesa_sha1_update(&ctx, stage->shader_sha1, sizeof(stage->shader_sha1));
763    _mesa_sha1_update(&ctx, &stage->key, sizeof(stage->key.bs));
764 
765    _mesa_sha1_final(&ctx, sha1_out);
766 }
767 
768 static void
anv_pipeline_hash_ray_tracing_combined_shader(struct anv_ray_tracing_pipeline * pipeline,struct anv_pipeline_stage * intersection,struct anv_pipeline_stage * any_hit,unsigned char * sha1_out)769 anv_pipeline_hash_ray_tracing_combined_shader(struct anv_ray_tracing_pipeline *pipeline,
770                                               struct anv_pipeline_stage *intersection,
771                                               struct anv_pipeline_stage *any_hit,
772                                               unsigned char *sha1_out)
773 {
774    struct mesa_sha1 ctx;
775    _mesa_sha1_init(&ctx);
776 
777    _mesa_sha1_update(&ctx, pipeline->base.layout.sha1,
778                      sizeof(pipeline->base.layout.sha1));
779 
780    const bool rba = pipeline->base.device->robust_buffer_access;
781    _mesa_sha1_update(&ctx, &rba, sizeof(rba));
782 
783    _mesa_sha1_update(&ctx, intersection->shader_sha1, sizeof(intersection->shader_sha1));
784    _mesa_sha1_update(&ctx, &intersection->key, sizeof(intersection->key.bs));
785    _mesa_sha1_update(&ctx, any_hit->shader_sha1, sizeof(any_hit->shader_sha1));
786    _mesa_sha1_update(&ctx, &any_hit->key, sizeof(any_hit->key.bs));
787 
788    _mesa_sha1_final(&ctx, sha1_out);
789 }
790 
791 static VkResult
anv_pipeline_stage_get_nir(struct anv_pipeline * pipeline,struct vk_pipeline_cache * cache,void * mem_ctx,struct anv_pipeline_stage * stage)792 anv_pipeline_stage_get_nir(struct anv_pipeline *pipeline,
793                            struct vk_pipeline_cache *cache,
794                            void *mem_ctx,
795                            struct anv_pipeline_stage *stage)
796 {
797    const struct brw_compiler *compiler =
798       pipeline->device->physical->compiler;
799    const nir_shader_compiler_options *nir_options =
800       compiler->nir_options[stage->stage];
801 
802    stage->nir = anv_device_search_for_nir(pipeline->device, cache,
803                                           nir_options,
804                                           stage->shader_sha1,
805                                           mem_ctx);
806    if (stage->nir) {
807       assert(stage->nir->info.stage == stage->stage);
808       return VK_SUCCESS;
809    }
810 
811    /* VkPipelineShaderStageCreateInfo:
812     *
813     *    "If a pipeline is not found, pipeline compilation is not possible and
814     *     the implementation must fail as specified by
815     *     VK_PIPELINE_CREATE_FAIL_ON_PIPELINE_COMPILE_REQUIRED_BIT."
816     */
817    if (vk_pipeline_shader_stage_has_identifier(stage->info))
818       return VK_PIPELINE_COMPILE_REQUIRED;
819 
820    stage->nir = anv_shader_stage_to_nir(pipeline->device,
821                                         stage->pipeline_flags, stage->info,
822                                         stage->key.base.robust_flags, mem_ctx);
823    if (stage->nir) {
824       anv_device_upload_nir(pipeline->device, cache,
825                             stage->nir, stage->shader_sha1);
826       return VK_SUCCESS;
827    }
828 
829    return vk_errorf(&pipeline->device->vk, VK_ERROR_UNKNOWN,
830                     "Unable to load NIR");
831 }
832 
833 static const struct vk_ycbcr_conversion_state *
lookup_ycbcr_conversion(const void * _sets_layout,uint32_t set,uint32_t binding,uint32_t array_index)834 lookup_ycbcr_conversion(const void *_sets_layout, uint32_t set,
835                         uint32_t binding, uint32_t array_index)
836 {
837    const struct anv_pipeline_sets_layout *sets_layout = _sets_layout;
838 
839    assert(set < MAX_SETS);
840    assert(binding < sets_layout->set[set].layout->binding_count);
841    const struct anv_descriptor_set_binding_layout *bind_layout =
842       &sets_layout->set[set].layout->binding[binding];
843 
844    if (bind_layout->immutable_samplers == NULL)
845       return NULL;
846 
847    array_index = MIN2(array_index, bind_layout->array_size - 1);
848 
849    const struct anv_sampler *sampler =
850       bind_layout->immutable_samplers[array_index];
851 
852    return sampler && sampler->vk.ycbcr_conversion ?
853           &sampler->vk.ycbcr_conversion->state : NULL;
854 }
855 
856 static void
shared_type_info(const struct glsl_type * type,unsigned * size,unsigned * align)857 shared_type_info(const struct glsl_type *type, unsigned *size, unsigned *align)
858 {
859    assert(glsl_type_is_vector_or_scalar(type));
860 
861    uint32_t comp_size = glsl_type_is_boolean(type)
862       ? 4 : glsl_get_bit_size(type) / 8;
863    unsigned length = glsl_get_vector_elements(type);
864    *size = comp_size * length,
865    *align = comp_size * (length == 3 ? 4 : length);
866 }
867 
868 static enum anv_dynamic_push_bits
anv_nir_compute_dynamic_push_bits(nir_shader * shader)869 anv_nir_compute_dynamic_push_bits(nir_shader *shader)
870 {
871    enum anv_dynamic_push_bits ret = 0;
872 
873    nir_foreach_function_impl(impl, shader) {
874       nir_foreach_block(block, impl) {
875          nir_foreach_instr(instr, block) {
876             if (instr->type != nir_instr_type_intrinsic)
877                continue;
878 
879             nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
880             if (intrin->intrinsic != nir_intrinsic_load_push_constant)
881                continue;
882 
883             switch (nir_intrinsic_base(intrin)) {
884             case anv_drv_const_offset(gfx.tcs_input_vertices):
885                ret |= ANV_DYNAMIC_PUSH_INPUT_VERTICES;
886                break;
887 
888             default:
889                break;
890             }
891          }
892       }
893    }
894 
895    return ret;
896 }
897 
898 static void
anv_fixup_subgroup_size(struct anv_device * device,struct shader_info * info)899 anv_fixup_subgroup_size(struct anv_device *device, struct shader_info *info)
900 {
901    switch (info->stage) {
902    case MESA_SHADER_COMPUTE:
903    case MESA_SHADER_TASK:
904    case MESA_SHADER_MESH:
905       break;
906    default:
907       return;
908    }
909 
910    unsigned local_size = info->workgroup_size[0] *
911                          info->workgroup_size[1] *
912                          info->workgroup_size[2];
913 
914    /* Games don't always request full subgroups when they should,
915     * which can cause bugs, as they may expect bigger size of the
916     * subgroup than we choose for the execution.
917     */
918    if (device->physical->instance->assume_full_subgroups &&
919        info->uses_wide_subgroup_intrinsics &&
920        info->subgroup_size == SUBGROUP_SIZE_API_CONSTANT &&
921        local_size &&
922        local_size % BRW_SUBGROUP_SIZE == 0)
923       info->subgroup_size = SUBGROUP_SIZE_FULL_SUBGROUPS;
924 
925    if (device->physical->instance->assume_full_subgroups_with_barrier &&
926        info->stage == MESA_SHADER_COMPUTE &&
927        device->info->verx10 <= 125 &&
928        info->uses_control_barrier &&
929        info->subgroup_size == SUBGROUP_SIZE_VARYING &&
930        local_size &&
931        local_size % BRW_SUBGROUP_SIZE == 0)
932       info->subgroup_size = SUBGROUP_SIZE_FULL_SUBGROUPS;
933 
934    /* If the client requests that we dispatch full subgroups but doesn't
935     * allow us to pick a subgroup size, we have to smash it to the API
936     * value of 32.  Performance will likely be terrible in this case but
937     * there's nothing we can do about that.  The client should have chosen
938     * a size.
939     */
940    if (info->subgroup_size == SUBGROUP_SIZE_FULL_SUBGROUPS)
941       info->subgroup_size =
942          device->physical->instance->assume_full_subgroups != 0 ?
943          device->physical->instance->assume_full_subgroups : BRW_SUBGROUP_SIZE;
944 
945    /* Cooperative matrix extension requires that all invocations in a subgroup
946     * be active. As a result, when the application does not request a specific
947     * subgroup size, we must use SIMD32.
948     */
949    if (info->stage == MESA_SHADER_COMPUTE && info->cs.has_cooperative_matrix &&
950        info->subgroup_size < SUBGROUP_SIZE_REQUIRE_8) {
951       info->subgroup_size = BRW_SUBGROUP_SIZE;
952    }
953 }
954 
955 /* #define DEBUG_PRINTF_EXAMPLE 0 */
956 
957 #if DEBUG_PRINTF_EXAMPLE
958 static bool
print_ubo_load(nir_builder * b,nir_intrinsic_instr * intrin,UNUSED void * cb_data)959 print_ubo_load(nir_builder *b,
960                nir_intrinsic_instr *intrin,
961                UNUSED void *cb_data)
962 {
963    if (intrin->intrinsic != nir_intrinsic_load_ubo)
964       return false;
965 
966    b->cursor = nir_before_instr(&intrin->instr);
967    nir_printf_fmt(b, true, 64, "ubo=> pos=%02.2fx%02.2f offset=0x%08x\n",
968                   nir_channel(b, nir_load_frag_coord(b), 0),
969                   nir_channel(b, nir_load_frag_coord(b), 1),
970                   intrin->src[1].ssa);
971 
972    b->cursor = nir_after_instr(&intrin->instr);
973    nir_printf_fmt(b, true, 64, "ubo<= pos=%02.2fx%02.2f offset=0x%08x val=0x%08x\n",
974                   nir_channel(b, nir_load_frag_coord(b), 0),
975                   nir_channel(b, nir_load_frag_coord(b), 1),
976                   intrin->src[1].ssa,
977                   &intrin->def);
978    return true;
979 }
980 #endif
981 
982 static bool
print_tex_handle(nir_builder * b,nir_instr * instr,UNUSED void * cb_data)983 print_tex_handle(nir_builder *b,
984                  nir_instr *instr,
985                  UNUSED void *cb_data)
986 {
987    if (instr->type != nir_instr_type_tex)
988       return false;
989 
990    nir_tex_instr *tex = nir_instr_as_tex(instr);
991 
992    nir_src tex_src = {};
993    for (unsigned i = 0; i < tex->num_srcs; i++) {
994       if (tex->src[i].src_type == nir_tex_src_texture_handle)
995          tex_src = tex->src[i].src;
996    }
997 
998    b->cursor = nir_before_instr(instr);
999    nir_printf_fmt(b, true, 64, "starting pos=%02.2fx%02.2f tex=0x%08x\n",
1000                   nir_channel(b, nir_load_frag_coord(b), 0),
1001                   nir_channel(b, nir_load_frag_coord(b), 1),
1002                   tex_src.ssa);
1003 
1004    b->cursor = nir_after_instr(instr);
1005    nir_printf_fmt(b, true, 64, "done pos=%02.2fx%02.2f tex=0x%08x\n",
1006                   nir_channel(b, nir_load_frag_coord(b), 0),
1007                   nir_channel(b, nir_load_frag_coord(b), 1),
1008                   tex_src.ssa);
1009 
1010    return true;
1011 }
1012 
1013 static void
anv_pipeline_lower_nir(struct anv_pipeline * pipeline,void * mem_ctx,struct anv_pipeline_stage * stage,struct anv_pipeline_sets_layout * layout,uint32_t view_mask,bool use_primitive_replication)1014 anv_pipeline_lower_nir(struct anv_pipeline *pipeline,
1015                        void *mem_ctx,
1016                        struct anv_pipeline_stage *stage,
1017                        struct anv_pipeline_sets_layout *layout,
1018                        uint32_t view_mask,
1019                        bool use_primitive_replication)
1020 {
1021    const struct anv_physical_device *pdevice = pipeline->device->physical;
1022    const struct brw_compiler *compiler = pdevice->compiler;
1023 
1024    struct brw_stage_prog_data *prog_data = &stage->prog_data.base;
1025    nir_shader *nir = stage->nir;
1026 
1027    if (nir->info.stage == MESA_SHADER_FRAGMENT) {
1028       NIR_PASS(_, nir, nir_lower_wpos_center);
1029       NIR_PASS(_, nir, nir_lower_input_attachments,
1030                &(nir_input_attachment_options) {
1031                    .use_fragcoord_sysval = true,
1032                    .use_layer_id_sysval = true,
1033                });
1034    }
1035 
1036    if (nir->info.stage == MESA_SHADER_MESH ||
1037          nir->info.stage == MESA_SHADER_TASK) {
1038       nir_lower_compute_system_values_options options = {
1039             .lower_workgroup_id_to_index = true,
1040             /* nir_lower_idiv generates expensive code */
1041             .shortcut_1d_workgroup_id = compiler->devinfo->verx10 >= 125,
1042       };
1043 
1044       NIR_PASS(_, nir, nir_lower_compute_system_values, &options);
1045    }
1046 
1047    NIR_PASS(_, nir, nir_vk_lower_ycbcr_tex, lookup_ycbcr_conversion, layout);
1048 
1049    if (pipeline->type == ANV_PIPELINE_GRAPHICS ||
1050        pipeline->type == ANV_PIPELINE_GRAPHICS_LIB) {
1051       NIR_PASS(_, nir, anv_nir_lower_multiview, view_mask,
1052                use_primitive_replication);
1053    }
1054 
1055    if (nir->info.stage == MESA_SHADER_COMPUTE && nir->info.cs.has_cooperative_matrix) {
1056       anv_fixup_subgroup_size(pipeline->device, &nir->info);
1057       NIR_PASS(_, nir, brw_nir_lower_cmat, nir->info.subgroup_size);
1058       NIR_PASS_V(nir, nir_lower_indirect_derefs, nir_var_function_temp, 16);
1059    }
1060 
1061    /* The patch control points are delivered through a push constant when
1062     * dynamic.
1063     */
1064    if (nir->info.stage == MESA_SHADER_TESS_CTRL &&
1065        stage->key.tcs.input_vertices == 0)
1066       NIR_PASS(_, nir, anv_nir_lower_load_patch_vertices_in);
1067 
1068    nir_shader_gather_info(nir, nir_shader_get_entrypoint(nir));
1069 
1070    NIR_PASS(_, nir, brw_nir_lower_storage_image,
1071             &(struct brw_nir_lower_storage_image_opts) {
1072                /* Anv only supports Gfx9+ which has better defined typed read
1073                 * behavior. It allows us to only have to care about lowering
1074                 * loads.
1075                 */
1076                .devinfo = compiler->devinfo,
1077                .lower_loads = true,
1078             });
1079 
1080    NIR_PASS(_, nir, nir_lower_explicit_io, nir_var_mem_global,
1081             nir_address_format_64bit_global);
1082    NIR_PASS(_, nir, nir_lower_explicit_io, nir_var_mem_push_const,
1083             nir_address_format_32bit_offset);
1084 
1085    NIR_PASS(_, nir, brw_nir_lower_ray_queries, &pdevice->info);
1086 
1087    stage->push_desc_info.used_descriptors =
1088       anv_nir_compute_used_push_descriptors(nir, layout);
1089 
1090    struct anv_pipeline_push_map push_map = {};
1091 
1092    /* Apply the actual pipeline layout to UBOs, SSBOs, and textures */
1093    NIR_PASS_V(nir, anv_nir_apply_pipeline_layout,
1094               pdevice, stage->key.base.robust_flags,
1095               layout->independent_sets,
1096               layout, &stage->bind_map, &push_map, mem_ctx);
1097 
1098    NIR_PASS(_, nir, nir_lower_explicit_io, nir_var_mem_ubo,
1099             anv_nir_ubo_addr_format(pdevice, stage->key.base.robust_flags));
1100    NIR_PASS(_, nir, nir_lower_explicit_io, nir_var_mem_ssbo,
1101             anv_nir_ssbo_addr_format(pdevice, stage->key.base.robust_flags));
1102 
1103    /* First run copy-prop to get rid of all of the vec() that address
1104     * calculations often create and then constant-fold so that, when we
1105     * get to anv_nir_lower_ubo_loads, we can detect constant offsets.
1106     */
1107    bool progress;
1108    do {
1109       progress = false;
1110       NIR_PASS(progress, nir, nir_opt_algebraic);
1111       NIR_PASS(progress, nir, nir_copy_prop);
1112       NIR_PASS(progress, nir, nir_opt_constant_folding);
1113       NIR_PASS(progress, nir, nir_opt_dce);
1114    } while (progress);
1115 
1116    /* Required for nir_divergence_analysis() which is needed for
1117     * anv_nir_lower_ubo_loads.
1118     */
1119    NIR_PASS(_, nir, nir_convert_to_lcssa, true, true);
1120    nir_divergence_analysis(nir);
1121 
1122    NIR_PASS(_, nir, anv_nir_lower_ubo_loads);
1123 
1124    NIR_PASS(_, nir, nir_opt_remove_phis);
1125 
1126    enum nir_lower_non_uniform_access_type lower_non_uniform_access_types =
1127       nir_lower_non_uniform_texture_access |
1128       nir_lower_non_uniform_image_access |
1129       nir_lower_non_uniform_get_ssbo_size;
1130 
1131    /* In practice, most shaders do not have non-uniform-qualified
1132     * accesses (see
1133     * https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/17558#note_1475069)
1134     * thus a cheaper and likely to fail check is run first.
1135     */
1136    if (nir_has_non_uniform_access(nir, lower_non_uniform_access_types)) {
1137       NIR_PASS(_, nir, nir_opt_non_uniform_access);
1138 
1139       /* We don't support non-uniform UBOs and non-uniform SSBO access is
1140       * handled naturally by falling back to A64 messages.
1141       */
1142       NIR_PASS(_, nir, nir_lower_non_uniform_access,
1143                &(nir_lower_non_uniform_access_options) {
1144                   .types = lower_non_uniform_access_types,
1145                   .callback = NULL,
1146                });
1147 
1148       NIR_PASS(_, nir, intel_nir_lower_non_uniform_resource_intel);
1149       NIR_PASS(_, nir, intel_nir_cleanup_resource_intel);
1150       NIR_PASS(_, nir, nir_opt_dce);
1151    }
1152 
1153    NIR_PASS_V(nir, anv_nir_update_resource_intel_block);
1154 
1155    stage->dynamic_push_values = anv_nir_compute_dynamic_push_bits(nir);
1156 
1157    NIR_PASS_V(nir, anv_nir_compute_push_layout,
1158               pdevice, stage->key.base.robust_flags,
1159               anv_graphics_pipeline_stage_fragment_dynamic(stage),
1160               prog_data, &stage->bind_map, &push_map,
1161               pipeline->layout.type, mem_ctx);
1162 
1163    NIR_PASS_V(nir, anv_nir_lower_resource_intel, pdevice,
1164               pipeline->layout.type);
1165 
1166    if (gl_shader_stage_uses_workgroup(nir->info.stage)) {
1167       if (!nir->info.shared_memory_explicit_layout) {
1168          NIR_PASS(_, nir, nir_lower_vars_to_explicit_types,
1169                   nir_var_mem_shared, shared_type_info);
1170       }
1171 
1172       NIR_PASS(_, nir, nir_lower_explicit_io,
1173                nir_var_mem_shared, nir_address_format_32bit_offset);
1174 
1175       if (nir->info.zero_initialize_shared_memory &&
1176           nir->info.shared_size > 0) {
1177          /* The effective Shared Local Memory size is at least 1024 bytes and
1178           * is always rounded to a power of two, so it is OK to align the size
1179           * used by the shader to chunk_size -- which does simplify the logic.
1180           */
1181          const unsigned chunk_size = 16;
1182          const unsigned shared_size = ALIGN(nir->info.shared_size, chunk_size);
1183          assert(shared_size <=
1184                 intel_compute_slm_calculate_size(compiler->devinfo->ver, nir->info.shared_size));
1185 
1186          NIR_PASS(_, nir, nir_zero_initialize_shared_memory,
1187                   shared_size, chunk_size);
1188       }
1189    }
1190 
1191    if (gl_shader_stage_is_compute(nir->info.stage) ||
1192        gl_shader_stage_is_mesh(nir->info.stage)) {
1193       NIR_PASS(_, nir, brw_nir_lower_cs_intrinsics, compiler->devinfo,
1194                &stage->prog_data.cs);
1195    }
1196 
1197    stage->push_desc_info.used_set_buffer =
1198       anv_nir_loads_push_desc_buffer(nir, layout, &stage->bind_map);
1199    stage->push_desc_info.fully_promoted_ubo_descriptors =
1200       anv_nir_push_desc_ubo_fully_promoted(nir, layout, &stage->bind_map);
1201 
1202 #if DEBUG_PRINTF_EXAMPLE
1203    if (stage->stage == MESA_SHADER_FRAGMENT) {
1204       nir_shader_intrinsics_pass(nir, print_ubo_load,
1205                                  nir_metadata_control_flow,
1206                                  NULL);
1207    }
1208 #endif
1209 
1210    stage->nir = nir;
1211 }
1212 
1213 static void
anv_pipeline_link_vs(const struct brw_compiler * compiler,struct anv_pipeline_stage * vs_stage,struct anv_pipeline_stage * next_stage)1214 anv_pipeline_link_vs(const struct brw_compiler *compiler,
1215                      struct anv_pipeline_stage *vs_stage,
1216                      struct anv_pipeline_stage *next_stage)
1217 {
1218    if (next_stage)
1219       brw_nir_link_shaders(compiler, vs_stage->nir, next_stage->nir);
1220 }
1221 
1222 static void
anv_pipeline_compile_vs(const struct brw_compiler * compiler,void * mem_ctx,struct anv_graphics_base_pipeline * pipeline,struct anv_pipeline_stage * vs_stage,uint32_t view_mask,char ** error_str)1223 anv_pipeline_compile_vs(const struct brw_compiler *compiler,
1224                         void *mem_ctx,
1225                         struct anv_graphics_base_pipeline *pipeline,
1226                         struct anv_pipeline_stage *vs_stage,
1227                         uint32_t view_mask,
1228                         char **error_str)
1229 {
1230    /* When using Primitive Replication for multiview, each view gets its own
1231     * position slot.
1232     */
1233    uint32_t pos_slots =
1234       (vs_stage->nir->info.per_view_outputs & VARYING_BIT_POS) ?
1235       MAX2(1, util_bitcount(view_mask)) : 1;
1236 
1237    /* Only position is allowed to be per-view */
1238    assert(!(vs_stage->nir->info.per_view_outputs & ~VARYING_BIT_POS));
1239 
1240    brw_compute_vue_map(compiler->devinfo,
1241                        &vs_stage->prog_data.vs.base.vue_map,
1242                        vs_stage->nir->info.outputs_written,
1243                        vs_stage->nir->info.separate_shader,
1244                        pos_slots);
1245 
1246    vs_stage->num_stats = 1;
1247 
1248    struct brw_compile_vs_params params = {
1249       .base = {
1250          .nir = vs_stage->nir,
1251          .stats = vs_stage->stats,
1252          .log_data = pipeline->base.device,
1253          .mem_ctx = mem_ctx,
1254          .source_hash = vs_stage->source_hash,
1255       },
1256       .key = &vs_stage->key.vs,
1257       .prog_data = &vs_stage->prog_data.vs,
1258    };
1259 
1260    vs_stage->code = brw_compile_vs(compiler, &params);
1261    *error_str = params.base.error_str;
1262 }
1263 
1264 static void
merge_tess_info(struct shader_info * tes_info,const struct shader_info * tcs_info)1265 merge_tess_info(struct shader_info *tes_info,
1266                 const struct shader_info *tcs_info)
1267 {
1268    /* The Vulkan 1.0.38 spec, section 21.1 Tessellator says:
1269     *
1270     *    "PointMode. Controls generation of points rather than triangles
1271     *     or lines. This functionality defaults to disabled, and is
1272     *     enabled if either shader stage includes the execution mode.
1273     *
1274     * and about Triangles, Quads, IsoLines, VertexOrderCw, VertexOrderCcw,
1275     * PointMode, SpacingEqual, SpacingFractionalEven, SpacingFractionalOdd,
1276     * and OutputVertices, it says:
1277     *
1278     *    "One mode must be set in at least one of the tessellation
1279     *     shader stages."
1280     *
1281     * So, the fields can be set in either the TCS or TES, but they must
1282     * agree if set in both.  Our backend looks at TES, so bitwise-or in
1283     * the values from the TCS.
1284     */
1285    assert(tcs_info->tess.tcs_vertices_out == 0 ||
1286           tes_info->tess.tcs_vertices_out == 0 ||
1287           tcs_info->tess.tcs_vertices_out == tes_info->tess.tcs_vertices_out);
1288    tes_info->tess.tcs_vertices_out |= tcs_info->tess.tcs_vertices_out;
1289 
1290    assert(tcs_info->tess.spacing == TESS_SPACING_UNSPECIFIED ||
1291           tes_info->tess.spacing == TESS_SPACING_UNSPECIFIED ||
1292           tcs_info->tess.spacing == tes_info->tess.spacing);
1293    tes_info->tess.spacing |= tcs_info->tess.spacing;
1294 
1295    assert(tcs_info->tess._primitive_mode == 0 ||
1296           tes_info->tess._primitive_mode == 0 ||
1297           tcs_info->tess._primitive_mode == tes_info->tess._primitive_mode);
1298    tes_info->tess._primitive_mode |= tcs_info->tess._primitive_mode;
1299    tes_info->tess.ccw |= tcs_info->tess.ccw;
1300    tes_info->tess.point_mode |= tcs_info->tess.point_mode;
1301 }
1302 
1303 static void
anv_pipeline_link_tcs(const struct brw_compiler * compiler,struct anv_pipeline_stage * tcs_stage,struct anv_pipeline_stage * tes_stage)1304 anv_pipeline_link_tcs(const struct brw_compiler *compiler,
1305                       struct anv_pipeline_stage *tcs_stage,
1306                       struct anv_pipeline_stage *tes_stage)
1307 {
1308    assert(tes_stage && tes_stage->stage == MESA_SHADER_TESS_EVAL);
1309 
1310    brw_nir_link_shaders(compiler, tcs_stage->nir, tes_stage->nir);
1311 
1312    nir_lower_patch_vertices(tes_stage->nir,
1313                             tcs_stage->nir->info.tess.tcs_vertices_out,
1314                             NULL);
1315 
1316    /* Copy TCS info into the TES info */
1317    merge_tess_info(&tes_stage->nir->info, &tcs_stage->nir->info);
1318 
1319    /* Whacking the key after cache lookup is a bit sketchy, but all of
1320     * this comes from the SPIR-V, which is part of the hash used for the
1321     * pipeline cache.  So it should be safe.
1322     */
1323    tcs_stage->key.tcs._tes_primitive_mode =
1324       tes_stage->nir->info.tess._primitive_mode;
1325 }
1326 
1327 static void
anv_pipeline_compile_tcs(const struct brw_compiler * compiler,void * mem_ctx,struct anv_device * device,struct anv_pipeline_stage * tcs_stage,struct anv_pipeline_stage * prev_stage,char ** error_str)1328 anv_pipeline_compile_tcs(const struct brw_compiler *compiler,
1329                          void *mem_ctx,
1330                          struct anv_device *device,
1331                          struct anv_pipeline_stage *tcs_stage,
1332                          struct anv_pipeline_stage *prev_stage,
1333                          char **error_str)
1334 {
1335    tcs_stage->key.tcs.outputs_written =
1336       tcs_stage->nir->info.outputs_written;
1337    tcs_stage->key.tcs.patch_outputs_written =
1338       tcs_stage->nir->info.patch_outputs_written;
1339 
1340    tcs_stage->num_stats = 1;
1341 
1342    struct brw_compile_tcs_params params = {
1343       .base = {
1344          .nir = tcs_stage->nir,
1345          .stats = tcs_stage->stats,
1346          .log_data = device,
1347          .mem_ctx = mem_ctx,
1348          .source_hash = tcs_stage->source_hash,
1349       },
1350       .key = &tcs_stage->key.tcs,
1351       .prog_data = &tcs_stage->prog_data.tcs,
1352    };
1353 
1354    tcs_stage->code = brw_compile_tcs(compiler, &params);
1355    *error_str = params.base.error_str;
1356 }
1357 
1358 static void
anv_pipeline_link_tes(const struct brw_compiler * compiler,struct anv_pipeline_stage * tes_stage,struct anv_pipeline_stage * next_stage)1359 anv_pipeline_link_tes(const struct brw_compiler *compiler,
1360                       struct anv_pipeline_stage *tes_stage,
1361                       struct anv_pipeline_stage *next_stage)
1362 {
1363    if (next_stage)
1364       brw_nir_link_shaders(compiler, tes_stage->nir, next_stage->nir);
1365 }
1366 
1367 static void
anv_pipeline_compile_tes(const struct brw_compiler * compiler,void * mem_ctx,struct anv_device * device,struct anv_pipeline_stage * tes_stage,struct anv_pipeline_stage * tcs_stage,char ** error_str)1368 anv_pipeline_compile_tes(const struct brw_compiler *compiler,
1369                          void *mem_ctx,
1370                          struct anv_device *device,
1371                          struct anv_pipeline_stage *tes_stage,
1372                          struct anv_pipeline_stage *tcs_stage,
1373                          char **error_str)
1374 {
1375    tes_stage->key.tes.inputs_read =
1376       tcs_stage->nir->info.outputs_written;
1377    tes_stage->key.tes.patch_inputs_read =
1378       tcs_stage->nir->info.patch_outputs_written;
1379 
1380    tes_stage->num_stats = 1;
1381 
1382    struct brw_compile_tes_params params = {
1383       .base = {
1384          .nir = tes_stage->nir,
1385          .stats = tes_stage->stats,
1386          .log_data = device,
1387          .mem_ctx = mem_ctx,
1388          .source_hash = tes_stage->source_hash,
1389       },
1390       .key = &tes_stage->key.tes,
1391       .prog_data = &tes_stage->prog_data.tes,
1392       .input_vue_map = &tcs_stage->prog_data.tcs.base.vue_map,
1393    };
1394 
1395    tes_stage->code = brw_compile_tes(compiler, &params);
1396    *error_str = params.base.error_str;
1397 }
1398 
1399 static void
anv_pipeline_link_gs(const struct brw_compiler * compiler,struct anv_pipeline_stage * gs_stage,struct anv_pipeline_stage * next_stage)1400 anv_pipeline_link_gs(const struct brw_compiler *compiler,
1401                      struct anv_pipeline_stage *gs_stage,
1402                      struct anv_pipeline_stage *next_stage)
1403 {
1404    if (next_stage)
1405       brw_nir_link_shaders(compiler, gs_stage->nir, next_stage->nir);
1406 }
1407 
1408 static void
anv_pipeline_compile_gs(const struct brw_compiler * compiler,void * mem_ctx,struct anv_device * device,struct anv_pipeline_stage * gs_stage,struct anv_pipeline_stage * prev_stage,char ** error_str)1409 anv_pipeline_compile_gs(const struct brw_compiler *compiler,
1410                         void *mem_ctx,
1411                         struct anv_device *device,
1412                         struct anv_pipeline_stage *gs_stage,
1413                         struct anv_pipeline_stage *prev_stage,
1414                         char **error_str)
1415 {
1416    brw_compute_vue_map(compiler->devinfo,
1417                        &gs_stage->prog_data.gs.base.vue_map,
1418                        gs_stage->nir->info.outputs_written,
1419                        gs_stage->nir->info.separate_shader, 1);
1420 
1421    gs_stage->num_stats = 1;
1422 
1423    struct brw_compile_gs_params params = {
1424       .base = {
1425          .nir = gs_stage->nir,
1426          .stats = gs_stage->stats,
1427          .log_data = device,
1428          .mem_ctx = mem_ctx,
1429          .source_hash = gs_stage->source_hash,
1430       },
1431       .key = &gs_stage->key.gs,
1432       .prog_data = &gs_stage->prog_data.gs,
1433    };
1434 
1435    gs_stage->code = brw_compile_gs(compiler, &params);
1436    *error_str = params.base.error_str;
1437 }
1438 
1439 static void
anv_pipeline_link_task(const struct brw_compiler * compiler,struct anv_pipeline_stage * task_stage,struct anv_pipeline_stage * next_stage)1440 anv_pipeline_link_task(const struct brw_compiler *compiler,
1441                        struct anv_pipeline_stage *task_stage,
1442                        struct anv_pipeline_stage *next_stage)
1443 {
1444    assert(next_stage);
1445    assert(next_stage->stage == MESA_SHADER_MESH);
1446    brw_nir_link_shaders(compiler, task_stage->nir, next_stage->nir);
1447 }
1448 
1449 static void
anv_pipeline_compile_task(const struct brw_compiler * compiler,void * mem_ctx,struct anv_device * device,struct anv_pipeline_stage * task_stage,char ** error_str)1450 anv_pipeline_compile_task(const struct brw_compiler *compiler,
1451                           void *mem_ctx,
1452                           struct anv_device *device,
1453                           struct anv_pipeline_stage *task_stage,
1454                           char **error_str)
1455 {
1456    task_stage->num_stats = 1;
1457 
1458    struct brw_compile_task_params params = {
1459       .base = {
1460          .nir = task_stage->nir,
1461          .stats = task_stage->stats,
1462          .log_data = device,
1463          .mem_ctx = mem_ctx,
1464          .source_hash = task_stage->source_hash,
1465       },
1466       .key = &task_stage->key.task,
1467       .prog_data = &task_stage->prog_data.task,
1468    };
1469 
1470    task_stage->code = brw_compile_task(compiler, &params);
1471    *error_str = params.base.error_str;
1472 }
1473 
1474 static void
anv_pipeline_link_mesh(const struct brw_compiler * compiler,struct anv_pipeline_stage * mesh_stage,struct anv_pipeline_stage * next_stage)1475 anv_pipeline_link_mesh(const struct brw_compiler *compiler,
1476                        struct anv_pipeline_stage *mesh_stage,
1477                        struct anv_pipeline_stage *next_stage)
1478 {
1479    if (next_stage) {
1480       brw_nir_link_shaders(compiler, mesh_stage->nir, next_stage->nir);
1481    }
1482 }
1483 
1484 static void
anv_pipeline_compile_mesh(const struct brw_compiler * compiler,void * mem_ctx,struct anv_device * device,struct anv_pipeline_stage * mesh_stage,struct anv_pipeline_stage * prev_stage,char ** error_str)1485 anv_pipeline_compile_mesh(const struct brw_compiler *compiler,
1486                           void *mem_ctx,
1487                           struct anv_device *device,
1488                           struct anv_pipeline_stage *mesh_stage,
1489                           struct anv_pipeline_stage *prev_stage,
1490                           char **error_str)
1491 {
1492    mesh_stage->num_stats = 1;
1493 
1494    struct brw_compile_mesh_params params = {
1495       .base = {
1496          .nir = mesh_stage->nir,
1497          .stats = mesh_stage->stats,
1498          .log_data = device,
1499          .mem_ctx = mem_ctx,
1500          .source_hash = mesh_stage->source_hash,
1501       },
1502       .key = &mesh_stage->key.mesh,
1503       .prog_data = &mesh_stage->prog_data.mesh,
1504    };
1505 
1506    if (prev_stage) {
1507       assert(prev_stage->stage == MESA_SHADER_TASK);
1508       params.tue_map = &prev_stage->prog_data.task.map;
1509    }
1510 
1511    mesh_stage->code = brw_compile_mesh(compiler, &params);
1512    *error_str = params.base.error_str;
1513 }
1514 
1515 static void
anv_pipeline_link_fs(const struct brw_compiler * compiler,struct anv_pipeline_stage * stage,const struct vk_render_pass_state * rp)1516 anv_pipeline_link_fs(const struct brw_compiler *compiler,
1517                      struct anv_pipeline_stage *stage,
1518                      const struct vk_render_pass_state *rp)
1519 {
1520    /* Initially the valid outputs value is set to all possible render targets
1521     * valid (see populate_wm_prog_key()), before we look at the shader
1522     * variables. Here we look at the output variables of the shader an compute
1523     * a correct number of render target outputs.
1524     */
1525    stage->key.wm.color_outputs_valid = 0;
1526    nir_foreach_shader_out_variable_safe(var, stage->nir) {
1527       if (var->data.location < FRAG_RESULT_DATA0)
1528          continue;
1529 
1530       const unsigned rt = var->data.location - FRAG_RESULT_DATA0;
1531       const unsigned array_len =
1532          glsl_type_is_array(var->type) ? glsl_get_length(var->type) : 1;
1533       assert(rt + array_len <= MAX_RTS);
1534 
1535       stage->key.wm.color_outputs_valid |= BITFIELD_RANGE(rt, array_len);
1536    }
1537    stage->key.wm.color_outputs_valid &= rp_color_mask(rp);
1538    stage->key.wm.nr_color_regions =
1539       util_last_bit(stage->key.wm.color_outputs_valid);
1540 
1541    unsigned num_rt_bindings;
1542    struct anv_pipeline_binding rt_bindings[MAX_RTS];
1543    if (stage->key.wm.nr_color_regions > 0) {
1544       assert(stage->key.wm.nr_color_regions <= MAX_RTS);
1545       for (unsigned rt = 0; rt < stage->key.wm.nr_color_regions; rt++) {
1546          if (stage->key.wm.color_outputs_valid & BITFIELD_BIT(rt)) {
1547             rt_bindings[rt] = (struct anv_pipeline_binding) {
1548                .set = ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS,
1549                .index = rt,
1550                .binding = UINT32_MAX,
1551 
1552             };
1553          } else {
1554             /* Setup a null render target */
1555             rt_bindings[rt] = (struct anv_pipeline_binding) {
1556                .set = ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS,
1557                .index = UINT32_MAX,
1558                .binding = UINT32_MAX,
1559             };
1560          }
1561       }
1562       num_rt_bindings = stage->key.wm.nr_color_regions;
1563    } else {
1564       /* Setup a null render target */
1565       rt_bindings[0] = (struct anv_pipeline_binding) {
1566          .set = ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS,
1567          .index = UINT32_MAX,
1568       };
1569       num_rt_bindings = 1;
1570    }
1571 
1572    assert(num_rt_bindings <= MAX_RTS);
1573    assert(stage->bind_map.surface_count == 0);
1574    typed_memcpy(stage->bind_map.surface_to_descriptor,
1575                 rt_bindings, num_rt_bindings);
1576    stage->bind_map.surface_count += num_rt_bindings;
1577 }
1578 
1579 static void
anv_pipeline_compile_fs(const struct brw_compiler * compiler,void * mem_ctx,struct anv_device * device,struct anv_pipeline_stage * fs_stage,struct anv_pipeline_stage * prev_stage,struct anv_graphics_base_pipeline * pipeline,uint32_t view_mask,bool use_primitive_replication,char ** error_str)1580 anv_pipeline_compile_fs(const struct brw_compiler *compiler,
1581                         void *mem_ctx,
1582                         struct anv_device *device,
1583                         struct anv_pipeline_stage *fs_stage,
1584                         struct anv_pipeline_stage *prev_stage,
1585                         struct anv_graphics_base_pipeline *pipeline,
1586                         uint32_t view_mask,
1587                         bool use_primitive_replication,
1588                         char **error_str)
1589 {
1590    /* When using Primitive Replication for multiview, each view gets its own
1591     * position slot.
1592     */
1593    uint32_t pos_slots = use_primitive_replication ?
1594       MAX2(1, util_bitcount(view_mask)) : 1;
1595 
1596    /* If we have a previous stage we can use that to deduce valid slots.
1597     * Otherwise, rely on inputs of the input shader.
1598     */
1599    if (prev_stage) {
1600       fs_stage->key.wm.input_slots_valid =
1601          prev_stage->prog_data.vue.vue_map.slots_valid;
1602    } else {
1603       struct intel_vue_map prev_vue_map;
1604       brw_compute_vue_map(compiler->devinfo,
1605                           &prev_vue_map,
1606                           fs_stage->nir->info.inputs_read,
1607                           fs_stage->nir->info.separate_shader,
1608                           pos_slots);
1609 
1610       fs_stage->key.wm.input_slots_valid = prev_vue_map.slots_valid;
1611    }
1612 
1613    struct brw_compile_fs_params params = {
1614       .base = {
1615          .nir = fs_stage->nir,
1616          .stats = fs_stage->stats,
1617          .log_data = device,
1618          .mem_ctx = mem_ctx,
1619          .source_hash = fs_stage->source_hash,
1620       },
1621       .key = &fs_stage->key.wm,
1622       .prog_data = &fs_stage->prog_data.wm,
1623 
1624       .allow_spilling = true,
1625       .max_polygons = UCHAR_MAX,
1626    };
1627 
1628    if (prev_stage && prev_stage->stage == MESA_SHADER_MESH) {
1629       params.mue_map = &prev_stage->prog_data.mesh.map;
1630       /* TODO(mesh): Slots valid, do we even use/rely on it? */
1631    }
1632 
1633    fs_stage->code = brw_compile_fs(compiler, &params);
1634    *error_str = params.base.error_str;
1635 
1636    fs_stage->num_stats = (uint32_t)!!fs_stage->prog_data.wm.dispatch_multi +
1637                          (uint32_t)fs_stage->prog_data.wm.dispatch_8 +
1638                          (uint32_t)fs_stage->prog_data.wm.dispatch_16 +
1639                          (uint32_t)fs_stage->prog_data.wm.dispatch_32;
1640    assert(fs_stage->num_stats <= ARRAY_SIZE(fs_stage->stats));
1641 }
1642 
1643 static void
anv_pipeline_add_executable(struct anv_pipeline * pipeline,struct anv_pipeline_stage * stage,struct brw_compile_stats * stats,uint32_t code_offset)1644 anv_pipeline_add_executable(struct anv_pipeline *pipeline,
1645                             struct anv_pipeline_stage *stage,
1646                             struct brw_compile_stats *stats,
1647                             uint32_t code_offset)
1648 {
1649    char *nir = NULL;
1650    if (stage->nir &&
1651        (pipeline->flags &
1652         VK_PIPELINE_CREATE_2_CAPTURE_INTERNAL_REPRESENTATIONS_BIT_KHR)) {
1653       nir = nir_shader_as_str(stage->nir, pipeline->mem_ctx);
1654    }
1655 
1656    char *disasm = NULL;
1657    if (stage->code &&
1658        (pipeline->flags &
1659         VK_PIPELINE_CREATE_2_CAPTURE_INTERNAL_REPRESENTATIONS_BIT_KHR)) {
1660       char *stream_data = NULL;
1661       size_t stream_size = 0;
1662       FILE *stream = open_memstream(&stream_data, &stream_size);
1663 
1664       uint32_t push_size = 0;
1665       for (unsigned i = 0; i < 4; i++)
1666          push_size += stage->bind_map.push_ranges[i].length;
1667       if (push_size > 0) {
1668          fprintf(stream, "Push constant ranges:\n");
1669          for (unsigned i = 0; i < 4; i++) {
1670             if (stage->bind_map.push_ranges[i].length == 0)
1671                continue;
1672 
1673             fprintf(stream, "    RANGE%d (%dB): ", i,
1674                     stage->bind_map.push_ranges[i].length * 32);
1675 
1676             switch (stage->bind_map.push_ranges[i].set) {
1677             case ANV_DESCRIPTOR_SET_NULL:
1678                fprintf(stream, "NULL");
1679                break;
1680 
1681             case ANV_DESCRIPTOR_SET_PUSH_CONSTANTS:
1682                fprintf(stream, "Vulkan push constants and API params");
1683                break;
1684 
1685             case ANV_DESCRIPTOR_SET_DESCRIPTORS_BUFFER:
1686                fprintf(stream, "Descriptor buffer (desc buffer) for set %d (start=%dB)",
1687                        stage->bind_map.push_ranges[i].index,
1688                        stage->bind_map.push_ranges[i].start * 32);
1689                break;
1690 
1691             case ANV_DESCRIPTOR_SET_DESCRIPTORS:
1692                fprintf(stream, "Descriptor buffer for set %d (start=%dB)",
1693                        stage->bind_map.push_ranges[i].index,
1694                        stage->bind_map.push_ranges[i].start * 32);
1695                break;
1696 
1697             case ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS:
1698                unreachable("gl_NumWorkgroups is never pushed");
1699 
1700             case ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS:
1701                unreachable("Color attachments can't be pushed");
1702 
1703             default:
1704                fprintf(stream, "UBO (set=%d binding=%d start=%dB)",
1705                        stage->bind_map.push_ranges[i].set,
1706                        stage->bind_map.push_ranges[i].index,
1707                        stage->bind_map.push_ranges[i].start * 32);
1708                break;
1709             }
1710             fprintf(stream, "\n");
1711          }
1712          fprintf(stream, "\n");
1713       }
1714 
1715       /* Creating this is far cheaper than it looks.  It's perfectly fine to
1716        * do it for every binary.
1717        */
1718       brw_disassemble_with_errors(&pipeline->device->physical->compiler->isa,
1719                                   stage->code, code_offset, stream);
1720 
1721       fclose(stream);
1722 
1723       /* Copy it to a ralloc'd thing */
1724       disasm = ralloc_size(pipeline->mem_ctx, stream_size + 1);
1725       memcpy(disasm, stream_data, stream_size);
1726       disasm[stream_size] = 0;
1727 
1728       free(stream_data);
1729    }
1730 
1731    const struct anv_pipeline_executable exe = {
1732       .stage = stage->stage,
1733       .stats = *stats,
1734       .nir = nir,
1735       .disasm = disasm,
1736    };
1737    util_dynarray_append(&pipeline->executables,
1738                         struct anv_pipeline_executable, exe);
1739 }
1740 
1741 static void
anv_pipeline_add_executables(struct anv_pipeline * pipeline,struct anv_pipeline_stage * stage)1742 anv_pipeline_add_executables(struct anv_pipeline *pipeline,
1743                              struct anv_pipeline_stage *stage)
1744 {
1745    if (stage->stage == MESA_SHADER_FRAGMENT) {
1746       /* We pull the prog data and stats out of the anv_shader_bin because
1747        * the anv_pipeline_stage may not be fully populated if we successfully
1748        * looked up the shader in a cache.
1749        */
1750       const struct brw_wm_prog_data *wm_prog_data =
1751          (const struct brw_wm_prog_data *)stage->bin->prog_data;
1752       struct brw_compile_stats *stats = stage->bin->stats;
1753 
1754       if (wm_prog_data->dispatch_8 ||
1755           wm_prog_data->dispatch_multi) {
1756          anv_pipeline_add_executable(pipeline, stage, stats++, 0);
1757       }
1758 
1759       if (wm_prog_data->dispatch_16) {
1760          anv_pipeline_add_executable(pipeline, stage, stats++,
1761                                      wm_prog_data->prog_offset_16);
1762       }
1763 
1764       if (wm_prog_data->dispatch_32) {
1765          anv_pipeline_add_executable(pipeline, stage, stats++,
1766                                      wm_prog_data->prog_offset_32);
1767       }
1768    } else {
1769       anv_pipeline_add_executable(pipeline, stage, stage->bin->stats, 0);
1770    }
1771 }
1772 
1773 static void
anv_pipeline_account_shader(struct anv_pipeline * pipeline,struct anv_shader_bin * shader)1774 anv_pipeline_account_shader(struct anv_pipeline *pipeline,
1775                             struct anv_shader_bin *shader)
1776 {
1777    pipeline->scratch_size = MAX2(pipeline->scratch_size,
1778                                  shader->prog_data->total_scratch);
1779 
1780    pipeline->ray_queries = MAX2(pipeline->ray_queries,
1781                                 shader->prog_data->ray_queries);
1782 
1783    if (shader->push_desc_info.used_set_buffer) {
1784       pipeline->use_push_descriptor_buffer |=
1785          mesa_to_vk_shader_stage(shader->stage);
1786    }
1787    if (shader->push_desc_info.used_descriptors &
1788        ~shader->push_desc_info.fully_promoted_ubo_descriptors)
1789       pipeline->use_push_descriptor |= mesa_to_vk_shader_stage(shader->stage);
1790 }
1791 
1792 /* This function return true if a shader should not be looked at because of
1793  * fast linking. Instead we should use the shader binaries provided by
1794  * libraries.
1795  */
1796 static bool
anv_graphics_pipeline_skip_shader_compile(struct anv_graphics_base_pipeline * pipeline,struct anv_pipeline_stage * stages,bool link_optimize,gl_shader_stage stage)1797 anv_graphics_pipeline_skip_shader_compile(struct anv_graphics_base_pipeline *pipeline,
1798                                           struct anv_pipeline_stage *stages,
1799                                           bool link_optimize,
1800                                           gl_shader_stage stage)
1801 {
1802    /* Always skip non active stages */
1803    if (!anv_pipeline_base_has_stage(pipeline, stage))
1804       return true;
1805 
1806    /* When link optimizing, consider all stages */
1807    if (link_optimize)
1808       return false;
1809 
1810    /* Otherwise check if the stage was specified through
1811     * VkGraphicsPipelineCreateInfo
1812     */
1813    assert(stages[stage].info != NULL || stages[stage].imported.bin != NULL);
1814    return stages[stage].info == NULL;
1815 }
1816 
1817 static void
anv_graphics_pipeline_init_keys(struct anv_graphics_base_pipeline * pipeline,const struct vk_graphics_pipeline_state * state,struct anv_pipeline_stage * stages)1818 anv_graphics_pipeline_init_keys(struct anv_graphics_base_pipeline *pipeline,
1819                                 const struct vk_graphics_pipeline_state *state,
1820                                 struct anv_pipeline_stage *stages)
1821 {
1822    for (uint32_t s = 0; s < ANV_GRAPHICS_SHADER_STAGE_COUNT; s++) {
1823       if (!anv_pipeline_base_has_stage(pipeline, s))
1824          continue;
1825 
1826       int64_t stage_start = os_time_get_nano();
1827 
1828       const struct anv_device *device = pipeline->base.device;
1829       switch (stages[s].stage) {
1830       case MESA_SHADER_VERTEX:
1831          populate_vs_prog_key(&stages[s], device);
1832          break;
1833       case MESA_SHADER_TESS_CTRL:
1834          populate_tcs_prog_key(&stages[s],
1835                                device,
1836                                BITSET_TEST(state->dynamic,
1837                                            MESA_VK_DYNAMIC_TS_PATCH_CONTROL_POINTS) ?
1838                                0 : state->ts->patch_control_points);
1839          break;
1840       case MESA_SHADER_TESS_EVAL:
1841          populate_tes_prog_key(&stages[s], device);
1842          break;
1843       case MESA_SHADER_GEOMETRY:
1844          populate_gs_prog_key(&stages[s], device);
1845          break;
1846       case MESA_SHADER_FRAGMENT: {
1847          /* Assume rasterization enabled in any of the following case :
1848           *
1849           *    - We're a pipeline library without pre-rasterization information
1850           *
1851           *    - Rasterization is not disabled in the non dynamic state
1852           *
1853           *    - Rasterization disable is dynamic
1854           */
1855          const bool raster_enabled =
1856             state->rs == NULL ||
1857             !state->rs->rasterizer_discard_enable ||
1858             BITSET_TEST(state->dynamic, MESA_VK_DYNAMIC_RS_RASTERIZER_DISCARD_ENABLE);
1859          enum brw_sometimes is_mesh = BRW_NEVER;
1860          if (device->vk.enabled_extensions.EXT_mesh_shader) {
1861             if (anv_pipeline_base_has_stage(pipeline, MESA_SHADER_VERTEX))
1862                is_mesh = BRW_NEVER;
1863             else if (anv_pipeline_base_has_stage(pipeline, MESA_SHADER_MESH))
1864                is_mesh = BRW_ALWAYS;
1865             else {
1866                assert(pipeline->base.type == ANV_PIPELINE_GRAPHICS_LIB);
1867                is_mesh = BRW_SOMETIMES;
1868             }
1869          }
1870          populate_wm_prog_key(&stages[s],
1871                               pipeline,
1872                               state->dynamic,
1873                               raster_enabled ? state->ms : NULL,
1874                               state->fsr, state->rp, is_mesh);
1875          break;
1876       }
1877 
1878       case MESA_SHADER_TASK:
1879          populate_task_prog_key(&stages[s], device);
1880          break;
1881 
1882       case MESA_SHADER_MESH: {
1883          const bool compact_mue =
1884             !(pipeline->base.type == ANV_PIPELINE_GRAPHICS_LIB &&
1885               !anv_pipeline_base_has_stage(pipeline, MESA_SHADER_FRAGMENT));
1886          populate_mesh_prog_key(&stages[s], device, compact_mue);
1887          break;
1888       }
1889 
1890       default:
1891          unreachable("Invalid graphics shader stage");
1892       }
1893 
1894       stages[s].feedback.duration += os_time_get_nano() - stage_start;
1895       stages[s].feedback.flags |= VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT;
1896    }
1897 }
1898 
1899 static void
anv_graphics_lib_retain_shaders(struct anv_graphics_base_pipeline * pipeline,struct anv_pipeline_stage * stages,bool will_compile)1900 anv_graphics_lib_retain_shaders(struct anv_graphics_base_pipeline *pipeline,
1901                                 struct anv_pipeline_stage *stages,
1902                                 bool will_compile)
1903 {
1904    /* There isn't much point in retaining NIR shaders on final pipelines. */
1905    assert(pipeline->base.type == ANV_PIPELINE_GRAPHICS_LIB);
1906 
1907    struct anv_graphics_lib_pipeline *lib = (struct anv_graphics_lib_pipeline *) pipeline;
1908 
1909    for (int s = 0; s < ARRAY_SIZE(pipeline->shaders); s++) {
1910       if (!anv_pipeline_base_has_stage(pipeline, s))
1911          continue;
1912 
1913       memcpy(lib->retained_shaders[s].shader_sha1, stages[s].shader_sha1,
1914              sizeof(stages[s].shader_sha1));
1915 
1916       lib->retained_shaders[s].subgroup_size_type = stages[s].subgroup_size_type;
1917 
1918       nir_shader *nir = stages[s].nir != NULL ? stages[s].nir : stages[s].imported.nir;
1919       assert(nir != NULL);
1920 
1921       if (!will_compile) {
1922          lib->retained_shaders[s].nir = nir;
1923       } else {
1924          lib->retained_shaders[s].nir =
1925             nir_shader_clone(pipeline->base.mem_ctx, nir);
1926       }
1927    }
1928 }
1929 
1930 static bool
anv_graphics_pipeline_load_cached_shaders(struct anv_graphics_base_pipeline * pipeline,struct vk_pipeline_cache * cache,struct anv_pipeline_stage * stages,bool link_optimize,VkPipelineCreationFeedback * pipeline_feedback)1931 anv_graphics_pipeline_load_cached_shaders(struct anv_graphics_base_pipeline *pipeline,
1932                                           struct vk_pipeline_cache *cache,
1933                                           struct anv_pipeline_stage *stages,
1934                                           bool link_optimize,
1935                                           VkPipelineCreationFeedback *pipeline_feedback)
1936 {
1937    struct anv_device *device = pipeline->base.device;
1938    unsigned cache_hits = 0, found = 0, imported = 0;
1939 
1940    for (unsigned s = 0; s < ARRAY_SIZE(pipeline->shaders); s++) {
1941       if (!anv_pipeline_base_has_stage(pipeline, s))
1942          continue;
1943 
1944       int64_t stage_start = os_time_get_nano();
1945 
1946       bool cache_hit;
1947       stages[s].bin =
1948          anv_device_search_for_kernel(device, cache, &stages[s].cache_key,
1949                                       sizeof(stages[s].cache_key), &cache_hit);
1950       if (stages[s].bin) {
1951          found++;
1952          pipeline->shaders[s] = stages[s].bin;
1953       }
1954 
1955       if (cache_hit) {
1956          cache_hits++;
1957          stages[s].feedback.flags |=
1958             VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT;
1959       }
1960       stages[s].feedback.duration += os_time_get_nano() - stage_start;
1961    }
1962 
1963    /* When not link optimizing, lookup the missing shader in the imported
1964     * libraries.
1965     */
1966    if (!link_optimize) {
1967       for (unsigned s = 0; s < ARRAY_SIZE(pipeline->shaders); s++) {
1968          if (!anv_pipeline_base_has_stage(pipeline, s))
1969             continue;
1970 
1971          if (pipeline->shaders[s] != NULL)
1972             continue;
1973 
1974          if (stages[s].imported.bin == NULL)
1975             continue;
1976 
1977          stages[s].bin = stages[s].imported.bin;
1978          pipeline->shaders[s] = anv_shader_bin_ref(stages[s].imported.bin);
1979          pipeline->source_hashes[s] = stages[s].source_hash;
1980          imported++;
1981       }
1982    }
1983 
1984    if ((found + imported) == __builtin_popcount(pipeline->base.active_stages)) {
1985       if (cache_hits == found && found != 0) {
1986          pipeline_feedback->flags |=
1987             VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT;
1988       }
1989       /* We found all our shaders in the cache.  We're done. */
1990       for (unsigned s = 0; s < ARRAY_SIZE(pipeline->shaders); s++) {
1991          if (pipeline->shaders[s] == NULL)
1992             continue;
1993 
1994          /* Only add the executables when we're not importing or doing link
1995           * optimizations. The imported executables are added earlier. Link
1996           * optimization can produce different binaries.
1997           */
1998          if (stages[s].imported.bin == NULL || link_optimize)
1999             anv_pipeline_add_executables(&pipeline->base, &stages[s]);
2000          pipeline->source_hashes[s] = stages[s].source_hash;
2001       }
2002       return true;
2003    } else if (found > 0) {
2004       /* We found some but not all of our shaders. This shouldn't happen most
2005        * of the time but it can if we have a partially populated pipeline
2006        * cache.
2007        */
2008       assert(found < __builtin_popcount(pipeline->base.active_stages));
2009 
2010       /* With GPL, this might well happen if the app does an optimized
2011        * link.
2012        */
2013       if (!pipeline->base.device->vk.enabled_extensions.EXT_graphics_pipeline_library) {
2014          vk_perf(VK_LOG_OBJS(cache ? &cache->base :
2015                              &pipeline->base.device->vk.base),
2016                  "Found a partial pipeline in the cache.  This is "
2017                  "most likely caused by an incomplete pipeline cache "
2018                  "import or export");
2019       }
2020 
2021       /* We're going to have to recompile anyway, so just throw away our
2022        * references to the shaders in the cache.  We'll get them out of the
2023        * cache again as part of the compilation process.
2024        */
2025       for (unsigned s = 0; s < ARRAY_SIZE(pipeline->shaders); s++) {
2026          stages[s].feedback.flags = 0;
2027          if (pipeline->shaders[s]) {
2028             anv_shader_bin_unref(device, pipeline->shaders[s]);
2029             pipeline->shaders[s] = NULL;
2030          }
2031       }
2032    }
2033 
2034    return false;
2035 }
2036 
2037 static const gl_shader_stage graphics_shader_order[] = {
2038    MESA_SHADER_VERTEX,
2039    MESA_SHADER_TESS_CTRL,
2040    MESA_SHADER_TESS_EVAL,
2041    MESA_SHADER_GEOMETRY,
2042 
2043    MESA_SHADER_TASK,
2044    MESA_SHADER_MESH,
2045 
2046    MESA_SHADER_FRAGMENT,
2047 };
2048 
2049 /* This function loads NIR only for stages specified in
2050  * VkGraphicsPipelineCreateInfo::pStages[]
2051  */
2052 static VkResult
anv_graphics_pipeline_load_nir(struct anv_graphics_base_pipeline * pipeline,struct vk_pipeline_cache * cache,struct anv_pipeline_stage * stages,void * mem_ctx,bool need_clone)2053 anv_graphics_pipeline_load_nir(struct anv_graphics_base_pipeline *pipeline,
2054                                struct vk_pipeline_cache *cache,
2055                                struct anv_pipeline_stage *stages,
2056                                void *mem_ctx,
2057                                bool need_clone)
2058 {
2059    for (unsigned s = 0; s < ANV_GRAPHICS_SHADER_STAGE_COUNT; s++) {
2060       if (!anv_pipeline_base_has_stage(pipeline, s))
2061          continue;
2062 
2063       int64_t stage_start = os_time_get_nano();
2064 
2065       assert(stages[s].stage == s);
2066 
2067       /* Only use the create NIR from the pStages[] element if we don't have
2068        * an imported library for the same stage.
2069        */
2070       if (stages[s].imported.bin == NULL) {
2071          VkResult result = anv_pipeline_stage_get_nir(&pipeline->base, cache,
2072                                                       mem_ctx, &stages[s]);
2073          if (result != VK_SUCCESS)
2074             return result;
2075       } else {
2076          stages[s].nir = need_clone ?
2077                          nir_shader_clone(mem_ctx, stages[s].imported.nir) :
2078                          stages[s].imported.nir;
2079       }
2080 
2081       stages[s].feedback.duration += os_time_get_nano() - stage_start;
2082    }
2083 
2084    return VK_SUCCESS;
2085 }
2086 
2087 static void
anv_pipeline_nir_preprocess(struct anv_pipeline * pipeline,struct anv_pipeline_stage * stage)2088 anv_pipeline_nir_preprocess(struct anv_pipeline *pipeline,
2089                             struct anv_pipeline_stage *stage)
2090 {
2091    struct anv_device *device = pipeline->device;
2092    const struct brw_compiler *compiler = device->physical->compiler;
2093 
2094    const struct nir_lower_sysvals_to_varyings_options sysvals_to_varyings = {
2095       .point_coord = true,
2096    };
2097    NIR_PASS(_, stage->nir, nir_lower_sysvals_to_varyings, &sysvals_to_varyings);
2098 
2099    const nir_opt_access_options opt_access_options = {
2100       .is_vulkan = true,
2101    };
2102    NIR_PASS(_, stage->nir, nir_opt_access, &opt_access_options);
2103 
2104    /* Vulkan uses the separate-shader linking model */
2105    stage->nir->info.separate_shader = true;
2106 
2107    struct brw_nir_compiler_opts opts = {
2108       .softfp64 = device->fp64_nir,
2109       /* Assume robustness with EXT_pipeline_robustness because this can be
2110        * turned on/off per pipeline and we have no visibility on this here.
2111        */
2112       .robust_image_access = device->vk.enabled_features.robustImageAccess ||
2113                              device->vk.enabled_features.robustImageAccess2 ||
2114                              device->vk.enabled_extensions.EXT_pipeline_robustness,
2115       .input_vertices = stage->nir->info.stage == MESA_SHADER_TESS_CTRL ?
2116                         stage->key.tcs.input_vertices : 0,
2117    };
2118    brw_preprocess_nir(compiler, stage->nir, &opts);
2119 
2120    if (stage->nir->info.stage == MESA_SHADER_MESH) {
2121       NIR_PASS(_, stage->nir, anv_nir_lower_set_vtx_and_prim_count);
2122       NIR_PASS(_, stage->nir, nir_opt_dce);
2123       NIR_PASS(_, stage->nir, nir_remove_dead_variables, nir_var_shader_out, NULL);
2124    }
2125 
2126    NIR_PASS(_, stage->nir, nir_opt_barrier_modes);
2127 
2128    nir_shader_gather_info(stage->nir, nir_shader_get_entrypoint(stage->nir));
2129 }
2130 
2131 static void
anv_fill_pipeline_creation_feedback(const struct anv_graphics_base_pipeline * pipeline,VkPipelineCreationFeedback * pipeline_feedback,const VkGraphicsPipelineCreateInfo * info,struct anv_pipeline_stage * stages)2132 anv_fill_pipeline_creation_feedback(const struct anv_graphics_base_pipeline *pipeline,
2133                                     VkPipelineCreationFeedback *pipeline_feedback,
2134                                     const VkGraphicsPipelineCreateInfo *info,
2135                                     struct anv_pipeline_stage *stages)
2136 {
2137    const VkPipelineCreationFeedbackCreateInfo *create_feedback =
2138       vk_find_struct_const(info->pNext, PIPELINE_CREATION_FEEDBACK_CREATE_INFO);
2139    if (create_feedback) {
2140       *create_feedback->pPipelineCreationFeedback = *pipeline_feedback;
2141 
2142       /* VkPipelineCreationFeedbackCreateInfo:
2143        *
2144        *    "An implementation must set or clear the
2145        *     VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT in
2146        *     VkPipelineCreationFeedback::flags for pPipelineCreationFeedback
2147        *     and every element of pPipelineStageCreationFeedbacks."
2148        *
2149        */
2150       for (uint32_t i = 0; i < create_feedback->pipelineStageCreationFeedbackCount; i++) {
2151          create_feedback->pPipelineStageCreationFeedbacks[i].flags &=
2152             ~VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT;
2153       }
2154       /* This part is not really specified in the Vulkan spec at the moment.
2155        * We're kind of guessing what the CTS wants. We might need to update
2156        * when https://gitlab.khronos.org/vulkan/vulkan/-/issues/3115 is
2157        * clarified.
2158        */
2159       for (uint32_t s = 0; s < ANV_GRAPHICS_SHADER_STAGE_COUNT; s++) {
2160          if (!anv_pipeline_base_has_stage(pipeline, s))
2161             continue;
2162 
2163          if (stages[s].feedback_idx < create_feedback->pipelineStageCreationFeedbackCount) {
2164             create_feedback->pPipelineStageCreationFeedbacks[
2165                stages[s].feedback_idx] = stages[s].feedback;
2166          }
2167       }
2168    }
2169 }
2170 
2171 static uint32_t
anv_graphics_pipeline_imported_shader_count(struct anv_pipeline_stage * stages)2172 anv_graphics_pipeline_imported_shader_count(struct anv_pipeline_stage *stages)
2173 {
2174    uint32_t count = 0;
2175    for (uint32_t s = 0; s < ANV_GRAPHICS_SHADER_STAGE_COUNT; s++) {
2176       if (stages[s].imported.bin != NULL)
2177          count++;
2178    }
2179    return count;
2180 }
2181 
2182 static VkResult
anv_graphics_pipeline_compile(struct anv_graphics_base_pipeline * pipeline,struct anv_pipeline_stage * stages,struct vk_pipeline_cache * cache,VkPipelineCreationFeedback * pipeline_feedback,const VkGraphicsPipelineCreateInfo * info,const struct vk_graphics_pipeline_state * state)2183 anv_graphics_pipeline_compile(struct anv_graphics_base_pipeline *pipeline,
2184                               struct anv_pipeline_stage *stages,
2185                               struct vk_pipeline_cache *cache,
2186                               VkPipelineCreationFeedback *pipeline_feedback,
2187                               const VkGraphicsPipelineCreateInfo *info,
2188                               const struct vk_graphics_pipeline_state *state)
2189 {
2190    int64_t pipeline_start = os_time_get_nano();
2191 
2192    struct anv_device *device = pipeline->base.device;
2193    const struct intel_device_info *devinfo = device->info;
2194    const struct brw_compiler *compiler = device->physical->compiler;
2195 
2196    /* Setup the shaders given in this VkGraphicsPipelineCreateInfo::pStages[].
2197     * Other shaders imported from libraries should have been added by
2198     * anv_graphics_pipeline_import_lib().
2199     */
2200    uint32_t shader_count = anv_graphics_pipeline_imported_shader_count(stages);
2201    for (uint32_t i = 0; i < info->stageCount; i++) {
2202       gl_shader_stage stage = vk_to_mesa_shader_stage(info->pStages[i].stage);
2203 
2204       /* If a pipeline library is loaded in this stage, we should ignore the
2205        * pStages[] entry of the same stage.
2206        */
2207       if (stages[stage].imported.bin != NULL)
2208          continue;
2209 
2210       stages[stage].stage = stage;
2211       stages[stage].pipeline_flags = pipeline->base.flags;
2212       stages[stage].pipeline_pNext = info->pNext;
2213       stages[stage].info = &info->pStages[i];
2214       stages[stage].feedback_idx = shader_count++;
2215 
2216       anv_stage_write_shader_hash(&stages[stage], device);
2217    }
2218 
2219    /* Prepare shader keys for all shaders in pipeline->base.active_stages
2220     * (this includes libraries) before generating the hash for cache look up.
2221     *
2222     * We're doing this because the spec states that :
2223     *
2224     *    "When an implementation is looking up a pipeline in a pipeline cache,
2225     *     if that pipeline is being created using linked libraries,
2226     *     implementations should always return an equivalent pipeline created
2227     *     with VK_PIPELINE_CREATE_LINK_TIME_OPTIMIZATION_BIT_EXT if available,
2228     *     whether or not that bit was specified."
2229     *
2230     * So even if the application does not request link optimization, we have
2231     * to do our cache lookup with the entire set of shader sha1s so that we
2232     * can find what would be the best optimized pipeline in the case as if we
2233     * had compiled all the shaders together and known the full graphics state.
2234     */
2235    anv_graphics_pipeline_init_keys(pipeline, state, stages);
2236 
2237    uint32_t view_mask = state->rp ? state->rp->view_mask : 0;
2238 
2239    unsigned char sha1[20];
2240    anv_pipeline_hash_graphics(pipeline, stages, view_mask, sha1);
2241 
2242    for (unsigned s = 0; s < ANV_GRAPHICS_SHADER_STAGE_COUNT; s++) {
2243       if (!anv_pipeline_base_has_stage(pipeline, s))
2244          continue;
2245 
2246       stages[s].cache_key.stage = s;
2247       memcpy(stages[s].cache_key.sha1, sha1, sizeof(sha1));
2248    }
2249 
2250    const bool retain_shaders =
2251       pipeline->base.flags & VK_PIPELINE_CREATE_2_RETAIN_LINK_TIME_OPTIMIZATION_INFO_BIT_EXT;
2252    const bool link_optimize =
2253       pipeline->base.flags & VK_PIPELINE_CREATE_2_LINK_TIME_OPTIMIZATION_BIT_EXT;
2254 
2255    VkResult result = VK_SUCCESS;
2256    const bool skip_cache_lookup =
2257       (pipeline->base.flags & VK_PIPELINE_CREATE_CAPTURE_INTERNAL_REPRESENTATIONS_BIT_KHR);
2258 
2259    if (!skip_cache_lookup) {
2260       bool found_all_shaders =
2261          anv_graphics_pipeline_load_cached_shaders(pipeline, cache, stages,
2262                                                    link_optimize,
2263                                                    pipeline_feedback);
2264 
2265       if (found_all_shaders) {
2266          /* If we need to retain shaders, we need to also load from the NIR
2267           * cache.
2268           */
2269          if (pipeline->base.type == ANV_PIPELINE_GRAPHICS_LIB && retain_shaders) {
2270             result = anv_graphics_pipeline_load_nir(pipeline, cache,
2271                                                     stages,
2272                                                     pipeline->base.mem_ctx,
2273                                                     false /* need_clone */);
2274             if (result != VK_SUCCESS) {
2275                vk_perf(VK_LOG_OBJS(cache ? &cache->base :
2276                                    &pipeline->base.device->vk.base),
2277                        "Found all ISA shaders in the cache but not all NIR shaders.");
2278             } else {
2279                anv_graphics_lib_retain_shaders(pipeline, stages, false /* will_compile */);
2280             }
2281          }
2282 
2283          if (result == VK_SUCCESS)
2284             goto done;
2285 
2286          for (unsigned s = 0; s < ANV_GRAPHICS_SHADER_STAGE_COUNT; s++) {
2287             if (!anv_pipeline_base_has_stage(pipeline, s))
2288                continue;
2289 
2290             if (stages[s].nir) {
2291                ralloc_free(stages[s].nir);
2292                stages[s].nir = NULL;
2293             }
2294 
2295             assert(pipeline->shaders[s] != NULL);
2296             anv_shader_bin_unref(device, pipeline->shaders[s]);
2297             pipeline->shaders[s] = NULL;
2298          }
2299       }
2300    }
2301 
2302    if (pipeline->base.flags & VK_PIPELINE_CREATE_2_FAIL_ON_PIPELINE_COMPILE_REQUIRED_BIT_KHR)
2303       return VK_PIPELINE_COMPILE_REQUIRED;
2304 
2305    void *tmp_ctx = ralloc_context(NULL);
2306 
2307    result = anv_graphics_pipeline_load_nir(pipeline, cache, stages,
2308                                            tmp_ctx, link_optimize /* need_clone */);
2309    if (result != VK_SUCCESS)
2310       goto fail;
2311 
2312    /* Retain shaders now if asked, this only applies to libraries */
2313    if (pipeline->base.type == ANV_PIPELINE_GRAPHICS_LIB && retain_shaders)
2314       anv_graphics_lib_retain_shaders(pipeline, stages, true /* will_compile */);
2315 
2316    /* The following steps will be executed for shaders we need to compile :
2317     *
2318     *    - specified through VkGraphicsPipelineCreateInfo::pStages[]
2319     *
2320     *    - or compiled from libraries with retained shaders (libraries
2321     *      compiled with CREATE_RETAIN_LINK_TIME_OPTIMIZATION_INFO_BIT) if the
2322     *      pipeline has the CREATE_LINK_TIME_OPTIMIZATION_BIT flag.
2323     */
2324 
2325    /* Preprocess all NIR shaders. */
2326    for (int s = 0; s < ARRAY_SIZE(pipeline->shaders); s++) {
2327       if (anv_graphics_pipeline_skip_shader_compile(pipeline, stages,
2328                                                     link_optimize, s))
2329          continue;
2330 
2331       anv_stage_allocate_bind_map_tables(&pipeline->base, &stages[s], tmp_ctx);
2332 
2333       anv_pipeline_nir_preprocess(&pipeline->base, &stages[s]);
2334    }
2335 
2336    if (stages[MESA_SHADER_MESH].info && stages[MESA_SHADER_FRAGMENT].info) {
2337       anv_apply_per_prim_attr_wa(stages[MESA_SHADER_MESH].nir,
2338                                  stages[MESA_SHADER_FRAGMENT].nir,
2339                                  device,
2340                                  info);
2341    }
2342 
2343    /* Walk backwards to link */
2344    struct anv_pipeline_stage *next_stage = NULL;
2345    for (int i = ARRAY_SIZE(graphics_shader_order) - 1; i >= 0; i--) {
2346       gl_shader_stage s = graphics_shader_order[i];
2347       if (anv_graphics_pipeline_skip_shader_compile(pipeline, stages,
2348                                                     link_optimize, s))
2349          continue;
2350 
2351       struct anv_pipeline_stage *stage = &stages[s];
2352 
2353       switch (s) {
2354       case MESA_SHADER_VERTEX:
2355          anv_pipeline_link_vs(compiler, stage, next_stage);
2356          break;
2357       case MESA_SHADER_TESS_CTRL:
2358          anv_pipeline_link_tcs(compiler, stage, next_stage);
2359          break;
2360       case MESA_SHADER_TESS_EVAL:
2361          anv_pipeline_link_tes(compiler, stage, next_stage);
2362          break;
2363       case MESA_SHADER_GEOMETRY:
2364          anv_pipeline_link_gs(compiler, stage, next_stage);
2365          break;
2366       case MESA_SHADER_TASK:
2367          anv_pipeline_link_task(compiler, stage, next_stage);
2368          break;
2369       case MESA_SHADER_MESH:
2370          anv_pipeline_link_mesh(compiler, stage, next_stage);
2371          break;
2372       case MESA_SHADER_FRAGMENT:
2373          anv_pipeline_link_fs(compiler, stage, state->rp);
2374          break;
2375       default:
2376          unreachable("Invalid graphics shader stage");
2377       }
2378 
2379       next_stage = stage;
2380    }
2381 
2382    bool use_primitive_replication = false;
2383    if (devinfo->ver >= 12 && view_mask != 0) {
2384       /* For some pipelines HW Primitive Replication can be used instead of
2385        * instancing to implement Multiview.  This depend on how viewIndex is
2386        * used in all the active shaders, so this check can't be done per
2387        * individual shaders.
2388        */
2389       nir_shader *shaders[ANV_GRAPHICS_SHADER_STAGE_COUNT] = {};
2390       for (unsigned s = 0; s < ARRAY_SIZE(shaders); s++)
2391          shaders[s] = stages[s].nir;
2392 
2393       use_primitive_replication =
2394          anv_check_for_primitive_replication(device,
2395                                              pipeline->base.active_stages,
2396                                              shaders, view_mask);
2397    }
2398 
2399    struct anv_pipeline_stage *prev_stage = NULL;
2400    for (unsigned i = 0; i < ARRAY_SIZE(graphics_shader_order); i++) {
2401       gl_shader_stage s = graphics_shader_order[i];
2402       if (anv_graphics_pipeline_skip_shader_compile(pipeline, stages,
2403                                                     link_optimize, s))
2404          continue;
2405 
2406       struct anv_pipeline_stage *stage = &stages[s];
2407 
2408       int64_t stage_start = os_time_get_nano();
2409 
2410       anv_pipeline_lower_nir(&pipeline->base, tmp_ctx, stage,
2411                              &pipeline->base.layout, view_mask,
2412                              use_primitive_replication);
2413 
2414       struct shader_info *cur_info = &stage->nir->info;
2415 
2416       if (prev_stage && compiler->nir_options[s]->unify_interfaces) {
2417          struct shader_info *prev_info = &prev_stage->nir->info;
2418 
2419          prev_info->outputs_written |= cur_info->inputs_read &
2420                   ~(VARYING_BIT_TESS_LEVEL_INNER | VARYING_BIT_TESS_LEVEL_OUTER);
2421          cur_info->inputs_read |= prev_info->outputs_written &
2422                   ~(VARYING_BIT_TESS_LEVEL_INNER | VARYING_BIT_TESS_LEVEL_OUTER);
2423          prev_info->patch_outputs_written |= cur_info->patch_inputs_read;
2424          cur_info->patch_inputs_read |= prev_info->patch_outputs_written;
2425       }
2426 
2427       anv_fixup_subgroup_size(device, cur_info);
2428 
2429       stage->feedback.duration += os_time_get_nano() - stage_start;
2430 
2431       prev_stage = stage;
2432    }
2433 
2434    /* In the case the platform can write the primitive variable shading rate
2435     * and KHR_fragment_shading_rate is enabled :
2436     *    - there can be a fragment shader but we don't have it yet
2437     *    - the fragment shader needs fragment shading rate
2438     *
2439     * figure out the last geometry stage that should write the primitive
2440     * shading rate, and ensure it is marked as used there. The backend will
2441     * write a default value if the shader doesn't actually write it.
2442     *
2443     * We iterate backwards in the stage and stop on the first shader that can
2444     * set the value.
2445     *
2446     * Don't apply this to MESH stages, as this is a per primitive thing.
2447     */
2448    if (devinfo->has_coarse_pixel_primitive_and_cb &&
2449        device->vk.enabled_extensions.KHR_fragment_shading_rate &&
2450        pipeline_has_coarse_pixel(state->dynamic, state->ms, state->fsr) &&
2451        (!stages[MESA_SHADER_FRAGMENT].info ||
2452         stages[MESA_SHADER_FRAGMENT].key.wm.coarse_pixel) &&
2453        stages[MESA_SHADER_MESH].nir == NULL) {
2454       struct anv_pipeline_stage *last_psr = NULL;
2455 
2456       for (unsigned i = 0; i < ARRAY_SIZE(graphics_shader_order); i++) {
2457          gl_shader_stage s =
2458             graphics_shader_order[ARRAY_SIZE(graphics_shader_order) - i - 1];
2459 
2460          if (anv_graphics_pipeline_skip_shader_compile(pipeline, stages,
2461                                                        link_optimize, s) ||
2462              !gl_shader_stage_can_set_fragment_shading_rate(s))
2463             continue;
2464 
2465          last_psr = &stages[s];
2466          break;
2467       }
2468 
2469       /* Only set primitive shading rate if there is a pre-rasterization
2470        * shader in this pipeline/pipeline-library.
2471        */
2472       if (last_psr)
2473          last_psr->nir->info.outputs_written |= VARYING_BIT_PRIMITIVE_SHADING_RATE;
2474    }
2475 
2476    prev_stage = NULL;
2477    for (unsigned i = 0; i < ARRAY_SIZE(graphics_shader_order); i++) {
2478       gl_shader_stage s = graphics_shader_order[i];
2479       struct anv_pipeline_stage *stage = &stages[s];
2480 
2481       if (anv_graphics_pipeline_skip_shader_compile(pipeline, stages, link_optimize, s))
2482          continue;
2483 
2484       int64_t stage_start = os_time_get_nano();
2485 
2486       void *stage_ctx = ralloc_context(NULL);
2487       char *error_str = NULL;
2488 
2489       switch (s) {
2490       case MESA_SHADER_VERTEX:
2491          anv_pipeline_compile_vs(compiler, stage_ctx, pipeline,
2492                                  stage, view_mask, &error_str);
2493          break;
2494       case MESA_SHADER_TESS_CTRL:
2495          anv_pipeline_compile_tcs(compiler, stage_ctx, device,
2496                                   stage, prev_stage, &error_str);
2497          break;
2498       case MESA_SHADER_TESS_EVAL:
2499          anv_pipeline_compile_tes(compiler, stage_ctx, device,
2500                                   stage, prev_stage, &error_str);
2501          break;
2502       case MESA_SHADER_GEOMETRY:
2503          anv_pipeline_compile_gs(compiler, stage_ctx, device,
2504                                  stage, prev_stage, &error_str);
2505          break;
2506       case MESA_SHADER_TASK:
2507          anv_pipeline_compile_task(compiler, stage_ctx, device,
2508                                    stage, &error_str);
2509          break;
2510       case MESA_SHADER_MESH:
2511          anv_pipeline_compile_mesh(compiler, stage_ctx, device,
2512                                    stage, prev_stage, &error_str);
2513          break;
2514       case MESA_SHADER_FRAGMENT:
2515          anv_pipeline_compile_fs(compiler, stage_ctx, device,
2516                                  stage, prev_stage, pipeline,
2517                                  view_mask, use_primitive_replication,
2518                                  &error_str);
2519          break;
2520       default:
2521          unreachable("Invalid graphics shader stage");
2522       }
2523       if (stage->code == NULL) {
2524          if (error_str)
2525             result = vk_errorf(pipeline, VK_ERROR_UNKNOWN, "%s", error_str);
2526          else
2527             result = vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
2528          ralloc_free(stage_ctx);
2529          goto fail;
2530       }
2531 
2532       anv_nir_validate_push_layout(device->physical, &stage->prog_data.base,
2533                                    &stage->bind_map);
2534 
2535       struct anv_shader_upload_params upload_params = {
2536          .stage               = s,
2537          .key_data            = &stage->cache_key,
2538          .key_size            = sizeof(stage->cache_key),
2539          .kernel_data         = stage->code,
2540          .kernel_size         = stage->prog_data.base.program_size,
2541          .prog_data           = &stage->prog_data.base,
2542          .prog_data_size      = brw_prog_data_size(s),
2543          .stats               = stage->stats,
2544          .num_stats           = stage->num_stats,
2545          .xfb_info            = stage->nir->xfb_info,
2546          .bind_map            = &stage->bind_map,
2547          .push_desc_info      = &stage->push_desc_info,
2548          .dynamic_push_values = stage->dynamic_push_values,
2549       };
2550 
2551       stage->bin =
2552          anv_device_upload_kernel(device, cache, &upload_params);
2553       if (!stage->bin) {
2554          ralloc_free(stage_ctx);
2555          result = vk_error(pipeline, VK_ERROR_OUT_OF_HOST_MEMORY);
2556          goto fail;
2557       }
2558 
2559       anv_pipeline_add_executables(&pipeline->base, stage);
2560       pipeline->source_hashes[s] = stage->source_hash;
2561       pipeline->shaders[s] = stage->bin;
2562 
2563       ralloc_free(stage_ctx);
2564 
2565       stage->feedback.duration += os_time_get_nano() - stage_start;
2566 
2567       prev_stage = stage;
2568    }
2569 
2570    /* Finally add the imported shaders that were not compiled as part of this
2571     * step.
2572     */
2573    for (unsigned s = 0; s < ARRAY_SIZE(pipeline->shaders); s++) {
2574       if (!anv_pipeline_base_has_stage(pipeline, s))
2575          continue;
2576 
2577       if (pipeline->shaders[s] != NULL)
2578          continue;
2579 
2580       /* We should have recompiled everything with link optimization. */
2581       assert(!link_optimize);
2582 
2583       struct anv_pipeline_stage *stage = &stages[s];
2584 
2585       pipeline->source_hashes[s] = stage->source_hash;
2586       pipeline->shaders[s] = anv_shader_bin_ref(stage->imported.bin);
2587    }
2588 
2589    ralloc_free(tmp_ctx);
2590 
2591 done:
2592 
2593    /* Write the feedback index into the pipeline */
2594    for (unsigned s = 0; s < ARRAY_SIZE(pipeline->shaders); s++) {
2595       if (!anv_pipeline_base_has_stage(pipeline, s))
2596          continue;
2597 
2598       struct anv_pipeline_stage *stage = &stages[s];
2599       pipeline->feedback_index[s] = stage->feedback_idx;
2600       pipeline->robust_flags[s] = stage->robust_flags;
2601 
2602       anv_pipeline_account_shader(&pipeline->base, pipeline->shaders[s]);
2603    }
2604 
2605    pipeline_feedback->duration = os_time_get_nano() - pipeline_start;
2606 
2607    if (pipeline->shaders[MESA_SHADER_FRAGMENT]) {
2608       pipeline->fragment_dynamic =
2609          anv_graphics_pipeline_stage_fragment_dynamic(
2610             &stages[MESA_SHADER_FRAGMENT]);
2611    }
2612 
2613    return VK_SUCCESS;
2614 
2615 fail:
2616    ralloc_free(tmp_ctx);
2617 
2618    for (unsigned s = 0; s < ARRAY_SIZE(pipeline->shaders); s++) {
2619       if (pipeline->shaders[s])
2620          anv_shader_bin_unref(device, pipeline->shaders[s]);
2621    }
2622 
2623    return result;
2624 }
2625 
2626 static VkResult
anv_pipeline_compile_cs(struct anv_compute_pipeline * pipeline,struct vk_pipeline_cache * cache,const VkComputePipelineCreateInfo * info)2627 anv_pipeline_compile_cs(struct anv_compute_pipeline *pipeline,
2628                         struct vk_pipeline_cache *cache,
2629                         const VkComputePipelineCreateInfo *info)
2630 {
2631    ASSERTED const VkPipelineShaderStageCreateInfo *sinfo = &info->stage;
2632    assert(sinfo->stage == VK_SHADER_STAGE_COMPUTE_BIT);
2633 
2634    VkPipelineCreationFeedback pipeline_feedback = {
2635       .flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT,
2636    };
2637    int64_t pipeline_start = os_time_get_nano();
2638 
2639    struct anv_device *device = pipeline->base.device;
2640    const struct brw_compiler *compiler = device->physical->compiler;
2641 
2642    struct anv_pipeline_stage stage = {
2643       .stage = MESA_SHADER_COMPUTE,
2644       .info = &info->stage,
2645       .pipeline_flags = pipeline->base.flags,
2646       .pipeline_pNext = info->pNext,
2647       .cache_key = {
2648          .stage = MESA_SHADER_COMPUTE,
2649       },
2650       .feedback = {
2651          .flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT,
2652       },
2653    };
2654    anv_stage_write_shader_hash(&stage, device);
2655 
2656    populate_cs_prog_key(&stage, device);
2657 
2658    const bool skip_cache_lookup =
2659       (pipeline->base.flags & VK_PIPELINE_CREATE_CAPTURE_INTERNAL_REPRESENTATIONS_BIT_KHR);
2660 
2661    anv_pipeline_hash_compute(pipeline, &stage, stage.cache_key.sha1);
2662 
2663    bool cache_hit = false;
2664    if (!skip_cache_lookup) {
2665       stage.bin = anv_device_search_for_kernel(device, cache,
2666                                                &stage.cache_key,
2667                                                sizeof(stage.cache_key),
2668                                                &cache_hit);
2669    }
2670 
2671    if (stage.bin == NULL &&
2672        (pipeline->base.flags & VK_PIPELINE_CREATE_FAIL_ON_PIPELINE_COMPILE_REQUIRED_BIT))
2673       return VK_PIPELINE_COMPILE_REQUIRED;
2674 
2675    void *mem_ctx = ralloc_context(NULL);
2676    if (stage.bin == NULL) {
2677       int64_t stage_start = os_time_get_nano();
2678 
2679       anv_stage_allocate_bind_map_tables(&pipeline->base, &stage, mem_ctx);
2680 
2681       /* Set up a binding for the gl_NumWorkGroups */
2682       stage.bind_map.surface_count = 1;
2683       stage.bind_map.surface_to_descriptor[0] = (struct anv_pipeline_binding) {
2684          .set = ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS,
2685          .binding = UINT32_MAX,
2686       };
2687 
2688       VkResult result = anv_pipeline_stage_get_nir(&pipeline->base, cache,
2689                                                    mem_ctx, &stage);
2690       if (result != VK_SUCCESS) {
2691          ralloc_free(mem_ctx);
2692          return result;
2693       }
2694 
2695       anv_pipeline_nir_preprocess(&pipeline->base, &stage);
2696 
2697       anv_pipeline_lower_nir(&pipeline->base, mem_ctx, &stage,
2698                              &pipeline->base.layout, 0 /* view_mask */,
2699                              false /* use_primitive_replication */);
2700 
2701       anv_fixup_subgroup_size(device, &stage.nir->info);
2702 
2703       stage.num_stats = 1;
2704 
2705       struct brw_compile_cs_params params = {
2706          .base = {
2707             .nir = stage.nir,
2708             .stats = stage.stats,
2709             .log_data = device,
2710             .mem_ctx = mem_ctx,
2711             .source_hash = stage.source_hash,
2712          },
2713          .key = &stage.key.cs,
2714          .prog_data = &stage.prog_data.cs,
2715       };
2716 
2717       stage.code = brw_compile_cs(compiler, &params);
2718       if (stage.code == NULL) {
2719          VkResult result;
2720 
2721          if (params.base.error_str)
2722             result = vk_errorf(pipeline, VK_ERROR_UNKNOWN, "%s", params.base.error_str);
2723          else
2724             result = vk_error(pipeline, VK_ERROR_OUT_OF_HOST_MEMORY);
2725 
2726          ralloc_free(mem_ctx);
2727          return result;
2728       }
2729 
2730       anv_nir_validate_push_layout(device->physical, &stage.prog_data.base,
2731                                    &stage.bind_map);
2732 
2733       if (!stage.prog_data.cs.uses_num_work_groups) {
2734          assert(stage.bind_map.surface_to_descriptor[0].set ==
2735                 ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS);
2736          stage.bind_map.surface_to_descriptor[0].set = ANV_DESCRIPTOR_SET_NULL;
2737       }
2738 
2739       struct anv_shader_upload_params upload_params = {
2740          .stage               = MESA_SHADER_COMPUTE,
2741          .key_data            = &stage.cache_key,
2742          .key_size            = sizeof(stage.cache_key),
2743          .kernel_data         = stage.code,
2744          .kernel_size         = stage.prog_data.base.program_size,
2745          .prog_data           = &stage.prog_data.base,
2746          .prog_data_size      = sizeof(stage.prog_data.cs),
2747          .stats               = stage.stats,
2748          .num_stats           = stage.num_stats,
2749          .bind_map            = &stage.bind_map,
2750          .push_desc_info      = &stage.push_desc_info,
2751          .dynamic_push_values = stage.dynamic_push_values,
2752       };
2753 
2754       stage.bin = anv_device_upload_kernel(device, cache, &upload_params);
2755       if (!stage.bin) {
2756          ralloc_free(mem_ctx);
2757          return vk_error(pipeline, VK_ERROR_OUT_OF_HOST_MEMORY);
2758       }
2759 
2760       stage.feedback.duration = os_time_get_nano() - stage_start;
2761    }
2762 
2763    anv_pipeline_account_shader(&pipeline->base, stage.bin);
2764    anv_pipeline_add_executables(&pipeline->base, &stage);
2765    pipeline->source_hash = stage.source_hash;
2766 
2767    ralloc_free(mem_ctx);
2768 
2769    if (cache_hit) {
2770       stage.feedback.flags |=
2771          VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT;
2772       pipeline_feedback.flags |=
2773          VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT;
2774    }
2775    pipeline_feedback.duration = os_time_get_nano() - pipeline_start;
2776 
2777    const VkPipelineCreationFeedbackCreateInfo *create_feedback =
2778       vk_find_struct_const(info->pNext, PIPELINE_CREATION_FEEDBACK_CREATE_INFO);
2779    if (create_feedback) {
2780       *create_feedback->pPipelineCreationFeedback = pipeline_feedback;
2781 
2782       if (create_feedback->pipelineStageCreationFeedbackCount) {
2783          assert(create_feedback->pipelineStageCreationFeedbackCount == 1);
2784          create_feedback->pPipelineStageCreationFeedbacks[0] = stage.feedback;
2785       }
2786    }
2787 
2788    pipeline->cs = stage.bin;
2789 
2790    return VK_SUCCESS;
2791 }
2792 
2793 static VkResult
anv_compute_pipeline_create(struct anv_device * device,struct vk_pipeline_cache * cache,const VkComputePipelineCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkPipeline * pPipeline)2794 anv_compute_pipeline_create(struct anv_device *device,
2795                             struct vk_pipeline_cache *cache,
2796                             const VkComputePipelineCreateInfo *pCreateInfo,
2797                             const VkAllocationCallbacks *pAllocator,
2798                             VkPipeline *pPipeline)
2799 {
2800    struct anv_compute_pipeline *pipeline;
2801    VkResult result;
2802 
2803    assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO);
2804 
2805    pipeline = vk_zalloc2(&device->vk.alloc, pAllocator, sizeof(*pipeline), 8,
2806                          VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2807    if (pipeline == NULL)
2808       return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
2809 
2810    result = anv_pipeline_init(&pipeline->base, device,
2811                               ANV_PIPELINE_COMPUTE,
2812                               vk_compute_pipeline_create_flags(pCreateInfo),
2813                               pAllocator);
2814    if (result != VK_SUCCESS) {
2815       vk_free2(&device->vk.alloc, pAllocator, pipeline);
2816       return result;
2817    }
2818 
2819 
2820    ANV_FROM_HANDLE(anv_pipeline_layout, pipeline_layout, pCreateInfo->layout);
2821    anv_pipeline_init_layout(&pipeline->base, pipeline_layout);
2822 
2823    pipeline->base.active_stages = VK_SHADER_STAGE_COMPUTE_BIT;
2824 
2825    anv_batch_set_storage(&pipeline->base.batch, ANV_NULL_ADDRESS,
2826                          pipeline->batch_data, sizeof(pipeline->batch_data));
2827 
2828    result = anv_pipeline_compile_cs(pipeline, cache, pCreateInfo);
2829    if (result != VK_SUCCESS) {
2830       anv_pipeline_finish(&pipeline->base, device);
2831       vk_free2(&device->vk.alloc, pAllocator, pipeline);
2832       return result;
2833    }
2834 
2835    anv_genX(device->info, compute_pipeline_emit)(pipeline);
2836 
2837    ANV_RMV(compute_pipeline_create, device, pipeline, false);
2838 
2839    *pPipeline = anv_pipeline_to_handle(&pipeline->base);
2840 
2841    return pipeline->base.batch.status;
2842 }
2843 
anv_CreateComputePipelines(VkDevice _device,VkPipelineCache pipelineCache,uint32_t count,const VkComputePipelineCreateInfo * pCreateInfos,const VkAllocationCallbacks * pAllocator,VkPipeline * pPipelines)2844 VkResult anv_CreateComputePipelines(
2845     VkDevice                                    _device,
2846     VkPipelineCache                             pipelineCache,
2847     uint32_t                                    count,
2848     const VkComputePipelineCreateInfo*          pCreateInfos,
2849     const VkAllocationCallbacks*                pAllocator,
2850     VkPipeline*                                 pPipelines)
2851 {
2852    ANV_FROM_HANDLE(anv_device, device, _device);
2853    ANV_FROM_HANDLE(vk_pipeline_cache, pipeline_cache, pipelineCache);
2854 
2855    VkResult result = VK_SUCCESS;
2856 
2857    unsigned i;
2858    for (i = 0; i < count; i++) {
2859       const VkPipelineCreateFlags2KHR flags =
2860          vk_compute_pipeline_create_flags(&pCreateInfos[i]);
2861       VkResult res = anv_compute_pipeline_create(device, pipeline_cache,
2862                                                  &pCreateInfos[i],
2863                                                  pAllocator, &pPipelines[i]);
2864 
2865       if (res != VK_SUCCESS) {
2866          result = res;
2867          if (flags & VK_PIPELINE_CREATE_2_EARLY_RETURN_ON_FAILURE_BIT_KHR)
2868             break;
2869          pPipelines[i] = VK_NULL_HANDLE;
2870       }
2871    }
2872 
2873    for (; i < count; i++)
2874       pPipelines[i] = VK_NULL_HANDLE;
2875 
2876    return result;
2877 }
2878 
2879 /**
2880  * Calculate the desired L3 partitioning based on the current state of the
2881  * pipeline.  For now this simply returns the conservative defaults calculated
2882  * by get_default_l3_weights(), but we could probably do better by gathering
2883  * more statistics from the pipeline state (e.g. guess of expected URB usage
2884  * and bound surfaces), or by using feed-back from performance counters.
2885  */
2886 void
anv_pipeline_setup_l3_config(struct anv_pipeline * pipeline,bool needs_slm)2887 anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm)
2888 {
2889    const struct intel_device_info *devinfo = pipeline->device->info;
2890 
2891    const struct intel_l3_weights w =
2892       intel_get_default_l3_weights(devinfo, true, needs_slm);
2893 
2894    pipeline->l3_config = intel_get_l3_config(devinfo, w);
2895 }
2896 
2897 static uint32_t
get_vs_input_elements(const struct brw_vs_prog_data * vs_prog_data)2898 get_vs_input_elements(const struct brw_vs_prog_data *vs_prog_data)
2899 {
2900    /* Pull inputs_read out of the VS prog data */
2901    const uint64_t inputs_read = vs_prog_data->inputs_read;
2902    const uint64_t double_inputs_read =
2903       vs_prog_data->double_inputs_read & inputs_read;
2904    assert((inputs_read & ((1 << VERT_ATTRIB_GENERIC0) - 1)) == 0);
2905    const uint32_t elements = inputs_read >> VERT_ATTRIB_GENERIC0;
2906    const uint32_t elements_double = double_inputs_read >> VERT_ATTRIB_GENERIC0;
2907 
2908    return __builtin_popcount(elements) -
2909           __builtin_popcount(elements_double) / 2;
2910 }
2911 
2912 static void
anv_graphics_pipeline_emit(struct anv_graphics_pipeline * pipeline,const struct vk_graphics_pipeline_state * state)2913 anv_graphics_pipeline_emit(struct anv_graphics_pipeline *pipeline,
2914                            const struct vk_graphics_pipeline_state *state)
2915 {
2916    pipeline->view_mask = state->rp->view_mask;
2917 
2918    anv_pipeline_setup_l3_config(&pipeline->base.base, false);
2919 
2920    if (anv_pipeline_is_primitive(pipeline)) {
2921       const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
2922 
2923       /* The total number of vertex elements we need to program. We might need
2924        * a couple more to implement some of the draw parameters.
2925        */
2926       pipeline->svgs_count =
2927          (vs_prog_data->uses_vertexid ||
2928           vs_prog_data->uses_instanceid ||
2929           vs_prog_data->uses_firstvertex ||
2930           vs_prog_data->uses_baseinstance) + vs_prog_data->uses_drawid;
2931 
2932       pipeline->vs_input_elements = get_vs_input_elements(vs_prog_data);
2933 
2934       pipeline->vertex_input_elems =
2935          (BITSET_TEST(state->dynamic, MESA_VK_DYNAMIC_VI) ?
2936           0 : pipeline->vs_input_elements) + pipeline->svgs_count;
2937 
2938       /* Our implementation of VK_KHR_multiview uses instancing to draw the
2939        * different views when primitive replication cannot be used.  If the
2940        * client asks for instancing, we need to multiply by the client's
2941        * instance count at draw time and instance divisor in the vertex
2942        * bindings by the number of views ensure that we repeat the client's
2943        * per-instance data once for each view.
2944        */
2945       const bool uses_primitive_replication =
2946          anv_pipeline_get_last_vue_prog_data(pipeline)->vue_map.num_pos_slots > 1;
2947       pipeline->instance_multiplier = 1;
2948       if (pipeline->view_mask && !uses_primitive_replication)
2949          pipeline->instance_multiplier = util_bitcount(pipeline->view_mask);
2950    } else {
2951       assert(anv_pipeline_is_mesh(pipeline));
2952       /* TODO(mesh): Mesh vs. Multiview with Instancing. */
2953    }
2954 
2955 
2956    pipeline->dynamic_patch_control_points =
2957       anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_CTRL) &&
2958       BITSET_TEST(state->dynamic, MESA_VK_DYNAMIC_TS_PATCH_CONTROL_POINTS) &&
2959       (pipeline->base.shaders[MESA_SHADER_TESS_CTRL]->dynamic_push_values &
2960        ANV_DYNAMIC_PUSH_INPUT_VERTICES);
2961 
2962    if (pipeline->base.shaders[MESA_SHADER_FRAGMENT] && state->ms) {
2963       pipeline->sample_shading_enable = state->ms->sample_shading_enable;
2964       pipeline->min_sample_shading = state->ms->min_sample_shading;
2965    }
2966 
2967    const struct anv_device *device = pipeline->base.base.device;
2968    const struct intel_device_info *devinfo = device->info;
2969    anv_genX(devinfo, graphics_pipeline_emit)(pipeline, state);
2970 }
2971 
2972 static void
anv_graphics_pipeline_import_layout(struct anv_graphics_base_pipeline * pipeline,struct anv_pipeline_sets_layout * layout)2973 anv_graphics_pipeline_import_layout(struct anv_graphics_base_pipeline *pipeline,
2974                                     struct anv_pipeline_sets_layout *layout)
2975 {
2976    pipeline->base.layout.independent_sets |= layout->independent_sets;
2977 
2978    for (uint32_t s = 0; s < layout->num_sets; s++) {
2979       if (layout->set[s].layout == NULL)
2980          continue;
2981 
2982       anv_pipeline_sets_layout_add(&pipeline->base.layout, s,
2983                                    layout->set[s].layout);
2984    }
2985 }
2986 
2987 static void
anv_graphics_pipeline_import_lib(struct anv_graphics_base_pipeline * pipeline,bool link_optimize,bool retain_shaders,struct anv_pipeline_stage * stages,struct anv_graphics_lib_pipeline * lib)2988 anv_graphics_pipeline_import_lib(struct anv_graphics_base_pipeline *pipeline,
2989                                  bool link_optimize,
2990                                  bool retain_shaders,
2991                                  struct anv_pipeline_stage *stages,
2992                                  struct anv_graphics_lib_pipeline *lib)
2993 {
2994    struct anv_pipeline_sets_layout *lib_layout =
2995       &lib->base.base.layout;
2996    anv_graphics_pipeline_import_layout(pipeline, lib_layout);
2997 
2998    /* We can't have shaders specified twice through libraries. */
2999    assert((pipeline->base.active_stages & lib->base.base.active_stages) == 0);
3000 
3001    /* VK_EXT_graphics_pipeline_library:
3002     *
3003     *    "To perform link time optimizations,
3004     *     VK_PIPELINE_CREATE_RETAIN_LINK_TIME_OPTIMIZATION_INFO_BIT_EXT must
3005     *     be specified on all pipeline libraries that are being linked
3006     *     together. Implementations should retain any additional information
3007     *     needed to perform optimizations at the final link step when this bit
3008     *     is present."
3009     */
3010    assert(!link_optimize || lib->retain_shaders);
3011 
3012    pipeline->base.active_stages |= lib->base.base.active_stages;
3013 
3014    /* Propagate the fragment dynamic flag, unless we're doing link
3015     * optimization, in that case we'll have all the state information and this
3016     * will never be dynamic.
3017     */
3018    if (!link_optimize) {
3019       if (lib->base.fragment_dynamic) {
3020          assert(lib->base.base.active_stages & VK_SHADER_STAGE_FRAGMENT_BIT);
3021          pipeline->fragment_dynamic = true;
3022       }
3023    }
3024 
3025    uint32_t shader_count = anv_graphics_pipeline_imported_shader_count(stages);
3026    for (uint32_t s = 0; s < ARRAY_SIZE(lib->base.shaders); s++) {
3027       if (lib->base.shaders[s] == NULL)
3028          continue;
3029 
3030       stages[s].stage = s;
3031       stages[s].feedback_idx = shader_count + lib->base.feedback_index[s];
3032       stages[s].robust_flags = lib->base.robust_flags[s];
3033 
3034       /* Always import the shader sha1, this will be used for cache lookup. */
3035       memcpy(stages[s].shader_sha1, lib->retained_shaders[s].shader_sha1,
3036              sizeof(stages[s].shader_sha1));
3037       stages[s].source_hash = lib->base.source_hashes[s];
3038 
3039       stages[s].subgroup_size_type = lib->retained_shaders[s].subgroup_size_type;
3040       stages[s].imported.nir = lib->retained_shaders[s].nir;
3041       stages[s].imported.bin = lib->base.shaders[s];
3042    }
3043 
3044    /* When not link optimizing, import the executables (shader descriptions
3045     * for VK_KHR_pipeline_executable_properties). With link optimization there
3046     * is a chance it'll produce different binaries, so we'll add the optimized
3047     * version later.
3048     */
3049    if (!link_optimize) {
3050       util_dynarray_foreach(&lib->base.base.executables,
3051                             struct anv_pipeline_executable, exe) {
3052          util_dynarray_append(&pipeline->base.executables,
3053                               struct anv_pipeline_executable, *exe);
3054       }
3055    }
3056 }
3057 
3058 static void
anv_graphics_lib_validate_shaders(struct anv_graphics_lib_pipeline * lib,bool retained_shaders)3059 anv_graphics_lib_validate_shaders(struct anv_graphics_lib_pipeline *lib,
3060                                   bool retained_shaders)
3061 {
3062    for (uint32_t s = 0; s < ARRAY_SIZE(lib->retained_shaders); s++) {
3063       if (anv_pipeline_base_has_stage(&lib->base, s)) {
3064          assert(!retained_shaders || lib->retained_shaders[s].nir != NULL);
3065          assert(lib->base.shaders[s] != NULL);
3066       }
3067    }
3068 }
3069 
3070 static VkResult
anv_graphics_lib_pipeline_create(struct anv_device * device,struct vk_pipeline_cache * cache,const VkGraphicsPipelineCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkPipeline * pPipeline)3071 anv_graphics_lib_pipeline_create(struct anv_device *device,
3072                                  struct vk_pipeline_cache *cache,
3073                                  const VkGraphicsPipelineCreateInfo *pCreateInfo,
3074                                  const VkAllocationCallbacks *pAllocator,
3075                                  VkPipeline *pPipeline)
3076 {
3077    struct anv_pipeline_stage stages[ANV_GRAPHICS_SHADER_STAGE_COUNT] = {};
3078    VkPipelineCreationFeedback pipeline_feedback = {
3079       .flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT,
3080    };
3081    int64_t pipeline_start = os_time_get_nano();
3082 
3083    struct anv_graphics_lib_pipeline *pipeline;
3084    VkResult result;
3085 
3086    const VkPipelineCreateFlags2KHR flags =
3087       vk_graphics_pipeline_create_flags(pCreateInfo);
3088    assert(flags & VK_PIPELINE_CREATE_2_LIBRARY_BIT_KHR);
3089 
3090    const VkPipelineLibraryCreateInfoKHR *libs_info =
3091       vk_find_struct_const(pCreateInfo->pNext,
3092                            PIPELINE_LIBRARY_CREATE_INFO_KHR);
3093 
3094    pipeline = vk_zalloc2(&device->vk.alloc, pAllocator, sizeof(*pipeline), 8,
3095                          VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3096    if (pipeline == NULL)
3097       return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
3098 
3099    result = anv_pipeline_init(&pipeline->base.base, device,
3100                               ANV_PIPELINE_GRAPHICS_LIB, flags,
3101                               pAllocator);
3102    if (result != VK_SUCCESS) {
3103       vk_free2(&device->vk.alloc, pAllocator, pipeline);
3104       if (result == VK_PIPELINE_COMPILE_REQUIRED)
3105          *pPipeline = VK_NULL_HANDLE;
3106       return result;
3107    }
3108 
3109    /* Capture the retain state before we compile/load any shader. */
3110    pipeline->retain_shaders =
3111       (flags & VK_PIPELINE_CREATE_2_RETAIN_LINK_TIME_OPTIMIZATION_INFO_BIT_EXT) != 0;
3112 
3113    /* If we have libraries, import them first. */
3114    if (libs_info) {
3115       for (uint32_t i = 0; i < libs_info->libraryCount; i++) {
3116          ANV_FROM_HANDLE(anv_pipeline, pipeline_lib, libs_info->pLibraries[i]);
3117          struct anv_graphics_lib_pipeline *gfx_pipeline_lib =
3118             anv_pipeline_to_graphics_lib(pipeline_lib);
3119 
3120          vk_graphics_pipeline_state_merge(&pipeline->state, &gfx_pipeline_lib->state);
3121          anv_graphics_pipeline_import_lib(&pipeline->base,
3122                                           false /* link_optimize */,
3123                                           pipeline->retain_shaders,
3124                                           stages, gfx_pipeline_lib);
3125       }
3126    }
3127 
3128    result = vk_graphics_pipeline_state_fill(&device->vk,
3129                                             &pipeline->state, pCreateInfo,
3130                                             NULL /* driver_rp */,
3131                                             0 /* driver_rp_flags */,
3132                                             &pipeline->all_state, NULL, 0, NULL);
3133    if (result != VK_SUCCESS) {
3134       anv_pipeline_finish(&pipeline->base.base, device);
3135       vk_free2(&device->vk.alloc, pAllocator, pipeline);
3136       return result;
3137    }
3138 
3139    pipeline->base.base.active_stages = pipeline->state.shader_stages;
3140 
3141    /* After we've imported all the libraries' layouts, import the pipeline
3142     * layout and hash the whole lot.
3143     */
3144    ANV_FROM_HANDLE(anv_pipeline_layout, pipeline_layout, pCreateInfo->layout);
3145    if (pipeline_layout != NULL) {
3146       anv_graphics_pipeline_import_layout(&pipeline->base,
3147                                           &pipeline_layout->sets_layout);
3148    }
3149 
3150    anv_pipeline_sets_layout_hash(&pipeline->base.base.layout);
3151 
3152    /* Compile shaders. We can skip this if there are no active stage in that
3153     * pipeline.
3154     */
3155    if (pipeline->base.base.active_stages != 0) {
3156       result = anv_graphics_pipeline_compile(&pipeline->base, stages,
3157                                              cache, &pipeline_feedback,
3158                                              pCreateInfo, &pipeline->state);
3159       if (result != VK_SUCCESS) {
3160          anv_pipeline_finish(&pipeline->base.base, device);
3161          vk_free2(&device->vk.alloc, pAllocator, pipeline);
3162          return result;
3163       }
3164    }
3165 
3166    pipeline_feedback.duration = os_time_get_nano() - pipeline_start;
3167 
3168    anv_fill_pipeline_creation_feedback(&pipeline->base, &pipeline_feedback,
3169                                        pCreateInfo, stages);
3170 
3171    anv_graphics_lib_validate_shaders(
3172       pipeline,
3173       flags & VK_PIPELINE_CREATE_2_RETAIN_LINK_TIME_OPTIMIZATION_INFO_BIT_EXT);
3174 
3175    *pPipeline = anv_pipeline_to_handle(&pipeline->base.base);
3176 
3177    return VK_SUCCESS;
3178 }
3179 
3180 static VkResult
anv_graphics_pipeline_create(struct anv_device * device,struct vk_pipeline_cache * cache,const VkGraphicsPipelineCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkPipeline * pPipeline)3181 anv_graphics_pipeline_create(struct anv_device *device,
3182                              struct vk_pipeline_cache *cache,
3183                              const VkGraphicsPipelineCreateInfo *pCreateInfo,
3184                              const VkAllocationCallbacks *pAllocator,
3185                              VkPipeline *pPipeline)
3186 {
3187    struct anv_pipeline_stage stages[ANV_GRAPHICS_SHADER_STAGE_COUNT] = {};
3188    VkPipelineCreationFeedback pipeline_feedback = {
3189       .flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT,
3190    };
3191    int64_t pipeline_start = os_time_get_nano();
3192 
3193    struct anv_graphics_pipeline *pipeline;
3194    VkResult result;
3195 
3196    const VkPipelineCreateFlags2KHR flags =
3197       vk_graphics_pipeline_create_flags(pCreateInfo);
3198    assert((flags & VK_PIPELINE_CREATE_2_LIBRARY_BIT_KHR) == 0);
3199 
3200    const VkPipelineLibraryCreateInfoKHR *libs_info =
3201       vk_find_struct_const(pCreateInfo->pNext,
3202                            PIPELINE_LIBRARY_CREATE_INFO_KHR);
3203 
3204    pipeline = vk_zalloc2(&device->vk.alloc, pAllocator, sizeof(*pipeline), 8,
3205                          VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3206    if (pipeline == NULL)
3207       return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
3208 
3209    /* Initialize some information required by shaders */
3210    result = anv_pipeline_init(&pipeline->base.base, device,
3211                               ANV_PIPELINE_GRAPHICS, flags,
3212                               pAllocator);
3213    if (result != VK_SUCCESS) {
3214       vk_free2(&device->vk.alloc, pAllocator, pipeline);
3215       return result;
3216    }
3217 
3218    const bool link_optimize =
3219       (flags & VK_PIPELINE_CREATE_2_LINK_TIME_OPTIMIZATION_BIT_EXT) != 0;
3220 
3221    struct vk_graphics_pipeline_all_state all;
3222    struct vk_graphics_pipeline_state state = { };
3223 
3224    /* If we have libraries, import them first. */
3225    if (libs_info) {
3226       for (uint32_t i = 0; i < libs_info->libraryCount; i++) {
3227          ANV_FROM_HANDLE(anv_pipeline, pipeline_lib, libs_info->pLibraries[i]);
3228          struct anv_graphics_lib_pipeline *gfx_pipeline_lib =
3229             anv_pipeline_to_graphics_lib(pipeline_lib);
3230 
3231          /* If we have link time optimization, all libraries must be created
3232           * with
3233           * VK_PIPELINE_CREATE_RETAIN_LINK_TIME_OPTIMIZATION_INFO_BIT_EXT.
3234           */
3235          assert(!link_optimize || gfx_pipeline_lib->retain_shaders);
3236 
3237          vk_graphics_pipeline_state_merge(&state, &gfx_pipeline_lib->state);
3238          anv_graphics_pipeline_import_lib(&pipeline->base,
3239                                           link_optimize,
3240                                           false,
3241                                           stages,
3242                                           gfx_pipeline_lib);
3243       }
3244    }
3245 
3246    result = vk_graphics_pipeline_state_fill(&device->vk, &state, pCreateInfo,
3247                                             NULL /* driver_rp */,
3248                                             0 /* driver_rp_flags */,
3249                                             &all, NULL, 0, NULL);
3250    if (result != VK_SUCCESS) {
3251       anv_pipeline_finish(&pipeline->base.base, device);
3252       vk_free2(&device->vk.alloc, pAllocator, pipeline);
3253       return result;
3254    }
3255 
3256    pipeline->dynamic_state.vi = &pipeline->vertex_input;
3257    pipeline->dynamic_state.ms.sample_locations = &pipeline->base.sample_locations;
3258    vk_dynamic_graphics_state_fill(&pipeline->dynamic_state, &state);
3259 
3260    pipeline->base.base.active_stages = state.shader_stages;
3261 
3262    /* Sanity check on the shaders */
3263    assert(pipeline->base.base.active_stages & VK_SHADER_STAGE_VERTEX_BIT ||
3264           pipeline->base.base.active_stages & VK_SHADER_STAGE_MESH_BIT_EXT);
3265 
3266    if (anv_pipeline_is_mesh(pipeline)) {
3267       assert(device->physical->vk.supported_extensions.EXT_mesh_shader);
3268    }
3269 
3270    /* After we've imported all the libraries' layouts, import the pipeline
3271     * layout and hash the whole lot.
3272     */
3273    ANV_FROM_HANDLE(anv_pipeline_layout, pipeline_layout, pCreateInfo->layout);
3274    if (pipeline_layout != NULL) {
3275       anv_graphics_pipeline_import_layout(&pipeline->base,
3276                                           &pipeline_layout->sets_layout);
3277    }
3278 
3279    anv_pipeline_sets_layout_hash(&pipeline->base.base.layout);
3280 
3281    /* Compile shaders, all required information should be have been copied in
3282     * the previous step. We can skip this if there are no active stage in that
3283     * pipeline.
3284     */
3285    result = anv_graphics_pipeline_compile(&pipeline->base, stages,
3286                                           cache, &pipeline_feedback,
3287                                           pCreateInfo, &state);
3288    if (result != VK_SUCCESS) {
3289       anv_pipeline_finish(&pipeline->base.base, device);
3290       vk_free2(&device->vk.alloc, pAllocator, pipeline);
3291       return result;
3292    }
3293 
3294    /* Prepare a batch for the commands and emit all the non dynamic ones.
3295     */
3296    anv_batch_set_storage(&pipeline->base.base.batch, ANV_NULL_ADDRESS,
3297                          pipeline->batch_data, sizeof(pipeline->batch_data));
3298 
3299    if (pipeline->base.base.active_stages & VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT)
3300       pipeline->base.base.active_stages |= VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT;
3301 
3302    if (anv_pipeline_is_mesh(pipeline))
3303       assert(device->physical->vk.supported_extensions.EXT_mesh_shader);
3304 
3305    anv_graphics_pipeline_emit(pipeline, &state);
3306 
3307    pipeline_feedback.duration = os_time_get_nano() - pipeline_start;
3308 
3309    anv_fill_pipeline_creation_feedback(&pipeline->base, &pipeline_feedback,
3310                                        pCreateInfo, stages);
3311 
3312    ANV_RMV(graphics_pipeline_create, device, pipeline, false);
3313 
3314    *pPipeline = anv_pipeline_to_handle(&pipeline->base.base);
3315 
3316    return pipeline->base.base.batch.status;
3317 }
3318 
anv_CreateGraphicsPipelines(VkDevice _device,VkPipelineCache pipelineCache,uint32_t count,const VkGraphicsPipelineCreateInfo * pCreateInfos,const VkAllocationCallbacks * pAllocator,VkPipeline * pPipelines)3319 VkResult anv_CreateGraphicsPipelines(
3320     VkDevice                                    _device,
3321     VkPipelineCache                             pipelineCache,
3322     uint32_t                                    count,
3323     const VkGraphicsPipelineCreateInfo*         pCreateInfos,
3324     const VkAllocationCallbacks*                pAllocator,
3325     VkPipeline*                                 pPipelines)
3326 {
3327    ANV_FROM_HANDLE(anv_device, device, _device);
3328    ANV_FROM_HANDLE(vk_pipeline_cache, pipeline_cache, pipelineCache);
3329 
3330    VkResult result = VK_SUCCESS;
3331 
3332    unsigned i;
3333    for (i = 0; i < count; i++) {
3334       assert(pCreateInfos[i].sType == VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO);
3335 
3336       const VkPipelineCreateFlags2KHR flags =
3337          vk_graphics_pipeline_create_flags(&pCreateInfos[i]);
3338       VkResult res;
3339       if (flags & VK_PIPELINE_CREATE_2_LIBRARY_BIT_KHR) {
3340          res = anv_graphics_lib_pipeline_create(device, pipeline_cache,
3341                                                 &pCreateInfos[i],
3342                                                 pAllocator,
3343                                                 &pPipelines[i]);
3344       } else {
3345          res = anv_graphics_pipeline_create(device,
3346                                             pipeline_cache,
3347                                             &pCreateInfos[i],
3348                                             pAllocator, &pPipelines[i]);
3349       }
3350 
3351       if (res != VK_SUCCESS) {
3352          result = res;
3353          if (flags & VK_PIPELINE_CREATE_2_EARLY_RETURN_ON_FAILURE_BIT_KHR)
3354             break;
3355          pPipelines[i] = VK_NULL_HANDLE;
3356       }
3357    }
3358 
3359    for (; i < count; i++)
3360       pPipelines[i] = VK_NULL_HANDLE;
3361 
3362    return result;
3363 }
3364 
3365 static bool
should_remat_cb(nir_instr * instr,void * data)3366 should_remat_cb(nir_instr *instr, void *data)
3367 {
3368    if (instr->type != nir_instr_type_intrinsic)
3369       return false;
3370 
3371    return nir_instr_as_intrinsic(instr)->intrinsic == nir_intrinsic_resource_intel;
3372 }
3373 
3374 static VkResult
compile_upload_rt_shader(struct anv_ray_tracing_pipeline * pipeline,struct vk_pipeline_cache * cache,nir_shader * nir,struct anv_pipeline_stage * stage,void * mem_ctx)3375 compile_upload_rt_shader(struct anv_ray_tracing_pipeline *pipeline,
3376                          struct vk_pipeline_cache *cache,
3377                          nir_shader *nir,
3378                          struct anv_pipeline_stage *stage,
3379                          void *mem_ctx)
3380 {
3381    const struct brw_compiler *compiler =
3382       pipeline->base.device->physical->compiler;
3383    const struct intel_device_info *devinfo = compiler->devinfo;
3384 
3385    nir_shader **resume_shaders = NULL;
3386    uint32_t num_resume_shaders = 0;
3387    if (nir->info.stage != MESA_SHADER_COMPUTE) {
3388       const nir_lower_shader_calls_options opts = {
3389          .address_format = nir_address_format_64bit_global,
3390          .stack_alignment = BRW_BTD_STACK_ALIGN,
3391          .localized_loads = true,
3392          .vectorizer_callback = brw_nir_should_vectorize_mem,
3393          .vectorizer_data = NULL,
3394          .should_remat_callback = should_remat_cb,
3395       };
3396 
3397       NIR_PASS(_, nir, nir_lower_shader_calls, &opts,
3398                &resume_shaders, &num_resume_shaders, mem_ctx);
3399       NIR_PASS(_, nir, brw_nir_lower_shader_calls, &stage->key.bs);
3400       NIR_PASS_V(nir, brw_nir_lower_rt_intrinsics, devinfo);
3401    }
3402 
3403    for (unsigned i = 0; i < num_resume_shaders; i++) {
3404       NIR_PASS(_,resume_shaders[i], brw_nir_lower_shader_calls, &stage->key.bs);
3405       NIR_PASS_V(resume_shaders[i], brw_nir_lower_rt_intrinsics, devinfo);
3406    }
3407 
3408    struct brw_compile_bs_params params = {
3409       .base = {
3410          .nir = nir,
3411          .stats = stage->stats,
3412          .log_data = pipeline->base.device,
3413          .mem_ctx = mem_ctx,
3414          .source_hash = stage->source_hash,
3415       },
3416       .key = &stage->key.bs,
3417       .prog_data = &stage->prog_data.bs,
3418       .num_resume_shaders = num_resume_shaders,
3419       .resume_shaders = resume_shaders,
3420    };
3421 
3422    stage->code = brw_compile_bs(compiler, &params);
3423    if (stage->code == NULL) {
3424       VkResult result;
3425 
3426       if (params.base.error_str)
3427          result = vk_errorf(pipeline, VK_ERROR_UNKNOWN, "%s", params.base.error_str);
3428       else
3429          result = vk_error(pipeline, VK_ERROR_OUT_OF_HOST_MEMORY);
3430 
3431       return result;
3432    }
3433 
3434    struct anv_shader_upload_params upload_params = {
3435       .stage               = stage->stage,
3436       .key_data            = &stage->cache_key,
3437       .key_size            = sizeof(stage->cache_key),
3438       .kernel_data         = stage->code,
3439       .kernel_size         = stage->prog_data.base.program_size,
3440       .prog_data           = &stage->prog_data.base,
3441       .prog_data_size      = brw_prog_data_size(stage->stage),
3442       .stats               = stage->stats,
3443       .num_stats           = 1,
3444       .bind_map            = &stage->bind_map,
3445       .push_desc_info      = &stage->push_desc_info,
3446       .dynamic_push_values = stage->dynamic_push_values,
3447    };
3448 
3449    stage->bin =
3450       anv_device_upload_kernel(pipeline->base.device, cache, &upload_params);
3451    if (stage->bin == NULL)
3452       return vk_error(pipeline, VK_ERROR_OUT_OF_HOST_MEMORY);
3453 
3454    anv_pipeline_add_executables(&pipeline->base, stage);
3455 
3456    return VK_SUCCESS;
3457 }
3458 
3459 static bool
is_rt_stack_size_dynamic(const VkRayTracingPipelineCreateInfoKHR * info)3460 is_rt_stack_size_dynamic(const VkRayTracingPipelineCreateInfoKHR *info)
3461 {
3462    if (info->pDynamicState == NULL)
3463       return false;
3464 
3465    for (unsigned i = 0; i < info->pDynamicState->dynamicStateCount; i++) {
3466       if (info->pDynamicState->pDynamicStates[i] ==
3467           VK_DYNAMIC_STATE_RAY_TRACING_PIPELINE_STACK_SIZE_KHR)
3468          return true;
3469    }
3470 
3471    return false;
3472 }
3473 
3474 static void
anv_pipeline_compute_ray_tracing_stacks(struct anv_ray_tracing_pipeline * pipeline,const VkRayTracingPipelineCreateInfoKHR * info,uint32_t * stack_max)3475 anv_pipeline_compute_ray_tracing_stacks(struct anv_ray_tracing_pipeline *pipeline,
3476                                         const VkRayTracingPipelineCreateInfoKHR *info,
3477                                         uint32_t *stack_max)
3478 {
3479    if (is_rt_stack_size_dynamic(info)) {
3480       pipeline->stack_size = 0; /* 0 means dynamic */
3481    } else {
3482       /* From the Vulkan spec:
3483        *
3484        *    "If the stack size is not set explicitly, the stack size for a
3485        *    pipeline is:
3486        *
3487        *       rayGenStackMax +
3488        *       min(1, maxPipelineRayRecursionDepth) ×
3489        *       max(closestHitStackMax, missStackMax,
3490        *           intersectionStackMax + anyHitStackMax) +
3491        *       max(0, maxPipelineRayRecursionDepth-1) ×
3492        *       max(closestHitStackMax, missStackMax) +
3493        *       2 × callableStackMax"
3494        */
3495       pipeline->stack_size =
3496          stack_max[MESA_SHADER_RAYGEN] +
3497          MIN2(1, info->maxPipelineRayRecursionDepth) *
3498          MAX4(stack_max[MESA_SHADER_CLOSEST_HIT],
3499               stack_max[MESA_SHADER_MISS],
3500               stack_max[MESA_SHADER_INTERSECTION],
3501               stack_max[MESA_SHADER_ANY_HIT]) +
3502          MAX2(0, (int)info->maxPipelineRayRecursionDepth - 1) *
3503          MAX2(stack_max[MESA_SHADER_CLOSEST_HIT],
3504               stack_max[MESA_SHADER_MISS]) +
3505          2 * stack_max[MESA_SHADER_CALLABLE];
3506 
3507       /* This is an extremely unlikely case but we need to set it to some
3508        * non-zero value so that we don't accidentally think it's dynamic.
3509        * Our minimum stack size is 2KB anyway so we could set to any small
3510        * value we like.
3511        */
3512       if (pipeline->stack_size == 0)
3513          pipeline->stack_size = 1;
3514    }
3515 }
3516 
3517 static enum brw_rt_ray_flags
anv_pipeline_get_pipeline_ray_flags(VkPipelineCreateFlags2KHR flags)3518 anv_pipeline_get_pipeline_ray_flags(VkPipelineCreateFlags2KHR flags)
3519 {
3520    uint32_t ray_flags = 0;
3521 
3522    const bool rt_skip_triangles =
3523       flags & VK_PIPELINE_CREATE_2_RAY_TRACING_SKIP_TRIANGLES_BIT_KHR;
3524    const bool rt_skip_aabbs =
3525       flags & VK_PIPELINE_CREATE_2_RAY_TRACING_SKIP_AABBS_BIT_KHR;
3526    assert(!(rt_skip_triangles && rt_skip_aabbs));
3527 
3528    if (rt_skip_triangles)
3529       ray_flags |= BRW_RT_RAY_FLAG_SKIP_TRIANGLES;
3530    else if (rt_skip_aabbs)
3531       ray_flags |= BRW_RT_RAY_FLAG_SKIP_AABBS;
3532 
3533    return ray_flags;
3534 }
3535 
3536 static struct anv_pipeline_stage *
anv_pipeline_init_ray_tracing_stages(struct anv_ray_tracing_pipeline * pipeline,const VkRayTracingPipelineCreateInfoKHR * info,void * tmp_pipeline_ctx)3537 anv_pipeline_init_ray_tracing_stages(struct anv_ray_tracing_pipeline *pipeline,
3538                                      const VkRayTracingPipelineCreateInfoKHR *info,
3539                                      void *tmp_pipeline_ctx)
3540 {
3541    struct anv_device *device = pipeline->base.device;
3542    /* Create enough stage entries for all shader modules plus potential
3543     * combinaisons in the groups.
3544     */
3545    struct anv_pipeline_stage *stages =
3546       rzalloc_array(tmp_pipeline_ctx, struct anv_pipeline_stage, info->stageCount);
3547 
3548    enum brw_rt_ray_flags ray_flags =
3549       anv_pipeline_get_pipeline_ray_flags(pipeline->base.flags);
3550 
3551    for (uint32_t i = 0; i < info->stageCount; i++) {
3552       const VkPipelineShaderStageCreateInfo *sinfo = &info->pStages[i];
3553       if (vk_pipeline_shader_stage_is_null(sinfo))
3554          continue;
3555 
3556       int64_t stage_start = os_time_get_nano();
3557 
3558       stages[i] = (struct anv_pipeline_stage) {
3559          .stage = vk_to_mesa_shader_stage(sinfo->stage),
3560          .pipeline_flags = pipeline->base.flags,
3561          .pipeline_pNext = info->pNext,
3562          .info = sinfo,
3563          .cache_key = {
3564             .stage = vk_to_mesa_shader_stage(sinfo->stage),
3565          },
3566          .feedback = {
3567             .flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT,
3568          },
3569       };
3570 
3571       anv_stage_allocate_bind_map_tables(&pipeline->base, &stages[i],
3572                                          tmp_pipeline_ctx);
3573 
3574       pipeline->base.active_stages |= sinfo->stage;
3575 
3576       anv_stage_write_shader_hash(&stages[i], device);
3577 
3578       populate_bs_prog_key(&stages[i],
3579                            pipeline->base.device,
3580                            ray_flags);
3581 
3582       if (stages[i].stage != MESA_SHADER_INTERSECTION) {
3583          anv_pipeline_hash_ray_tracing_shader(pipeline, &stages[i],
3584                                               stages[i].cache_key.sha1);
3585       }
3586 
3587       stages[i].feedback.duration += os_time_get_nano() - stage_start;
3588    }
3589 
3590    for (uint32_t i = 0; i < info->groupCount; i++) {
3591       const VkRayTracingShaderGroupCreateInfoKHR *ginfo = &info->pGroups[i];
3592 
3593       if (ginfo->type != VK_RAY_TRACING_SHADER_GROUP_TYPE_PROCEDURAL_HIT_GROUP_KHR)
3594          continue;
3595 
3596       int64_t stage_start = os_time_get_nano();
3597 
3598       uint32_t intersection_idx = ginfo->intersectionShader;
3599       assert(intersection_idx < info->stageCount);
3600 
3601       uint32_t any_hit_idx = ginfo->anyHitShader;
3602       if (any_hit_idx != VK_SHADER_UNUSED_KHR) {
3603          assert(any_hit_idx < info->stageCount);
3604          anv_pipeline_hash_ray_tracing_combined_shader(pipeline,
3605                                                        &stages[intersection_idx],
3606                                                        &stages[any_hit_idx],
3607                                                        stages[intersection_idx].cache_key.sha1);
3608       } else {
3609          anv_pipeline_hash_ray_tracing_shader(pipeline,
3610                                               &stages[intersection_idx],
3611                                               stages[intersection_idx].cache_key.sha1);
3612       }
3613 
3614       stages[intersection_idx].feedback.duration += os_time_get_nano() - stage_start;
3615    }
3616 
3617    return stages;
3618 }
3619 
3620 static bool
anv_ray_tracing_pipeline_load_cached_shaders(struct anv_ray_tracing_pipeline * pipeline,struct vk_pipeline_cache * cache,const VkRayTracingPipelineCreateInfoKHR * info,struct anv_pipeline_stage * stages)3621 anv_ray_tracing_pipeline_load_cached_shaders(struct anv_ray_tracing_pipeline *pipeline,
3622                                              struct vk_pipeline_cache *cache,
3623                                              const VkRayTracingPipelineCreateInfoKHR *info,
3624                                              struct anv_pipeline_stage *stages)
3625 {
3626    uint32_t shaders = 0, cache_hits = 0;
3627    for (uint32_t i = 0; i < info->stageCount; i++) {
3628       if (stages[i].info == NULL)
3629          continue;
3630 
3631       shaders++;
3632 
3633       int64_t stage_start = os_time_get_nano();
3634 
3635       bool cache_hit;
3636       stages[i].bin = anv_device_search_for_kernel(pipeline->base.device, cache,
3637                                                    &stages[i].cache_key,
3638                                                    sizeof(stages[i].cache_key),
3639                                                    &cache_hit);
3640       if (cache_hit) {
3641          cache_hits++;
3642          stages[i].feedback.flags |=
3643             VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT;
3644       }
3645 
3646       if (stages[i].bin != NULL)
3647          anv_pipeline_add_executables(&pipeline->base, &stages[i]);
3648 
3649       stages[i].feedback.duration += os_time_get_nano() - stage_start;
3650    }
3651 
3652    return cache_hits == shaders;
3653 }
3654 
3655 static VkResult
anv_pipeline_compile_ray_tracing(struct anv_ray_tracing_pipeline * pipeline,void * tmp_pipeline_ctx,struct anv_pipeline_stage * stages,struct vk_pipeline_cache * cache,const VkRayTracingPipelineCreateInfoKHR * info)3656 anv_pipeline_compile_ray_tracing(struct anv_ray_tracing_pipeline *pipeline,
3657                                  void *tmp_pipeline_ctx,
3658                                  struct anv_pipeline_stage *stages,
3659                                  struct vk_pipeline_cache *cache,
3660                                  const VkRayTracingPipelineCreateInfoKHR *info)
3661 {
3662    const struct intel_device_info *devinfo = pipeline->base.device->info;
3663    VkResult result;
3664 
3665    VkPipelineCreationFeedback pipeline_feedback = {
3666       .flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT,
3667    };
3668    int64_t pipeline_start = os_time_get_nano();
3669 
3670    const bool skip_cache_lookup =
3671       (pipeline->base.flags & VK_PIPELINE_CREATE_CAPTURE_INTERNAL_REPRESENTATIONS_BIT_KHR);
3672 
3673    if (!skip_cache_lookup &&
3674        anv_ray_tracing_pipeline_load_cached_shaders(pipeline, cache, info, stages)) {
3675       pipeline_feedback.flags |=
3676          VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT;
3677       goto done;
3678    }
3679 
3680    if (pipeline->base.flags & VK_PIPELINE_CREATE_2_FAIL_ON_PIPELINE_COMPILE_REQUIRED_BIT_KHR)
3681       return VK_PIPELINE_COMPILE_REQUIRED;
3682 
3683    for (uint32_t i = 0; i < info->stageCount; i++) {
3684       if (stages[i].info == NULL)
3685          continue;
3686 
3687       int64_t stage_start = os_time_get_nano();
3688 
3689       VkResult result = anv_pipeline_stage_get_nir(&pipeline->base, cache,
3690                                                    tmp_pipeline_ctx,
3691                                                    &stages[i]);
3692       if (result != VK_SUCCESS)
3693          return result;
3694 
3695       anv_pipeline_nir_preprocess(&pipeline->base, &stages[i]);
3696 
3697       anv_pipeline_lower_nir(&pipeline->base, tmp_pipeline_ctx, &stages[i],
3698                              &pipeline->base.layout, 0 /* view_mask */,
3699                              false /* use_primitive_replication */);
3700 
3701       stages[i].feedback.duration += os_time_get_nano() - stage_start;
3702    }
3703 
3704    for (uint32_t i = 0; i < info->stageCount; i++) {
3705       if (stages[i].info == NULL)
3706          continue;
3707 
3708       /* Shader found in cache already. */
3709       if (stages[i].bin != NULL)
3710          continue;
3711 
3712       /* We handle intersection shaders as part of the group */
3713       if (stages[i].stage == MESA_SHADER_INTERSECTION)
3714          continue;
3715 
3716       int64_t stage_start = os_time_get_nano();
3717 
3718       void *tmp_stage_ctx = ralloc_context(tmp_pipeline_ctx);
3719 
3720       nir_shader *nir = nir_shader_clone(tmp_stage_ctx, stages[i].nir);
3721       switch (stages[i].stage) {
3722       case MESA_SHADER_RAYGEN:
3723          brw_nir_lower_raygen(nir);
3724          break;
3725 
3726       case MESA_SHADER_ANY_HIT:
3727          brw_nir_lower_any_hit(nir, devinfo);
3728          break;
3729 
3730       case MESA_SHADER_CLOSEST_HIT:
3731          brw_nir_lower_closest_hit(nir);
3732          break;
3733 
3734       case MESA_SHADER_MISS:
3735          brw_nir_lower_miss(nir);
3736          break;
3737 
3738       case MESA_SHADER_INTERSECTION:
3739          unreachable("These are handled later");
3740 
3741       case MESA_SHADER_CALLABLE:
3742          brw_nir_lower_callable(nir);
3743          break;
3744 
3745       default:
3746          unreachable("Invalid ray-tracing shader stage");
3747       }
3748 
3749       result = compile_upload_rt_shader(pipeline, cache, nir, &stages[i],
3750                                         tmp_stage_ctx);
3751       if (result != VK_SUCCESS) {
3752          ralloc_free(tmp_stage_ctx);
3753          return result;
3754       }
3755 
3756       ralloc_free(tmp_stage_ctx);
3757 
3758       stages[i].feedback.duration += os_time_get_nano() - stage_start;
3759    }
3760 
3761  done:
3762    for (uint32_t i = 0; i < info->groupCount; i++) {
3763       const VkRayTracingShaderGroupCreateInfoKHR *ginfo = &info->pGroups[i];
3764       struct anv_rt_shader_group *group = &pipeline->groups[i];
3765       group->type = ginfo->type;
3766       switch (ginfo->type) {
3767       case VK_RAY_TRACING_SHADER_GROUP_TYPE_GENERAL_KHR:
3768          assert(ginfo->generalShader < info->stageCount);
3769          group->general = stages[ginfo->generalShader].bin;
3770          break;
3771 
3772       case VK_RAY_TRACING_SHADER_GROUP_TYPE_TRIANGLES_HIT_GROUP_KHR:
3773          if (ginfo->anyHitShader < info->stageCount)
3774             group->any_hit = stages[ginfo->anyHitShader].bin;
3775 
3776          if (ginfo->closestHitShader < info->stageCount)
3777             group->closest_hit = stages[ginfo->closestHitShader].bin;
3778          break;
3779 
3780       case VK_RAY_TRACING_SHADER_GROUP_TYPE_PROCEDURAL_HIT_GROUP_KHR: {
3781          if (ginfo->closestHitShader < info->stageCount)
3782             group->closest_hit = stages[ginfo->closestHitShader].bin;
3783 
3784          uint32_t intersection_idx = info->pGroups[i].intersectionShader;
3785          assert(intersection_idx < info->stageCount);
3786 
3787          /* Only compile this stage if not already found in the cache. */
3788          if (stages[intersection_idx].bin == NULL) {
3789             /* The any-hit and intersection shader have to be combined */
3790             uint32_t any_hit_idx = info->pGroups[i].anyHitShader;
3791             const nir_shader *any_hit = NULL;
3792             if (any_hit_idx < info->stageCount)
3793                any_hit = stages[any_hit_idx].nir;
3794 
3795             void *tmp_group_ctx = ralloc_context(tmp_pipeline_ctx);
3796             nir_shader *intersection =
3797                nir_shader_clone(tmp_group_ctx, stages[intersection_idx].nir);
3798 
3799             brw_nir_lower_combined_intersection_any_hit(intersection, any_hit,
3800                                                         devinfo);
3801 
3802             result = compile_upload_rt_shader(pipeline, cache,
3803                                               intersection,
3804                                               &stages[intersection_idx],
3805                                               tmp_group_ctx);
3806             ralloc_free(tmp_group_ctx);
3807             if (result != VK_SUCCESS)
3808                return result;
3809          }
3810 
3811          group->intersection = stages[intersection_idx].bin;
3812          break;
3813       }
3814 
3815       default:
3816          unreachable("Invalid ray tracing shader group type");
3817       }
3818    }
3819 
3820    pipeline_feedback.duration = os_time_get_nano() - pipeline_start;
3821 
3822    const VkPipelineCreationFeedbackCreateInfo *create_feedback =
3823       vk_find_struct_const(info->pNext, PIPELINE_CREATION_FEEDBACK_CREATE_INFO);
3824    if (create_feedback) {
3825       *create_feedback->pPipelineCreationFeedback = pipeline_feedback;
3826 
3827       uint32_t stage_count = create_feedback->pipelineStageCreationFeedbackCount;
3828       assert(stage_count == 0 || info->stageCount == stage_count);
3829       for (uint32_t i = 0; i < stage_count; i++) {
3830          gl_shader_stage s = vk_to_mesa_shader_stage(info->pStages[i].stage);
3831          create_feedback->pPipelineStageCreationFeedbacks[i] = stages[s].feedback;
3832       }
3833    }
3834 
3835    return VK_SUCCESS;
3836 }
3837 
3838 VkResult
anv_device_init_rt_shaders(struct anv_device * device)3839 anv_device_init_rt_shaders(struct anv_device *device)
3840 {
3841    device->bvh_build_method = ANV_BVH_BUILD_METHOD_NEW_SAH;
3842 
3843    if (!device->vk.enabled_extensions.KHR_ray_tracing_pipeline)
3844       return VK_SUCCESS;
3845 
3846    bool cache_hit;
3847 
3848    struct anv_push_descriptor_info empty_push_desc_info = {};
3849    struct anv_pipeline_bind_map empty_bind_map = {};
3850    struct brw_rt_trampoline {
3851       char name[16];
3852       struct brw_cs_prog_key key;
3853    } trampoline_key = {
3854       .name = "rt-trampoline",
3855    };
3856    device->rt_trampoline =
3857       anv_device_search_for_kernel(device, device->internal_cache,
3858                                    &trampoline_key, sizeof(trampoline_key),
3859                                    &cache_hit);
3860    if (device->rt_trampoline == NULL) {
3861 
3862       void *tmp_ctx = ralloc_context(NULL);
3863       nir_shader *trampoline_nir =
3864          brw_nir_create_raygen_trampoline(device->physical->compiler, tmp_ctx);
3865 
3866       trampoline_nir->info.subgroup_size = SUBGROUP_SIZE_REQUIRE_16;
3867 
3868       uint32_t dummy_params[4] = { 0, };
3869       struct brw_cs_prog_data trampoline_prog_data = {
3870          .base.nr_params = 4,
3871          .base.param = dummy_params,
3872          .uses_inline_data = true,
3873          .uses_btd_stack_ids = true,
3874       };
3875       struct brw_compile_cs_params params = {
3876          .base = {
3877             .nir = trampoline_nir,
3878             .log_data = device,
3879             .mem_ctx = tmp_ctx,
3880          },
3881          .key = &trampoline_key.key,
3882          .prog_data = &trampoline_prog_data,
3883       };
3884       const unsigned *tramp_data =
3885          brw_compile_cs(device->physical->compiler, &params);
3886 
3887       struct anv_shader_upload_params upload_params = {
3888          .stage               = MESA_SHADER_COMPUTE,
3889          .key_data            = &trampoline_key,
3890          .key_size            = sizeof(trampoline_key),
3891          .kernel_data         = tramp_data,
3892          .kernel_size         = trampoline_prog_data.base.program_size,
3893          .prog_data           = &trampoline_prog_data.base,
3894          .prog_data_size      = sizeof(trampoline_prog_data),
3895          .bind_map            = &empty_bind_map,
3896          .push_desc_info      = &empty_push_desc_info,
3897       };
3898 
3899       device->rt_trampoline =
3900          anv_device_upload_kernel(device, device->internal_cache,
3901                                   &upload_params);
3902 
3903       ralloc_free(tmp_ctx);
3904 
3905       if (device->rt_trampoline == NULL)
3906          return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
3907    }
3908 
3909    /* The cache already has a reference and it's not going anywhere so there
3910     * is no need to hold a second reference.
3911     */
3912    anv_shader_bin_unref(device, device->rt_trampoline);
3913 
3914    struct brw_rt_trivial_return {
3915       char name[16];
3916       struct brw_bs_prog_key key;
3917    } return_key = {
3918       .name = "rt-trivial-ret",
3919    };
3920    device->rt_trivial_return =
3921       anv_device_search_for_kernel(device, device->internal_cache,
3922                                    &return_key, sizeof(return_key),
3923                                    &cache_hit);
3924    if (device->rt_trivial_return == NULL) {
3925       void *tmp_ctx = ralloc_context(NULL);
3926       nir_shader *trivial_return_nir =
3927          brw_nir_create_trivial_return_shader(device->physical->compiler, tmp_ctx);
3928 
3929       NIR_PASS_V(trivial_return_nir, brw_nir_lower_rt_intrinsics, device->info);
3930 
3931       struct brw_bs_prog_data return_prog_data = { 0, };
3932       struct brw_compile_bs_params params = {
3933          .base = {
3934             .nir = trivial_return_nir,
3935             .log_data = device,
3936             .mem_ctx = tmp_ctx,
3937          },
3938          .key = &return_key.key,
3939          .prog_data = &return_prog_data,
3940       };
3941       const unsigned *return_data =
3942          brw_compile_bs(device->physical->compiler, &params);
3943 
3944       struct anv_shader_upload_params upload_params = {
3945          .stage               = MESA_SHADER_CALLABLE,
3946          .key_data            = &return_key,
3947          .key_size            = sizeof(return_key),
3948          .kernel_data         = return_data,
3949          .kernel_size         = return_prog_data.base.program_size,
3950          .prog_data           = &return_prog_data.base,
3951          .prog_data_size      = sizeof(return_prog_data),
3952          .bind_map            = &empty_bind_map,
3953          .push_desc_info      = &empty_push_desc_info,
3954       };
3955 
3956       device->rt_trivial_return =
3957          anv_device_upload_kernel(device, device->internal_cache,
3958                                   &upload_params);
3959 
3960       ralloc_free(tmp_ctx);
3961 
3962       if (device->rt_trivial_return == NULL)
3963          return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
3964    }
3965 
3966    /* The cache already has a reference and it's not going anywhere so there
3967     * is no need to hold a second reference.
3968     */
3969    anv_shader_bin_unref(device, device->rt_trivial_return);
3970 
3971    return VK_SUCCESS;
3972 }
3973 
3974 void
anv_device_finish_rt_shaders(struct anv_device * device)3975 anv_device_finish_rt_shaders(struct anv_device *device)
3976 {
3977    if (!device->vk.enabled_extensions.KHR_ray_tracing_pipeline)
3978       return;
3979 }
3980 
3981 static void
anv_ray_tracing_pipeline_init(struct anv_ray_tracing_pipeline * pipeline,struct anv_device * device,struct vk_pipeline_cache * cache,const VkRayTracingPipelineCreateInfoKHR * pCreateInfo,const VkAllocationCallbacks * alloc)3982 anv_ray_tracing_pipeline_init(struct anv_ray_tracing_pipeline *pipeline,
3983                               struct anv_device *device,
3984                               struct vk_pipeline_cache *cache,
3985                               const VkRayTracingPipelineCreateInfoKHR *pCreateInfo,
3986                               const VkAllocationCallbacks *alloc)
3987 {
3988    util_dynarray_init(&pipeline->shaders, pipeline->base.mem_ctx);
3989 
3990    ANV_FROM_HANDLE(anv_pipeline_layout, pipeline_layout, pCreateInfo->layout);
3991    anv_pipeline_init_layout(&pipeline->base, pipeline_layout);
3992 
3993    anv_pipeline_setup_l3_config(&pipeline->base, /* needs_slm */ false);
3994 }
3995 
3996 static void
assert_rt_stage_index_valid(const VkRayTracingPipelineCreateInfoKHR * pCreateInfo,uint32_t stage_idx,VkShaderStageFlags valid_stages)3997 assert_rt_stage_index_valid(const VkRayTracingPipelineCreateInfoKHR* pCreateInfo,
3998                             uint32_t stage_idx,
3999                             VkShaderStageFlags valid_stages)
4000 {
4001    if (stage_idx == VK_SHADER_UNUSED_KHR)
4002       return;
4003 
4004    assert(stage_idx <= pCreateInfo->stageCount);
4005    assert(util_bitcount(pCreateInfo->pStages[stage_idx].stage) == 1);
4006    assert(pCreateInfo->pStages[stage_idx].stage & valid_stages);
4007 }
4008 
4009 static VkResult
anv_ray_tracing_pipeline_create(VkDevice _device,struct vk_pipeline_cache * cache,const VkRayTracingPipelineCreateInfoKHR * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkPipeline * pPipeline)4010 anv_ray_tracing_pipeline_create(
4011     VkDevice                                    _device,
4012     struct vk_pipeline_cache *                  cache,
4013     const VkRayTracingPipelineCreateInfoKHR*    pCreateInfo,
4014     const VkAllocationCallbacks*                pAllocator,
4015     VkPipeline*                                 pPipeline)
4016 {
4017    ANV_FROM_HANDLE(anv_device, device, _device);
4018    VkResult result;
4019 
4020    assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_RAY_TRACING_PIPELINE_CREATE_INFO_KHR);
4021 
4022    uint32_t group_count = pCreateInfo->groupCount;
4023    if (pCreateInfo->pLibraryInfo) {
4024       for (uint32_t l = 0; l < pCreateInfo->pLibraryInfo->libraryCount; l++) {
4025          ANV_FROM_HANDLE(anv_pipeline, library,
4026                          pCreateInfo->pLibraryInfo->pLibraries[l]);
4027          struct anv_ray_tracing_pipeline *rt_library =
4028             anv_pipeline_to_ray_tracing(library);
4029          group_count += rt_library->group_count;
4030       }
4031    }
4032 
4033    VK_MULTIALLOC(ma);
4034    VK_MULTIALLOC_DECL(&ma, struct anv_ray_tracing_pipeline, pipeline, 1);
4035    VK_MULTIALLOC_DECL(&ma, struct anv_rt_shader_group, groups, group_count);
4036    if (!vk_multialloc_zalloc2(&ma, &device->vk.alloc, pAllocator,
4037                               VK_SYSTEM_ALLOCATION_SCOPE_DEVICE))
4038       return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
4039 
4040    result = anv_pipeline_init(&pipeline->base, device,
4041                               ANV_PIPELINE_RAY_TRACING,
4042                               vk_rt_pipeline_create_flags(pCreateInfo),
4043                               pAllocator);
4044    if (result != VK_SUCCESS) {
4045       vk_free2(&device->vk.alloc, pAllocator, pipeline);
4046       return result;
4047    }
4048 
4049    pipeline->group_count = group_count;
4050    pipeline->groups = groups;
4051 
4052    ASSERTED const VkShaderStageFlags ray_tracing_stages =
4053       VK_SHADER_STAGE_RAYGEN_BIT_KHR |
4054       VK_SHADER_STAGE_ANY_HIT_BIT_KHR |
4055       VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR |
4056       VK_SHADER_STAGE_MISS_BIT_KHR |
4057       VK_SHADER_STAGE_INTERSECTION_BIT_KHR |
4058       VK_SHADER_STAGE_CALLABLE_BIT_KHR;
4059 
4060    for (uint32_t i = 0; i < pCreateInfo->stageCount; i++)
4061       assert((pCreateInfo->pStages[i].stage & ~ray_tracing_stages) == 0);
4062 
4063    for (uint32_t i = 0; i < pCreateInfo->groupCount; i++) {
4064       const VkRayTracingShaderGroupCreateInfoKHR *ginfo =
4065          &pCreateInfo->pGroups[i];
4066       assert_rt_stage_index_valid(pCreateInfo, ginfo->generalShader,
4067                                   VK_SHADER_STAGE_RAYGEN_BIT_KHR |
4068                                   VK_SHADER_STAGE_MISS_BIT_KHR |
4069                                   VK_SHADER_STAGE_CALLABLE_BIT_KHR);
4070       assert_rt_stage_index_valid(pCreateInfo, ginfo->closestHitShader,
4071                                   VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR);
4072       assert_rt_stage_index_valid(pCreateInfo, ginfo->anyHitShader,
4073                                   VK_SHADER_STAGE_ANY_HIT_BIT_KHR);
4074       assert_rt_stage_index_valid(pCreateInfo, ginfo->intersectionShader,
4075                                   VK_SHADER_STAGE_INTERSECTION_BIT_KHR);
4076       switch (ginfo->type) {
4077       case VK_RAY_TRACING_SHADER_GROUP_TYPE_GENERAL_KHR:
4078          assert(ginfo->generalShader < pCreateInfo->stageCount);
4079          assert(ginfo->anyHitShader == VK_SHADER_UNUSED_KHR);
4080          assert(ginfo->closestHitShader == VK_SHADER_UNUSED_KHR);
4081          assert(ginfo->intersectionShader == VK_SHADER_UNUSED_KHR);
4082          break;
4083 
4084       case VK_RAY_TRACING_SHADER_GROUP_TYPE_TRIANGLES_HIT_GROUP_KHR:
4085          assert(ginfo->generalShader == VK_SHADER_UNUSED_KHR);
4086          assert(ginfo->intersectionShader == VK_SHADER_UNUSED_KHR);
4087          break;
4088 
4089       case VK_RAY_TRACING_SHADER_GROUP_TYPE_PROCEDURAL_HIT_GROUP_KHR:
4090          assert(ginfo->generalShader == VK_SHADER_UNUSED_KHR);
4091          break;
4092 
4093       default:
4094          unreachable("Invalid ray-tracing shader group type");
4095       }
4096    }
4097 
4098    anv_ray_tracing_pipeline_init(pipeline, device, cache,
4099                                  pCreateInfo, pAllocator);
4100 
4101    void *tmp_ctx = ralloc_context(NULL);
4102 
4103    struct anv_pipeline_stage *stages =
4104       anv_pipeline_init_ray_tracing_stages(pipeline, pCreateInfo, tmp_ctx);
4105 
4106    result = anv_pipeline_compile_ray_tracing(pipeline, tmp_ctx, stages,
4107                                              cache, pCreateInfo);
4108    if (result != VK_SUCCESS) {
4109       ralloc_free(tmp_ctx);
4110       util_dynarray_foreach(&pipeline->shaders, struct anv_shader_bin *, shader)
4111          anv_shader_bin_unref(device, *shader);
4112       anv_pipeline_finish(&pipeline->base, device);
4113       vk_free2(&device->vk.alloc, pAllocator, pipeline);
4114       return result;
4115    }
4116 
4117    /* Compute the size of the scratch BO (for register spilling) by taking the
4118     * max of all the shaders in the pipeline. Also add the shaders to the list
4119     * of executables.
4120     */
4121    uint32_t stack_max[MESA_VULKAN_SHADER_STAGES] = {};
4122    for (uint32_t s = 0; s < pCreateInfo->stageCount; s++) {
4123       util_dynarray_append(&pipeline->shaders,
4124                            struct anv_shader_bin *,
4125                            stages[s].bin);
4126 
4127       uint32_t stack_size =
4128          brw_bs_prog_data_const(stages[s].bin->prog_data)->max_stack_size;
4129       stack_max[stages[s].stage] = MAX2(stack_max[stages[s].stage], stack_size);
4130 
4131       anv_pipeline_account_shader(&pipeline->base, stages[s].bin);
4132    }
4133 
4134    anv_pipeline_compute_ray_tracing_stacks(pipeline, pCreateInfo, stack_max);
4135 
4136    if (pCreateInfo->pLibraryInfo) {
4137       uint32_t g = pCreateInfo->groupCount;
4138       for (uint32_t l = 0; l < pCreateInfo->pLibraryInfo->libraryCount; l++) {
4139          ANV_FROM_HANDLE(anv_pipeline, library,
4140                          pCreateInfo->pLibraryInfo->pLibraries[l]);
4141          struct anv_ray_tracing_pipeline *rt_library =
4142             anv_pipeline_to_ray_tracing(library);
4143          for (uint32_t lg = 0; lg < rt_library->group_count; lg++) {
4144             pipeline->groups[g] = rt_library->groups[lg];
4145             pipeline->groups[g].imported = true;
4146             g++;
4147          }
4148 
4149          /* Account for shaders in the library. */
4150          util_dynarray_foreach(&rt_library->shaders,
4151                                struct anv_shader_bin *, shader) {
4152             util_dynarray_append(&pipeline->shaders,
4153                                  struct anv_shader_bin *,
4154                                  anv_shader_bin_ref(*shader));
4155             anv_pipeline_account_shader(&pipeline->base, *shader);
4156          }
4157 
4158          /* Add the library shaders to this pipeline's executables. */
4159          util_dynarray_foreach(&rt_library->base.executables,
4160                                struct anv_pipeline_executable, exe) {
4161             util_dynarray_append(&pipeline->base.executables,
4162                                  struct anv_pipeline_executable, *exe);
4163          }
4164 
4165          pipeline->base.active_stages |= rt_library->base.active_stages;
4166       }
4167    }
4168 
4169    anv_genX(device->info, ray_tracing_pipeline_emit)(pipeline);
4170 
4171    ralloc_free(tmp_ctx);
4172 
4173    ANV_RMV(rt_pipeline_create, device, pipeline, false);
4174 
4175    *pPipeline = anv_pipeline_to_handle(&pipeline->base);
4176 
4177    return pipeline->base.batch.status;
4178 }
4179 
4180 VkResult
anv_CreateRayTracingPipelinesKHR(VkDevice _device,VkDeferredOperationKHR deferredOperation,VkPipelineCache pipelineCache,uint32_t createInfoCount,const VkRayTracingPipelineCreateInfoKHR * pCreateInfos,const VkAllocationCallbacks * pAllocator,VkPipeline * pPipelines)4181 anv_CreateRayTracingPipelinesKHR(
4182     VkDevice                                    _device,
4183     VkDeferredOperationKHR                      deferredOperation,
4184     VkPipelineCache                             pipelineCache,
4185     uint32_t                                    createInfoCount,
4186     const VkRayTracingPipelineCreateInfoKHR*    pCreateInfos,
4187     const VkAllocationCallbacks*                pAllocator,
4188     VkPipeline*                                 pPipelines)
4189 {
4190    ANV_FROM_HANDLE(vk_pipeline_cache, pipeline_cache, pipelineCache);
4191 
4192    VkResult result = VK_SUCCESS;
4193 
4194    unsigned i;
4195    for (i = 0; i < createInfoCount; i++) {
4196       const VkPipelineCreateFlags2KHR flags =
4197          vk_rt_pipeline_create_flags(&pCreateInfos[i]);
4198       VkResult res = anv_ray_tracing_pipeline_create(_device, pipeline_cache,
4199                                                      &pCreateInfos[i],
4200                                                      pAllocator, &pPipelines[i]);
4201 
4202       if (res != VK_SUCCESS) {
4203          result = res;
4204          if (flags & VK_PIPELINE_CREATE_2_EARLY_RETURN_ON_FAILURE_BIT_KHR)
4205             break;
4206          pPipelines[i] = VK_NULL_HANDLE;
4207       }
4208    }
4209 
4210    for (; i < createInfoCount; i++)
4211       pPipelines[i] = VK_NULL_HANDLE;
4212 
4213    return result;
4214 }
4215 
4216 #define WRITE_STR(field, ...) ({                               \
4217    memset(field, 0, sizeof(field));                            \
4218    UNUSED int i = snprintf(field, sizeof(field), __VA_ARGS__); \
4219    assert(i > 0 && i < sizeof(field));                         \
4220 })
4221 
anv_GetPipelineExecutablePropertiesKHR(VkDevice device,const VkPipelineInfoKHR * pPipelineInfo,uint32_t * pExecutableCount,VkPipelineExecutablePropertiesKHR * pProperties)4222 VkResult anv_GetPipelineExecutablePropertiesKHR(
4223     VkDevice                                    device,
4224     const VkPipelineInfoKHR*                    pPipelineInfo,
4225     uint32_t*                                   pExecutableCount,
4226     VkPipelineExecutablePropertiesKHR*          pProperties)
4227 {
4228    ANV_FROM_HANDLE(anv_pipeline, pipeline, pPipelineInfo->pipeline);
4229    VK_OUTARRAY_MAKE_TYPED(VkPipelineExecutablePropertiesKHR, out,
4230                           pProperties, pExecutableCount);
4231 
4232    util_dynarray_foreach (&pipeline->executables, struct anv_pipeline_executable, exe) {
4233       vk_outarray_append_typed(VkPipelineExecutablePropertiesKHR, &out, props) {
4234          gl_shader_stage stage = exe->stage;
4235          props->stages = mesa_to_vk_shader_stage(stage);
4236 
4237          unsigned simd_width = exe->stats.dispatch_width;
4238          if (stage == MESA_SHADER_FRAGMENT) {
4239             if (exe->stats.max_polygons > 1)
4240                WRITE_STR(props->name, "SIMD%dx%d %s",
4241                          exe->stats.max_polygons,
4242                          simd_width / exe->stats.max_polygons,
4243                          _mesa_shader_stage_to_string(stage));
4244             else
4245                WRITE_STR(props->name, "%s%d %s",
4246                          simd_width ? "SIMD" : "vec",
4247                          simd_width ? simd_width : 4,
4248                          _mesa_shader_stage_to_string(stage));
4249          } else {
4250             WRITE_STR(props->name, "%s", _mesa_shader_stage_to_string(stage));
4251          }
4252          WRITE_STR(props->description, "%s%d %s shader",
4253                    simd_width ? "SIMD" : "vec",
4254                    simd_width ? simd_width : 4,
4255                    _mesa_shader_stage_to_string(stage));
4256 
4257          /* The compiler gives us a dispatch width of 0 for vec4 but Vulkan
4258           * wants a subgroup size of 1.
4259           */
4260          props->subgroupSize = MAX2(simd_width, 1);
4261       }
4262    }
4263 
4264    return vk_outarray_status(&out);
4265 }
4266 
4267 static const struct anv_pipeline_executable *
anv_pipeline_get_executable(struct anv_pipeline * pipeline,uint32_t index)4268 anv_pipeline_get_executable(struct anv_pipeline *pipeline, uint32_t index)
4269 {
4270    assert(index < util_dynarray_num_elements(&pipeline->executables,
4271                                              struct anv_pipeline_executable));
4272    return util_dynarray_element(
4273       &pipeline->executables, struct anv_pipeline_executable, index);
4274 }
4275 
anv_GetPipelineExecutableStatisticsKHR(VkDevice device,const VkPipelineExecutableInfoKHR * pExecutableInfo,uint32_t * pStatisticCount,VkPipelineExecutableStatisticKHR * pStatistics)4276 VkResult anv_GetPipelineExecutableStatisticsKHR(
4277     VkDevice                                    device,
4278     const VkPipelineExecutableInfoKHR*          pExecutableInfo,
4279     uint32_t*                                   pStatisticCount,
4280     VkPipelineExecutableStatisticKHR*           pStatistics)
4281 {
4282    ANV_FROM_HANDLE(anv_pipeline, pipeline, pExecutableInfo->pipeline);
4283    VK_OUTARRAY_MAKE_TYPED(VkPipelineExecutableStatisticKHR, out,
4284                           pStatistics, pStatisticCount);
4285 
4286    const struct anv_pipeline_executable *exe =
4287       anv_pipeline_get_executable(pipeline, pExecutableInfo->executableIndex);
4288 
4289    const struct brw_stage_prog_data *prog_data;
4290    switch (pipeline->type) {
4291    case ANV_PIPELINE_GRAPHICS:
4292    case ANV_PIPELINE_GRAPHICS_LIB: {
4293       prog_data = anv_pipeline_to_graphics_base(pipeline)->shaders[exe->stage]->prog_data;
4294       break;
4295    }
4296    case ANV_PIPELINE_COMPUTE: {
4297       prog_data = anv_pipeline_to_compute(pipeline)->cs->prog_data;
4298       break;
4299    }
4300    case ANV_PIPELINE_RAY_TRACING: {
4301       struct anv_shader_bin **shader =
4302          util_dynarray_element(&anv_pipeline_to_ray_tracing(pipeline)->shaders,
4303                                struct anv_shader_bin *,
4304                                pExecutableInfo->executableIndex);
4305       prog_data = (*shader)->prog_data;
4306       break;
4307    }
4308    default:
4309       unreachable("invalid pipeline type");
4310    }
4311 
4312    vk_outarray_append_typed(VkPipelineExecutableStatisticKHR, &out, stat) {
4313       WRITE_STR(stat->name, "Instruction Count");
4314       WRITE_STR(stat->description,
4315                 "Number of GEN instructions in the final generated "
4316                 "shader executable.");
4317       stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
4318       stat->value.u64 = exe->stats.instructions;
4319    }
4320 
4321    vk_outarray_append_typed(VkPipelineExecutableStatisticKHR, &out, stat) {
4322       WRITE_STR(stat->name, "SEND Count");
4323       WRITE_STR(stat->description,
4324                 "Number of instructions in the final generated shader "
4325                 "executable which access external units such as the "
4326                 "constant cache or the sampler.");
4327       stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
4328       stat->value.u64 = exe->stats.sends;
4329    }
4330 
4331    vk_outarray_append_typed(VkPipelineExecutableStatisticKHR, &out, stat) {
4332       WRITE_STR(stat->name, "Loop Count");
4333       WRITE_STR(stat->description,
4334                 "Number of loops (not unrolled) in the final generated "
4335                 "shader executable.");
4336       stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
4337       stat->value.u64 = exe->stats.loops;
4338    }
4339 
4340    vk_outarray_append_typed(VkPipelineExecutableStatisticKHR, &out, stat) {
4341       WRITE_STR(stat->name, "Cycle Count");
4342       WRITE_STR(stat->description,
4343                 "Estimate of the number of EU cycles required to execute "
4344                 "the final generated executable.  This is an estimate only "
4345                 "and may vary greatly from actual run-time performance.");
4346       stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
4347       stat->value.u64 = exe->stats.cycles;
4348    }
4349 
4350    vk_outarray_append_typed(VkPipelineExecutableStatisticKHR, &out, stat) {
4351       WRITE_STR(stat->name, "Spill Count");
4352       WRITE_STR(stat->description,
4353                 "Number of scratch spill operations.  This gives a rough "
4354                 "estimate of the cost incurred due to spilling temporary "
4355                 "values to memory.  If this is non-zero, you may want to "
4356                 "adjust your shader to reduce register pressure.");
4357       stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
4358       stat->value.u64 = exe->stats.spills;
4359    }
4360 
4361    vk_outarray_append_typed(VkPipelineExecutableStatisticKHR, &out, stat) {
4362       WRITE_STR(stat->name, "Fill Count");
4363       WRITE_STR(stat->description,
4364                 "Number of scratch fill operations.  This gives a rough "
4365                 "estimate of the cost incurred due to spilling temporary "
4366                 "values to memory.  If this is non-zero, you may want to "
4367                 "adjust your shader to reduce register pressure.");
4368       stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
4369       stat->value.u64 = exe->stats.fills;
4370    }
4371 
4372    vk_outarray_append_typed(VkPipelineExecutableStatisticKHR, &out, stat) {
4373       WRITE_STR(stat->name, "Scratch Memory Size");
4374       WRITE_STR(stat->description,
4375                 "Number of bytes of scratch memory required by the "
4376                 "generated shader executable.  If this is non-zero, you "
4377                 "may want to adjust your shader to reduce register "
4378                 "pressure.");
4379       stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
4380       stat->value.u64 = prog_data->total_scratch;
4381    }
4382 
4383    vk_outarray_append_typed(VkPipelineExecutableStatisticKHR, &out, stat) {
4384       WRITE_STR(stat->name, "Max dispatch width");
4385       WRITE_STR(stat->description,
4386                 "Largest SIMD dispatch width.");
4387       stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
4388       /* Report the max dispatch width only on the smallest SIMD variant */
4389       if (exe->stage != MESA_SHADER_FRAGMENT || exe->stats.dispatch_width == 8)
4390          stat->value.u64 = exe->stats.max_dispatch_width;
4391       else
4392          stat->value.u64 = 0;
4393    }
4394 
4395    vk_outarray_append_typed(VkPipelineExecutableStatisticKHR, &out, stat) {
4396       WRITE_STR(stat->name, "Max live registers");
4397       WRITE_STR(stat->description,
4398                 "Maximum number of registers used across the entire shader.");
4399       stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
4400       stat->value.u64 = exe->stats.max_live_registers;
4401    }
4402 
4403    vk_outarray_append_typed(VkPipelineExecutableStatisticKHR, &out, stat) {
4404       WRITE_STR(stat->name, "Workgroup Memory Size");
4405       WRITE_STR(stat->description,
4406                 "Number of bytes of workgroup shared memory used by this "
4407                 "shader including any padding.");
4408       stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
4409       if (gl_shader_stage_uses_workgroup(exe->stage))
4410          stat->value.u64 = prog_data->total_shared;
4411       else
4412          stat->value.u64 = 0;
4413    }
4414 
4415    vk_outarray_append_typed(VkPipelineExecutableStatisticKHR, &out, stat) {
4416       uint32_t hash = pipeline->type == ANV_PIPELINE_COMPUTE ?
4417                       anv_pipeline_to_compute(pipeline)->source_hash :
4418                       (pipeline->type == ANV_PIPELINE_GRAPHICS_LIB ||
4419                        pipeline->type == ANV_PIPELINE_GRAPHICS) ?
4420                       anv_pipeline_to_graphics_base(pipeline)->source_hashes[exe->stage] :
4421                       0 /* No source hash for ray tracing */;
4422       WRITE_STR(stat->name, "Source hash");
4423       WRITE_STR(stat->description,
4424                 "hash = 0x%08x. Hash generated from shader source.", hash);
4425       stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
4426       stat->value.u64 = hash;
4427    }
4428 
4429    return vk_outarray_status(&out);
4430 }
4431 
4432 static bool
write_ir_text(VkPipelineExecutableInternalRepresentationKHR * ir,const char * data)4433 write_ir_text(VkPipelineExecutableInternalRepresentationKHR* ir,
4434               const char *data)
4435 {
4436    ir->isText = VK_TRUE;
4437 
4438    size_t data_len = strlen(data) + 1;
4439 
4440    if (ir->pData == NULL) {
4441       ir->dataSize = data_len;
4442       return true;
4443    }
4444 
4445    strncpy(ir->pData, data, ir->dataSize);
4446    if (ir->dataSize < data_len)
4447       return false;
4448 
4449    ir->dataSize = data_len;
4450    return true;
4451 }
4452 
anv_GetPipelineExecutableInternalRepresentationsKHR(VkDevice device,const VkPipelineExecutableInfoKHR * pExecutableInfo,uint32_t * pInternalRepresentationCount,VkPipelineExecutableInternalRepresentationKHR * pInternalRepresentations)4453 VkResult anv_GetPipelineExecutableInternalRepresentationsKHR(
4454     VkDevice                                    device,
4455     const VkPipelineExecutableInfoKHR*          pExecutableInfo,
4456     uint32_t*                                   pInternalRepresentationCount,
4457     VkPipelineExecutableInternalRepresentationKHR* pInternalRepresentations)
4458 {
4459    ANV_FROM_HANDLE(anv_pipeline, pipeline, pExecutableInfo->pipeline);
4460    VK_OUTARRAY_MAKE_TYPED(VkPipelineExecutableInternalRepresentationKHR, out,
4461                           pInternalRepresentations, pInternalRepresentationCount);
4462    bool incomplete_text = false;
4463 
4464    const struct anv_pipeline_executable *exe =
4465       anv_pipeline_get_executable(pipeline, pExecutableInfo->executableIndex);
4466 
4467    if (exe->nir) {
4468       vk_outarray_append_typed(VkPipelineExecutableInternalRepresentationKHR, &out, ir) {
4469          WRITE_STR(ir->name, "Final NIR");
4470          WRITE_STR(ir->description,
4471                    "Final NIR before going into the back-end compiler");
4472 
4473          if (!write_ir_text(ir, exe->nir))
4474             incomplete_text = true;
4475       }
4476    }
4477 
4478    if (exe->disasm) {
4479       vk_outarray_append_typed(VkPipelineExecutableInternalRepresentationKHR, &out, ir) {
4480          WRITE_STR(ir->name, "GEN Assembly");
4481          WRITE_STR(ir->description,
4482                    "Final GEN assembly for the generated shader binary");
4483 
4484          if (!write_ir_text(ir, exe->disasm))
4485             incomplete_text = true;
4486       }
4487    }
4488 
4489    return incomplete_text ? VK_INCOMPLETE : vk_outarray_status(&out);
4490 }
4491 
4492 VkResult
anv_GetRayTracingShaderGroupHandlesKHR(VkDevice _device,VkPipeline _pipeline,uint32_t firstGroup,uint32_t groupCount,size_t dataSize,void * pData)4493 anv_GetRayTracingShaderGroupHandlesKHR(
4494     VkDevice                                    _device,
4495     VkPipeline                                  _pipeline,
4496     uint32_t                                    firstGroup,
4497     uint32_t                                    groupCount,
4498     size_t                                      dataSize,
4499     void*                                       pData)
4500 {
4501    ANV_FROM_HANDLE(anv_device, device, _device);
4502    ANV_FROM_HANDLE(anv_pipeline, pipeline, _pipeline);
4503 
4504    if (pipeline->type != ANV_PIPELINE_RAY_TRACING)
4505       return vk_error(device, VK_ERROR_FEATURE_NOT_PRESENT);
4506 
4507    struct anv_ray_tracing_pipeline *rt_pipeline =
4508       anv_pipeline_to_ray_tracing(pipeline);
4509 
4510    assert(firstGroup + groupCount <= rt_pipeline->group_count);
4511    for (uint32_t i = 0; i < groupCount; i++) {
4512       struct anv_rt_shader_group *group = &rt_pipeline->groups[firstGroup + i];
4513       memcpy(pData, group->handle, sizeof(group->handle));
4514       pData += sizeof(group->handle);
4515    }
4516 
4517    return VK_SUCCESS;
4518 }
4519 
4520 VkResult
anv_GetRayTracingCaptureReplayShaderGroupHandlesKHR(VkDevice _device,VkPipeline pipeline,uint32_t firstGroup,uint32_t groupCount,size_t dataSize,void * pData)4521 anv_GetRayTracingCaptureReplayShaderGroupHandlesKHR(
4522     VkDevice                                    _device,
4523     VkPipeline                                  pipeline,
4524     uint32_t                                    firstGroup,
4525     uint32_t                                    groupCount,
4526     size_t                                      dataSize,
4527     void*                                       pData)
4528 {
4529    ANV_FROM_HANDLE(anv_device, device, _device);
4530    unreachable("Unimplemented");
4531    return vk_error(device, VK_ERROR_FEATURE_NOT_PRESENT);
4532 }
4533 
4534 VkDeviceSize
anv_GetRayTracingShaderGroupStackSizeKHR(VkDevice device,VkPipeline _pipeline,uint32_t group,VkShaderGroupShaderKHR groupShader)4535 anv_GetRayTracingShaderGroupStackSizeKHR(
4536     VkDevice                                    device,
4537     VkPipeline                                  _pipeline,
4538     uint32_t                                    group,
4539     VkShaderGroupShaderKHR                      groupShader)
4540 {
4541    ANV_FROM_HANDLE(anv_pipeline, pipeline, _pipeline);
4542    assert(pipeline->type == ANV_PIPELINE_RAY_TRACING);
4543 
4544    struct anv_ray_tracing_pipeline *rt_pipeline =
4545       anv_pipeline_to_ray_tracing(pipeline);
4546 
4547    assert(group < rt_pipeline->group_count);
4548 
4549    struct anv_shader_bin *bin;
4550    switch (groupShader) {
4551    case VK_SHADER_GROUP_SHADER_GENERAL_KHR:
4552       bin = rt_pipeline->groups[group].general;
4553       break;
4554 
4555    case VK_SHADER_GROUP_SHADER_CLOSEST_HIT_KHR:
4556       bin = rt_pipeline->groups[group].closest_hit;
4557       break;
4558 
4559    case VK_SHADER_GROUP_SHADER_ANY_HIT_KHR:
4560       bin = rt_pipeline->groups[group].any_hit;
4561       break;
4562 
4563    case VK_SHADER_GROUP_SHADER_INTERSECTION_KHR:
4564       bin = rt_pipeline->groups[group].intersection;
4565       break;
4566 
4567    default:
4568       unreachable("Invalid VkShaderGroupShader enum");
4569    }
4570 
4571    if (bin == NULL)
4572       return 0;
4573 
4574    return brw_bs_prog_data_const(bin->prog_data)->max_stack_size;
4575 }
4576