xref: /aosp_15_r20/external/mesa3d/src/intel/vulkan_hasvk/anv_pipeline.c (revision 6104692788411f58d303aa86923a9ff6ecaded22)
1 /*
2  * Copyright © 2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23 
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <unistd.h>
28 #include <fcntl.h>
29 
30 #include "util/mesa-sha1.h"
31 #include "util/os_time.h"
32 #include "common/intel_compute_slm.h"
33 #include "common/intel_l3_config.h"
34 #include "common/intel_sample_positions.h"
35 #include "compiler/elk/elk_disasm.h"
36 #include "anv_private.h"
37 #include "compiler/elk/elk_nir.h"
38 #include "compiler/intel_nir.h"
39 #include "anv_nir.h"
40 #include "nir/nir_xfb_info.h"
41 #include "spirv/nir_spirv.h"
42 #include "vk_pipeline.h"
43 #include "vk_render_pass.h"
44 #include "vk_util.h"
45 
46 /* Eventually, this will become part of anv_CreateShader.  Unfortunately,
47  * we can't do that yet because we don't have the ability to copy nir.
48  */
49 static nir_shader *
anv_shader_stage_to_nir(struct anv_device * device,VkPipelineCreateFlags2KHR pipeline_flags,const VkPipelineShaderStageCreateInfo * stage_info,enum elk_robustness_flags robust_flags,void * mem_ctx)50 anv_shader_stage_to_nir(struct anv_device *device,
51                         VkPipelineCreateFlags2KHR pipeline_flags,
52                         const VkPipelineShaderStageCreateInfo *stage_info,
53                         enum elk_robustness_flags robust_flags,
54                         void *mem_ctx)
55 {
56    const struct anv_physical_device *pdevice = device->physical;
57    const struct elk_compiler *compiler = pdevice->compiler;
58    gl_shader_stage stage = vk_to_mesa_shader_stage(stage_info->stage);
59    const nir_shader_compiler_options *nir_options =
60       compiler->nir_options[stage];
61 
62    const struct spirv_to_nir_options spirv_options = {
63       .ubo_addr_format = anv_nir_ubo_addr_format(pdevice, robust_flags),
64       .ssbo_addr_format = anv_nir_ssbo_addr_format(pdevice, robust_flags),
65       .phys_ssbo_addr_format = nir_address_format_64bit_global,
66       .push_const_addr_format = nir_address_format_logical,
67 
68       /* TODO: Consider changing this to an address format that has the NULL
69        * pointer equals to 0.  That might be a better format to play nice
70        * with certain code / code generators.
71        */
72       .shared_addr_format = nir_address_format_32bit_offset,
73 
74       .min_ubo_alignment = ANV_UBO_ALIGNMENT,
75       .min_ssbo_alignment = ANV_SSBO_ALIGNMENT,
76    };
77 
78    nir_shader *nir;
79    VkResult result =
80       vk_pipeline_shader_stage_to_nir(&device->vk, pipeline_flags, stage_info,
81                                       &spirv_options, nir_options,
82                                       mem_ctx, &nir);
83    if (result != VK_SUCCESS)
84       return NULL;
85 
86    if (INTEL_DEBUG(intel_debug_flag_for_shader_stage(stage))) {
87       fprintf(stderr, "NIR (from SPIR-V) for %s shader:\n",
88               gl_shader_stage_name(stage));
89       nir_print_shader(nir, stderr);
90    }
91 
92    NIR_PASS_V(nir, nir_lower_io_to_temporaries,
93               nir_shader_get_entrypoint(nir), true, false);
94 
95    const struct nir_lower_sysvals_to_varyings_options sysvals_to_varyings = {
96       .point_coord = true,
97    };
98    NIR_PASS(_, nir, nir_lower_sysvals_to_varyings, &sysvals_to_varyings);
99 
100    const nir_opt_access_options opt_access_options = {
101       .is_vulkan = true,
102    };
103    NIR_PASS(_, nir, nir_opt_access, &opt_access_options);
104 
105    /* Vulkan uses the separate-shader linking model */
106    nir->info.separate_shader = true;
107 
108    struct elk_nir_compiler_opts opts = {};
109 
110    elk_preprocess_nir(compiler, nir, &opts);
111 
112    return nir;
113 }
114 
115 VkResult
anv_pipeline_init(struct anv_pipeline * pipeline,struct anv_device * device,enum anv_pipeline_type type,VkPipelineCreateFlags flags,const VkAllocationCallbacks * pAllocator)116 anv_pipeline_init(struct anv_pipeline *pipeline,
117                   struct anv_device *device,
118                   enum anv_pipeline_type type,
119                   VkPipelineCreateFlags flags,
120                   const VkAllocationCallbacks *pAllocator)
121 {
122    VkResult result;
123 
124    memset(pipeline, 0, sizeof(*pipeline));
125 
126    vk_object_base_init(&device->vk, &pipeline->base,
127                        VK_OBJECT_TYPE_PIPELINE);
128    pipeline->device = device;
129 
130    /* It's the job of the child class to provide actual backing storage for
131     * the batch by setting batch.start, batch.next, and batch.end.
132     */
133    pipeline->batch.alloc = pAllocator ? pAllocator : &device->vk.alloc;
134    pipeline->batch.relocs = &pipeline->batch_relocs;
135    pipeline->batch.status = VK_SUCCESS;
136 
137    result = anv_reloc_list_init(&pipeline->batch_relocs,
138                                 pipeline->batch.alloc);
139    if (result != VK_SUCCESS)
140       return result;
141 
142    pipeline->mem_ctx = ralloc_context(NULL);
143 
144    pipeline->type = type;
145    pipeline->flags = flags;
146 
147    util_dynarray_init(&pipeline->executables, pipeline->mem_ctx);
148 
149    return VK_SUCCESS;
150 }
151 
152 void
anv_pipeline_finish(struct anv_pipeline * pipeline,struct anv_device * device,const VkAllocationCallbacks * pAllocator)153 anv_pipeline_finish(struct anv_pipeline *pipeline,
154                     struct anv_device *device,
155                     const VkAllocationCallbacks *pAllocator)
156 {
157    anv_reloc_list_finish(&pipeline->batch_relocs,
158                          pAllocator ? pAllocator : &device->vk.alloc);
159    ralloc_free(pipeline->mem_ctx);
160    vk_object_base_finish(&pipeline->base);
161 }
162 
anv_DestroyPipeline(VkDevice _device,VkPipeline _pipeline,const VkAllocationCallbacks * pAllocator)163 void anv_DestroyPipeline(
164     VkDevice                                    _device,
165     VkPipeline                                  _pipeline,
166     const VkAllocationCallbacks*                pAllocator)
167 {
168    ANV_FROM_HANDLE(anv_device, device, _device);
169    ANV_FROM_HANDLE(anv_pipeline, pipeline, _pipeline);
170 
171    if (!pipeline)
172       return;
173 
174    switch (pipeline->type) {
175    case ANV_PIPELINE_GRAPHICS: {
176       struct anv_graphics_pipeline *gfx_pipeline =
177          anv_pipeline_to_graphics(pipeline);
178 
179       for (unsigned s = 0; s < ARRAY_SIZE(gfx_pipeline->shaders); s++) {
180          if (gfx_pipeline->shaders[s])
181             anv_shader_bin_unref(device, gfx_pipeline->shaders[s]);
182       }
183       break;
184    }
185 
186    case ANV_PIPELINE_COMPUTE: {
187       struct anv_compute_pipeline *compute_pipeline =
188          anv_pipeline_to_compute(pipeline);
189 
190       if (compute_pipeline->cs)
191          anv_shader_bin_unref(device, compute_pipeline->cs);
192 
193       break;
194    }
195 
196    default:
197       unreachable("invalid pipeline type");
198    }
199 
200    anv_pipeline_finish(pipeline, device, pAllocator);
201    vk_free2(&device->vk.alloc, pAllocator, pipeline);
202 }
203 
204 static void
populate_sampler_prog_key(const struct intel_device_info * devinfo,struct elk_sampler_prog_key_data * key)205 populate_sampler_prog_key(const struct intel_device_info *devinfo,
206                           struct elk_sampler_prog_key_data *key)
207 {
208    /* XXX: Handle texture swizzle Pre-HSW */
209 }
210 
211 static void
populate_base_prog_key(const struct anv_device * device,enum elk_robustness_flags robust_flags,struct elk_base_prog_key * key)212 populate_base_prog_key(const struct anv_device *device,
213                        enum elk_robustness_flags robust_flags,
214                        struct elk_base_prog_key *key)
215 {
216    key->robust_flags = robust_flags;
217    key->limit_trig_input_range =
218       device->physical->instance->limit_trig_input_range;
219 
220    populate_sampler_prog_key(device->info, &key->tex);
221 }
222 
223 static void
populate_vs_prog_key(const struct anv_device * device,enum elk_robustness_flags robust_flags,struct elk_vs_prog_key * key)224 populate_vs_prog_key(const struct anv_device *device,
225                      enum elk_robustness_flags robust_flags,
226                      struct elk_vs_prog_key *key)
227 {
228    memset(key, 0, sizeof(*key));
229 
230    populate_base_prog_key(device, robust_flags, &key->base);
231 
232    /* XXX: Handle vertex input work-arounds */
233 
234    /* XXX: Handle sampler_prog_key */
235 }
236 
237 static void
populate_tcs_prog_key(const struct anv_device * device,enum elk_robustness_flags robust_flags,unsigned input_vertices,struct elk_tcs_prog_key * key)238 populate_tcs_prog_key(const struct anv_device *device,
239                       enum elk_robustness_flags robust_flags,
240                       unsigned input_vertices,
241                       struct elk_tcs_prog_key *key)
242 {
243    memset(key, 0, sizeof(*key));
244 
245    populate_base_prog_key(device, robust_flags, &key->base);
246 
247    key->input_vertices = input_vertices;
248 }
249 
250 static void
populate_tes_prog_key(const struct anv_device * device,enum elk_robustness_flags robust_flags,struct elk_tes_prog_key * key)251 populate_tes_prog_key(const struct anv_device *device,
252                       enum elk_robustness_flags robust_flags,
253                       struct elk_tes_prog_key *key)
254 {
255    memset(key, 0, sizeof(*key));
256 
257    populate_base_prog_key(device, robust_flags, &key->base);
258 }
259 
260 static void
populate_gs_prog_key(const struct anv_device * device,bool robust_flags,struct elk_gs_prog_key * key)261 populate_gs_prog_key(const struct anv_device *device,
262                      bool robust_flags,
263                      struct elk_gs_prog_key *key)
264 {
265    memset(key, 0, sizeof(*key));
266 
267    populate_base_prog_key(device, robust_flags, &key->base);
268 }
269 
270 static void
populate_wm_prog_key(const struct anv_graphics_pipeline * pipeline,enum elk_robustness_flags robust_flags,const BITSET_WORD * dynamic,const struct vk_multisample_state * ms,const struct vk_render_pass_state * rp,struct elk_wm_prog_key * key)271 populate_wm_prog_key(const struct anv_graphics_pipeline *pipeline,
272                      enum elk_robustness_flags robust_flags,
273                      const BITSET_WORD *dynamic,
274                      const struct vk_multisample_state *ms,
275                      const struct vk_render_pass_state *rp,
276                      struct elk_wm_prog_key *key)
277 {
278    const struct anv_device *device = pipeline->base.device;
279 
280    memset(key, 0, sizeof(*key));
281 
282    populate_base_prog_key(device, robust_flags, &key->base);
283 
284    /* We set this to 0 here and set to the actual value before we call
285     * elk_compile_fs.
286     */
287    key->input_slots_valid = 0;
288 
289    /* XXX Vulkan doesn't appear to specify */
290    key->clamp_fragment_color = false;
291 
292    key->ignore_sample_mask_out = false;
293 
294    assert(rp->color_attachment_count <= MAX_RTS);
295    /* Consider all inputs as valid until look at the NIR variables. */
296    key->color_outputs_valid = (1u << rp->color_attachment_count) - 1;
297    key->nr_color_regions = rp->color_attachment_count;
298 
299    /* To reduce possible shader recompilations we would need to know if
300     * there is a SampleMask output variable to compute if we should emit
301     * code to workaround the issue that hardware disables alpha to coverage
302     * when there is SampleMask output.
303     */
304    key->alpha_to_coverage = ms != NULL && ms->alpha_to_coverage_enable ?
305       ELK_ALWAYS : ELK_NEVER;
306 
307    /* Vulkan doesn't support fixed-function alpha test */
308    key->alpha_test_replicate_alpha = false;
309 
310    if (ms != NULL) {
311       /* We should probably pull this out of the shader, but it's fairly
312        * harmless to compute it and then let dead-code take care of it.
313        */
314       if (ms->rasterization_samples > 1) {
315          key->persample_interp =
316             (ms->sample_shading_enable &&
317              (ms->min_sample_shading * ms->rasterization_samples) > 1) ?
318             ELK_ALWAYS : ELK_NEVER;
319          key->multisample_fbo = ELK_ALWAYS;
320       }
321 
322       if (device->physical->instance->sample_mask_out_opengl_behaviour)
323          key->ignore_sample_mask_out = !key->multisample_fbo;
324    }
325 }
326 
327 static void
populate_cs_prog_key(const struct anv_device * device,enum elk_robustness_flags robust_flags,struct elk_cs_prog_key * key)328 populate_cs_prog_key(const struct anv_device *device,
329                      enum elk_robustness_flags robust_flags,
330                      struct elk_cs_prog_key *key)
331 {
332    memset(key, 0, sizeof(*key));
333 
334    populate_base_prog_key(device, robust_flags, &key->base);
335 }
336 
337 struct anv_pipeline_stage {
338    gl_shader_stage stage;
339 
340    VkPipelineCreateFlags2KHR pipeline_flags;
341    const VkPipelineShaderStageCreateInfo *info;
342 
343    unsigned char shader_sha1[20];
344 
345    union elk_any_prog_key key;
346 
347    struct {
348       gl_shader_stage stage;
349       unsigned char sha1[20];
350    } cache_key;
351 
352    nir_shader *nir;
353 
354    struct anv_pipeline_binding surface_to_descriptor[256];
355    struct anv_pipeline_binding sampler_to_descriptor[256];
356    struct anv_pipeline_bind_map bind_map;
357 
358    union elk_any_prog_data prog_data;
359 
360    uint32_t num_stats;
361    struct elk_compile_stats stats[3];
362    char *disasm[3];
363 
364    VkPipelineCreationFeedback feedback;
365 
366    const unsigned *code;
367 
368    struct anv_shader_bin *bin;
369 };
370 
371 static void
anv_pipeline_hash_graphics(struct anv_graphics_pipeline * pipeline,struct anv_pipeline_layout * layout,struct anv_pipeline_stage * stages,unsigned char * sha1_out)372 anv_pipeline_hash_graphics(struct anv_graphics_pipeline *pipeline,
373                            struct anv_pipeline_layout *layout,
374                            struct anv_pipeline_stage *stages,
375                            unsigned char *sha1_out)
376 {
377    struct mesa_sha1 ctx;
378    _mesa_sha1_init(&ctx);
379 
380    _mesa_sha1_update(&ctx, &pipeline->view_mask,
381                      sizeof(pipeline->view_mask));
382 
383    if (layout)
384       _mesa_sha1_update(&ctx, layout->sha1, sizeof(layout->sha1));
385 
386    for (uint32_t s = 0; s < ANV_GRAPHICS_SHADER_STAGE_COUNT; s++) {
387       if (stages[s].info) {
388          _mesa_sha1_update(&ctx, stages[s].shader_sha1,
389                            sizeof(stages[s].shader_sha1));
390          _mesa_sha1_update(&ctx, &stages[s].key, elk_prog_key_size(s));
391       }
392    }
393 
394    _mesa_sha1_final(&ctx, sha1_out);
395 }
396 
397 static void
anv_pipeline_hash_compute(struct anv_compute_pipeline * pipeline,struct anv_pipeline_layout * layout,struct anv_pipeline_stage * stage,unsigned char * sha1_out)398 anv_pipeline_hash_compute(struct anv_compute_pipeline *pipeline,
399                           struct anv_pipeline_layout *layout,
400                           struct anv_pipeline_stage *stage,
401                           unsigned char *sha1_out)
402 {
403    struct mesa_sha1 ctx;
404    _mesa_sha1_init(&ctx);
405 
406    if (layout)
407       _mesa_sha1_update(&ctx, layout->sha1, sizeof(layout->sha1));
408 
409    const struct anv_device *device = pipeline->base.device;
410 
411    const bool rba = device->vk.enabled_features.robustBufferAccess;
412    _mesa_sha1_update(&ctx, &rba, sizeof(rba));
413 
414    const uint8_t afs = device->physical->instance->assume_full_subgroups;
415    _mesa_sha1_update(&ctx, &afs, sizeof(afs));
416 
417    _mesa_sha1_update(&ctx, stage->shader_sha1,
418                      sizeof(stage->shader_sha1));
419    _mesa_sha1_update(&ctx, &stage->key.cs, sizeof(stage->key.cs));
420 
421    _mesa_sha1_final(&ctx, sha1_out);
422 }
423 
424 static nir_shader *
anv_pipeline_stage_get_nir(struct anv_pipeline * pipeline,struct vk_pipeline_cache * cache,void * mem_ctx,struct anv_pipeline_stage * stage)425 anv_pipeline_stage_get_nir(struct anv_pipeline *pipeline,
426                            struct vk_pipeline_cache *cache,
427                            void *mem_ctx,
428                            struct anv_pipeline_stage *stage)
429 {
430    const struct elk_compiler *compiler =
431       pipeline->device->physical->compiler;
432    const nir_shader_compiler_options *nir_options =
433       compiler->nir_options[stage->stage];
434    nir_shader *nir;
435 
436    nir = anv_device_search_for_nir(pipeline->device, cache,
437                                    nir_options,
438                                    stage->shader_sha1,
439                                    mem_ctx);
440    if (nir) {
441       assert(nir->info.stage == stage->stage);
442       return nir;
443    }
444 
445    nir = anv_shader_stage_to_nir(pipeline->device,
446                                  stage->pipeline_flags, stage->info,
447                                  stage->key.base.robust_flags, mem_ctx);
448    if (nir) {
449       anv_device_upload_nir(pipeline->device, cache, nir, stage->shader_sha1);
450       return nir;
451    }
452 
453    return NULL;
454 }
455 
456 static void
shared_type_info(const struct glsl_type * type,unsigned * size,unsigned * align)457 shared_type_info(const struct glsl_type *type, unsigned *size, unsigned *align)
458 {
459    assert(glsl_type_is_vector_or_scalar(type));
460 
461    uint32_t comp_size = glsl_type_is_boolean(type)
462       ? 4 : glsl_get_bit_size(type) / 8;
463    unsigned length = glsl_get_vector_elements(type);
464    *size = comp_size * length,
465    *align = comp_size * (length == 3 ? 4 : length);
466 }
467 
468 static void
anv_pipeline_lower_nir(struct anv_pipeline * pipeline,void * mem_ctx,struct anv_pipeline_stage * stage,struct anv_pipeline_layout * layout)469 anv_pipeline_lower_nir(struct anv_pipeline *pipeline,
470                        void *mem_ctx,
471                        struct anv_pipeline_stage *stage,
472                        struct anv_pipeline_layout *layout)
473 {
474    const struct anv_physical_device *pdevice = pipeline->device->physical;
475    const struct elk_compiler *compiler = pdevice->compiler;
476 
477    struct elk_stage_prog_data *prog_data = &stage->prog_data.base;
478    nir_shader *nir = stage->nir;
479 
480    if (nir->info.stage == MESA_SHADER_FRAGMENT) {
481       NIR_PASS(_, nir, nir_lower_wpos_center);
482       NIR_PASS(_, nir, nir_lower_input_attachments,
483                &(nir_input_attachment_options) {
484                    .use_fragcoord_sysval = true,
485                    .use_layer_id_sysval = true,
486                });
487    }
488 
489    NIR_PASS(_, nir, anv_nir_lower_ycbcr_textures, layout);
490 
491    if (pipeline->type == ANV_PIPELINE_GRAPHICS) {
492       struct anv_graphics_pipeline *gfx_pipeline =
493          anv_pipeline_to_graphics(pipeline);
494       NIR_PASS(_, nir, anv_nir_lower_multiview, gfx_pipeline->view_mask);
495    }
496 
497    nir_shader_gather_info(nir, nir_shader_get_entrypoint(nir));
498 
499    NIR_PASS(_, nir, elk_nir_lower_storage_image,
500             &(struct elk_nir_lower_storage_image_opts) {
501                .devinfo = compiler->devinfo,
502                .lower_loads = true,
503                .lower_stores = true,
504                .lower_atomics = true,
505                .lower_get_size = true,
506             });
507 
508    NIR_PASS(_, nir, nir_lower_explicit_io, nir_var_mem_global,
509             nir_address_format_64bit_global);
510    NIR_PASS(_, nir, nir_lower_explicit_io, nir_var_mem_push_const,
511             nir_address_format_32bit_offset);
512 
513    /* Apply the actual pipeline layout to UBOs, SSBOs, and textures */
514    NIR_PASS_V(nir, anv_nir_apply_pipeline_layout,
515               pdevice, stage->key.base.robust_flags,
516               layout, &stage->bind_map);
517 
518    NIR_PASS(_, nir, nir_lower_explicit_io, nir_var_mem_ubo,
519             anv_nir_ubo_addr_format(pdevice, stage->key.base.robust_flags));
520    NIR_PASS(_, nir, nir_lower_explicit_io, nir_var_mem_ssbo,
521             anv_nir_ssbo_addr_format(pdevice, stage->key.base.robust_flags));
522 
523    /* First run copy-prop to get rid of all of the vec() that address
524     * calculations often create and then constant-fold so that, when we
525     * get to anv_nir_lower_ubo_loads, we can detect constant offsets.
526     */
527    NIR_PASS(_, nir, nir_copy_prop);
528    NIR_PASS(_, nir, nir_opt_constant_folding);
529 
530    NIR_PASS(_, nir, anv_nir_lower_ubo_loads);
531 
532    enum nir_lower_non_uniform_access_type lower_non_uniform_access_types =
533       nir_lower_non_uniform_texture_access | nir_lower_non_uniform_image_access;
534 
535    /* In practice, most shaders do not have non-uniform-qualified
536     * accesses (see
537     * https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/17558#note_1475069)
538     * thus a cheaper and likely to fail check is run first.
539     */
540    if (nir_has_non_uniform_access(nir, lower_non_uniform_access_types)) {
541       NIR_PASS(_, nir, nir_opt_non_uniform_access);
542 
543       /* We don't support non-uniform UBOs and non-uniform SSBO access is
544       * handled naturally by falling back to A64 messages.
545       */
546       NIR_PASS(_, nir, nir_lower_non_uniform_access,
547                &(nir_lower_non_uniform_access_options) {
548                   .types = lower_non_uniform_access_types,
549                   .callback = NULL,
550                });
551    }
552 
553    NIR_PASS_V(nir, anv_nir_compute_push_layout,
554               pdevice, stage->key.base.robust_flags,
555               prog_data, &stage->bind_map, mem_ctx);
556 
557    if (gl_shader_stage_uses_workgroup(nir->info.stage)) {
558       if (!nir->info.shared_memory_explicit_layout) {
559          NIR_PASS(_, nir, nir_lower_vars_to_explicit_types,
560                   nir_var_mem_shared, shared_type_info);
561       }
562 
563       NIR_PASS(_, nir, nir_lower_explicit_io,
564                nir_var_mem_shared, nir_address_format_32bit_offset);
565 
566       if (nir->info.zero_initialize_shared_memory &&
567           nir->info.shared_size > 0) {
568          /* The effective Shared Local Memory size is at least 1024 bytes and
569           * is always rounded to a power of two, so it is OK to align the size
570           * used by the shader to chunk_size -- which does simplify the logic.
571           */
572          const unsigned chunk_size = 16;
573          const unsigned shared_size = ALIGN(nir->info.shared_size, chunk_size);
574          assert(shared_size <=
575                 intel_compute_slm_calculate_size(compiler->devinfo->ver, nir->info.shared_size));
576 
577          NIR_PASS(_, nir, nir_zero_initialize_shared_memory,
578                   shared_size, chunk_size);
579       }
580    }
581 
582    if (gl_shader_stage_is_compute(nir->info.stage)) {
583       NIR_PASS(_, nir, elk_nir_lower_cs_intrinsics, compiler->devinfo,
584                &stage->prog_data.cs);
585    }
586 
587    stage->nir = nir;
588 }
589 
590 static void
anv_pipeline_link_vs(const struct elk_compiler * compiler,struct anv_pipeline_stage * vs_stage,struct anv_pipeline_stage * next_stage)591 anv_pipeline_link_vs(const struct elk_compiler *compiler,
592                      struct anv_pipeline_stage *vs_stage,
593                      struct anv_pipeline_stage *next_stage)
594 {
595    if (next_stage)
596       elk_nir_link_shaders(compiler, vs_stage->nir, next_stage->nir);
597 }
598 
599 static void
anv_pipeline_compile_vs(const struct elk_compiler * compiler,void * mem_ctx,struct anv_graphics_pipeline * pipeline,struct anv_pipeline_stage * vs_stage)600 anv_pipeline_compile_vs(const struct elk_compiler *compiler,
601                         void *mem_ctx,
602                         struct anv_graphics_pipeline *pipeline,
603                         struct anv_pipeline_stage *vs_stage)
604 {
605    /* When using Primitive Replication for multiview, each view gets its own
606     * position slot.
607     */
608    uint32_t pos_slots =
609       (vs_stage->nir->info.per_view_outputs & VARYING_BIT_POS) ?
610       MAX2(1, util_bitcount(pipeline->view_mask)) : 1;
611 
612    /* Only position is allowed to be per-view */
613    assert(!(vs_stage->nir->info.per_view_outputs & ~VARYING_BIT_POS));
614 
615    elk_compute_vue_map(compiler->devinfo,
616                        &vs_stage->prog_data.vs.base.vue_map,
617                        vs_stage->nir->info.outputs_written,
618                        vs_stage->nir->info.separate_shader,
619                        pos_slots);
620 
621    vs_stage->num_stats = 1;
622 
623    struct elk_compile_vs_params params = {
624       .base = {
625          .nir = vs_stage->nir,
626          .stats = vs_stage->stats,
627          .log_data = pipeline->base.device,
628          .mem_ctx = mem_ctx,
629       },
630       .key = &vs_stage->key.vs,
631       .prog_data = &vs_stage->prog_data.vs,
632    };
633 
634    vs_stage->code = elk_compile_vs(compiler, &params);
635 }
636 
637 static void
merge_tess_info(struct shader_info * tes_info,const struct shader_info * tcs_info)638 merge_tess_info(struct shader_info *tes_info,
639                 const struct shader_info *tcs_info)
640 {
641    /* The Vulkan 1.0.38 spec, section 21.1 Tessellator says:
642     *
643     *    "PointMode. Controls generation of points rather than triangles
644     *     or lines. This functionality defaults to disabled, and is
645     *     enabled if either shader stage includes the execution mode.
646     *
647     * and about Triangles, Quads, IsoLines, VertexOrderCw, VertexOrderCcw,
648     * PointMode, SpacingEqual, SpacingFractionalEven, SpacingFractionalOdd,
649     * and OutputVertices, it says:
650     *
651     *    "One mode must be set in at least one of the tessellation
652     *     shader stages."
653     *
654     * So, the fields can be set in either the TCS or TES, but they must
655     * agree if set in both.  Our backend looks at TES, so bitwise-or in
656     * the values from the TCS.
657     */
658    assert(tcs_info->tess.tcs_vertices_out == 0 ||
659           tes_info->tess.tcs_vertices_out == 0 ||
660           tcs_info->tess.tcs_vertices_out == tes_info->tess.tcs_vertices_out);
661    tes_info->tess.tcs_vertices_out |= tcs_info->tess.tcs_vertices_out;
662 
663    assert(tcs_info->tess.spacing == TESS_SPACING_UNSPECIFIED ||
664           tes_info->tess.spacing == TESS_SPACING_UNSPECIFIED ||
665           tcs_info->tess.spacing == tes_info->tess.spacing);
666    tes_info->tess.spacing |= tcs_info->tess.spacing;
667 
668    assert(tcs_info->tess._primitive_mode == 0 ||
669           tes_info->tess._primitive_mode == 0 ||
670           tcs_info->tess._primitive_mode == tes_info->tess._primitive_mode);
671    tes_info->tess._primitive_mode |= tcs_info->tess._primitive_mode;
672    tes_info->tess.ccw |= tcs_info->tess.ccw;
673    tes_info->tess.point_mode |= tcs_info->tess.point_mode;
674 }
675 
676 static void
anv_pipeline_link_tcs(const struct elk_compiler * compiler,struct anv_pipeline_stage * tcs_stage,struct anv_pipeline_stage * tes_stage)677 anv_pipeline_link_tcs(const struct elk_compiler *compiler,
678                       struct anv_pipeline_stage *tcs_stage,
679                       struct anv_pipeline_stage *tes_stage)
680 {
681    assert(tes_stage && tes_stage->stage == MESA_SHADER_TESS_EVAL);
682 
683    elk_nir_link_shaders(compiler, tcs_stage->nir, tes_stage->nir);
684 
685    nir_lower_patch_vertices(tes_stage->nir,
686                             tcs_stage->nir->info.tess.tcs_vertices_out,
687                             NULL);
688 
689    /* Copy TCS info into the TES info */
690    merge_tess_info(&tes_stage->nir->info, &tcs_stage->nir->info);
691 
692    /* Whacking the key after cache lookup is a bit sketchy, but all of
693     * this comes from the SPIR-V, which is part of the hash used for the
694     * pipeline cache.  So it should be safe.
695     */
696    tcs_stage->key.tcs._tes_primitive_mode =
697       tes_stage->nir->info.tess._primitive_mode;
698    tcs_stage->key.tcs.quads_workaround =
699       compiler->devinfo->ver < 9 &&
700       tes_stage->nir->info.tess._primitive_mode == TESS_PRIMITIVE_QUADS &&
701       tes_stage->nir->info.tess.spacing == TESS_SPACING_EQUAL;
702 }
703 
704 static void
anv_pipeline_compile_tcs(const struct elk_compiler * compiler,void * mem_ctx,struct anv_device * device,struct anv_pipeline_stage * tcs_stage,struct anv_pipeline_stage * prev_stage)705 anv_pipeline_compile_tcs(const struct elk_compiler *compiler,
706                          void *mem_ctx,
707                          struct anv_device *device,
708                          struct anv_pipeline_stage *tcs_stage,
709                          struct anv_pipeline_stage *prev_stage)
710 {
711    tcs_stage->key.tcs.outputs_written =
712       tcs_stage->nir->info.outputs_written;
713    tcs_stage->key.tcs.patch_outputs_written =
714       tcs_stage->nir->info.patch_outputs_written;
715 
716    tcs_stage->num_stats = 1;
717 
718    struct elk_compile_tcs_params params = {
719       .base = {
720          .nir = tcs_stage->nir,
721          .stats = tcs_stage->stats,
722          .log_data = device,
723          .mem_ctx = mem_ctx,
724       },
725       .key = &tcs_stage->key.tcs,
726       .prog_data = &tcs_stage->prog_data.tcs,
727    };
728 
729    tcs_stage->code = elk_compile_tcs(compiler, &params);
730 }
731 
732 static void
anv_pipeline_link_tes(const struct elk_compiler * compiler,struct anv_pipeline_stage * tes_stage,struct anv_pipeline_stage * next_stage)733 anv_pipeline_link_tes(const struct elk_compiler *compiler,
734                       struct anv_pipeline_stage *tes_stage,
735                       struct anv_pipeline_stage *next_stage)
736 {
737    if (next_stage)
738       elk_nir_link_shaders(compiler, tes_stage->nir, next_stage->nir);
739 }
740 
741 static void
anv_pipeline_compile_tes(const struct elk_compiler * compiler,void * mem_ctx,struct anv_device * device,struct anv_pipeline_stage * tes_stage,struct anv_pipeline_stage * tcs_stage)742 anv_pipeline_compile_tes(const struct elk_compiler *compiler,
743                          void *mem_ctx,
744                          struct anv_device *device,
745                          struct anv_pipeline_stage *tes_stage,
746                          struct anv_pipeline_stage *tcs_stage)
747 {
748    tes_stage->key.tes.inputs_read =
749       tcs_stage->nir->info.outputs_written;
750    tes_stage->key.tes.patch_inputs_read =
751       tcs_stage->nir->info.patch_outputs_written;
752 
753    tes_stage->num_stats = 1;
754 
755    struct elk_compile_tes_params params = {
756       .base = {
757          .nir = tes_stage->nir,
758          .stats = tes_stage->stats,
759          .log_data = device,
760          .mem_ctx = mem_ctx,
761       },
762       .key = &tes_stage->key.tes,
763       .prog_data = &tes_stage->prog_data.tes,
764       .input_vue_map = &tcs_stage->prog_data.tcs.base.vue_map,
765    };
766 
767    tes_stage->code = elk_compile_tes(compiler, &params);
768 }
769 
770 static void
anv_pipeline_link_gs(const struct elk_compiler * compiler,struct anv_pipeline_stage * gs_stage,struct anv_pipeline_stage * next_stage)771 anv_pipeline_link_gs(const struct elk_compiler *compiler,
772                      struct anv_pipeline_stage *gs_stage,
773                      struct anv_pipeline_stage *next_stage)
774 {
775    if (next_stage)
776       elk_nir_link_shaders(compiler, gs_stage->nir, next_stage->nir);
777 }
778 
779 static void
anv_pipeline_compile_gs(const struct elk_compiler * compiler,void * mem_ctx,struct anv_device * device,struct anv_pipeline_stage * gs_stage,struct anv_pipeline_stage * prev_stage)780 anv_pipeline_compile_gs(const struct elk_compiler *compiler,
781                         void *mem_ctx,
782                         struct anv_device *device,
783                         struct anv_pipeline_stage *gs_stage,
784                         struct anv_pipeline_stage *prev_stage)
785 {
786    elk_compute_vue_map(compiler->devinfo,
787                        &gs_stage->prog_data.gs.base.vue_map,
788                        gs_stage->nir->info.outputs_written,
789                        gs_stage->nir->info.separate_shader, 1);
790 
791    gs_stage->num_stats = 1;
792 
793    struct elk_compile_gs_params params = {
794       .base = {
795          .nir = gs_stage->nir,
796          .stats = gs_stage->stats,
797          .log_data = device,
798          .mem_ctx = mem_ctx,
799       },
800       .key = &gs_stage->key.gs,
801       .prog_data = &gs_stage->prog_data.gs,
802    };
803 
804    gs_stage->code = elk_compile_gs(compiler, &params);
805 }
806 
807 static void
anv_pipeline_link_fs(const struct elk_compiler * compiler,struct anv_pipeline_stage * stage,const struct vk_render_pass_state * rp)808 anv_pipeline_link_fs(const struct elk_compiler *compiler,
809                      struct anv_pipeline_stage *stage,
810                      const struct vk_render_pass_state *rp)
811 {
812    /* Initially the valid outputs value is set to all possible render targets
813     * valid (see populate_wm_prog_key()), before we look at the shader
814     * variables. Here we look at the output variables of the shader an compute
815     * a correct number of render target outputs.
816     */
817    stage->key.wm.color_outputs_valid = 0;
818    nir_foreach_shader_out_variable_safe(var, stage->nir) {
819       if (var->data.location < FRAG_RESULT_DATA0)
820          continue;
821 
822       const unsigned rt = var->data.location - FRAG_RESULT_DATA0;
823       const unsigned array_len =
824          glsl_type_is_array(var->type) ? glsl_get_length(var->type) : 1;
825       assert(rt + array_len <= MAX_RTS);
826 
827       stage->key.wm.color_outputs_valid |= BITFIELD_RANGE(rt, array_len);
828    }
829    stage->key.wm.color_outputs_valid &=
830       (1u << rp->color_attachment_count) - 1;
831    stage->key.wm.nr_color_regions =
832       util_last_bit(stage->key.wm.color_outputs_valid);
833 
834    unsigned num_rt_bindings;
835    struct anv_pipeline_binding rt_bindings[MAX_RTS];
836    if (stage->key.wm.nr_color_regions > 0) {
837       assert(stage->key.wm.nr_color_regions <= MAX_RTS);
838       for (unsigned rt = 0; rt < stage->key.wm.nr_color_regions; rt++) {
839          if (stage->key.wm.color_outputs_valid & BITFIELD_BIT(rt)) {
840             rt_bindings[rt] = (struct anv_pipeline_binding) {
841                .set = ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS,
842                .index = rt,
843             };
844          } else {
845             /* Setup a null render target */
846             rt_bindings[rt] = (struct anv_pipeline_binding) {
847                .set = ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS,
848                .index = UINT32_MAX,
849             };
850          }
851       }
852       num_rt_bindings = stage->key.wm.nr_color_regions;
853    } else {
854       /* Setup a null render target */
855       rt_bindings[0] = (struct anv_pipeline_binding) {
856          .set = ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS,
857          .index = UINT32_MAX,
858       };
859       num_rt_bindings = 1;
860    }
861 
862    assert(num_rt_bindings <= MAX_RTS);
863    assert(stage->bind_map.surface_count == 0);
864    typed_memcpy(stage->bind_map.surface_to_descriptor,
865                 rt_bindings, num_rt_bindings);
866    stage->bind_map.surface_count += num_rt_bindings;
867 }
868 
869 static void
anv_pipeline_compile_fs(const struct elk_compiler * compiler,void * mem_ctx,struct anv_device * device,struct anv_pipeline_stage * fs_stage,struct anv_pipeline_stage * prev_stage)870 anv_pipeline_compile_fs(const struct elk_compiler *compiler,
871                         void *mem_ctx,
872                         struct anv_device *device,
873                         struct anv_pipeline_stage *fs_stage,
874                         struct anv_pipeline_stage *prev_stage)
875 {
876    /* TODO: we could set this to 0 based on the information in nir_shader, but
877     * we need this before we call spirv_to_nir.
878     */
879    assert(prev_stage);
880 
881    struct elk_compile_fs_params params = {
882       .base = {
883          .nir = fs_stage->nir,
884          .stats = fs_stage->stats,
885          .log_data = device,
886          .mem_ctx = mem_ctx,
887       },
888       .key = &fs_stage->key.wm,
889       .prog_data = &fs_stage->prog_data.wm,
890 
891       .allow_spilling = true,
892    };
893 
894    fs_stage->key.wm.input_slots_valid =
895       prev_stage->prog_data.vue.vue_map.slots_valid;
896 
897    fs_stage->code = elk_compile_fs(compiler, &params);
898 
899    fs_stage->num_stats = (uint32_t)fs_stage->prog_data.wm.dispatch_8 +
900                          (uint32_t)fs_stage->prog_data.wm.dispatch_16 +
901                          (uint32_t)fs_stage->prog_data.wm.dispatch_32;
902 }
903 
904 static void
anv_pipeline_add_executable(struct anv_pipeline * pipeline,struct anv_pipeline_stage * stage,struct elk_compile_stats * stats,uint32_t code_offset)905 anv_pipeline_add_executable(struct anv_pipeline *pipeline,
906                             struct anv_pipeline_stage *stage,
907                             struct elk_compile_stats *stats,
908                             uint32_t code_offset)
909 {
910    char *nir = NULL;
911    if (stage->nir &&
912        (pipeline->flags &
913         VK_PIPELINE_CREATE_CAPTURE_INTERNAL_REPRESENTATIONS_BIT_KHR)) {
914       nir = nir_shader_as_str(stage->nir, pipeline->mem_ctx);
915    }
916 
917    char *disasm = NULL;
918    if (stage->code &&
919        (pipeline->flags &
920         VK_PIPELINE_CREATE_CAPTURE_INTERNAL_REPRESENTATIONS_BIT_KHR)) {
921       char *stream_data = NULL;
922       size_t stream_size = 0;
923       FILE *stream = open_memstream(&stream_data, &stream_size);
924 
925       uint32_t push_size = 0;
926       for (unsigned i = 0; i < 4; i++)
927          push_size += stage->bind_map.push_ranges[i].length;
928       if (push_size > 0) {
929          fprintf(stream, "Push constant ranges:\n");
930          for (unsigned i = 0; i < 4; i++) {
931             if (stage->bind_map.push_ranges[i].length == 0)
932                continue;
933 
934             fprintf(stream, "    RANGE%d (%dB): ", i,
935                     stage->bind_map.push_ranges[i].length * 32);
936 
937             switch (stage->bind_map.push_ranges[i].set) {
938             case ANV_DESCRIPTOR_SET_NULL:
939                fprintf(stream, "NULL");
940                break;
941 
942             case ANV_DESCRIPTOR_SET_PUSH_CONSTANTS:
943                fprintf(stream, "Vulkan push constants and API params");
944                break;
945 
946             case ANV_DESCRIPTOR_SET_DESCRIPTORS:
947                fprintf(stream, "Descriptor buffer for set %d (start=%dB)",
948                        stage->bind_map.push_ranges[i].index,
949                        stage->bind_map.push_ranges[i].start * 32);
950                break;
951 
952             case ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS:
953                unreachable("gl_NumWorkgroups is never pushed");
954 
955             case ANV_DESCRIPTOR_SET_SHADER_CONSTANTS:
956                fprintf(stream, "Inline shader constant data (start=%dB)",
957                        stage->bind_map.push_ranges[i].start * 32);
958                break;
959 
960             case ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS:
961                unreachable("Color attachments can't be pushed");
962 
963             default:
964                fprintf(stream, "UBO (set=%d binding=%d start=%dB)",
965                        stage->bind_map.push_ranges[i].set,
966                        stage->bind_map.push_ranges[i].index,
967                        stage->bind_map.push_ranges[i].start * 32);
968                break;
969             }
970             fprintf(stream, "\n");
971          }
972          fprintf(stream, "\n");
973       }
974 
975       /* Creating this is far cheaper than it looks.  It's perfectly fine to
976        * do it for every binary.
977        */
978       elk_disassemble_with_errors(&pipeline->device->physical->compiler->isa,
979                                   stage->code, code_offset, stream);
980 
981       fclose(stream);
982 
983       /* Copy it to a ralloc'd thing */
984       disasm = ralloc_size(pipeline->mem_ctx, stream_size + 1);
985       memcpy(disasm, stream_data, stream_size);
986       disasm[stream_size] = 0;
987 
988       free(stream_data);
989    }
990 
991    const struct anv_pipeline_executable exe = {
992       .stage = stage->stage,
993       .stats = *stats,
994       .nir = nir,
995       .disasm = disasm,
996    };
997    util_dynarray_append(&pipeline->executables,
998                         struct anv_pipeline_executable, exe);
999 }
1000 
1001 static void
anv_pipeline_add_executables(struct anv_pipeline * pipeline,struct anv_pipeline_stage * stage,struct anv_shader_bin * bin)1002 anv_pipeline_add_executables(struct anv_pipeline *pipeline,
1003                              struct anv_pipeline_stage *stage,
1004                              struct anv_shader_bin *bin)
1005 {
1006    if (stage->stage == MESA_SHADER_FRAGMENT) {
1007       /* We pull the prog data and stats out of the anv_shader_bin because
1008        * the anv_pipeline_stage may not be fully populated if we successfully
1009        * looked up the shader in a cache.
1010        */
1011       const struct elk_wm_prog_data *wm_prog_data =
1012          (const struct elk_wm_prog_data *)bin->prog_data;
1013       struct elk_compile_stats *stats = bin->stats;
1014 
1015       if (wm_prog_data->dispatch_8) {
1016          anv_pipeline_add_executable(pipeline, stage, stats++, 0);
1017       }
1018 
1019       if (wm_prog_data->dispatch_16) {
1020          anv_pipeline_add_executable(pipeline, stage, stats++,
1021                                      wm_prog_data->prog_offset_16);
1022       }
1023 
1024       if (wm_prog_data->dispatch_32) {
1025          anv_pipeline_add_executable(pipeline, stage, stats++,
1026                                      wm_prog_data->prog_offset_32);
1027       }
1028    } else {
1029       anv_pipeline_add_executable(pipeline, stage, bin->stats, 0);
1030    }
1031 }
1032 
1033 static enum elk_robustness_flags
anv_device_get_robust_flags(const struct anv_device * device)1034 anv_device_get_robust_flags(const struct anv_device *device)
1035 {
1036    return device->robust_buffer_access ?
1037           (ELK_ROBUSTNESS_UBO | ELK_ROBUSTNESS_SSBO) : 0;
1038 }
1039 
1040 static void
anv_graphics_pipeline_init_keys(struct anv_graphics_pipeline * pipeline,const struct vk_graphics_pipeline_state * state,struct anv_pipeline_stage * stages)1041 anv_graphics_pipeline_init_keys(struct anv_graphics_pipeline *pipeline,
1042                                 const struct vk_graphics_pipeline_state *state,
1043                                 struct anv_pipeline_stage *stages)
1044 {
1045    for (uint32_t s = 0; s < ANV_GRAPHICS_SHADER_STAGE_COUNT; s++) {
1046       if (!stages[s].info)
1047          continue;
1048 
1049       int64_t stage_start = os_time_get_nano();
1050 
1051       vk_pipeline_hash_shader_stage(stages[s].pipeline_flags, stages[s].info,
1052                                     NULL, stages[s].shader_sha1);
1053 
1054       const struct anv_device *device = pipeline->base.device;
1055       enum elk_robustness_flags robust_flags = anv_device_get_robust_flags(device);
1056       switch (stages[s].stage) {
1057       case MESA_SHADER_VERTEX:
1058          populate_vs_prog_key(device,
1059                               robust_flags,
1060                               &stages[s].key.vs);
1061          break;
1062       case MESA_SHADER_TESS_CTRL:
1063          populate_tcs_prog_key(device,
1064                                robust_flags,
1065                                state->ts->patch_control_points,
1066                                &stages[s].key.tcs);
1067          break;
1068       case MESA_SHADER_TESS_EVAL:
1069          populate_tes_prog_key(device,
1070                                robust_flags,
1071                                &stages[s].key.tes);
1072          break;
1073       case MESA_SHADER_GEOMETRY:
1074          populate_gs_prog_key(device,
1075                               robust_flags,
1076                               &stages[s].key.gs);
1077          break;
1078       case MESA_SHADER_FRAGMENT: {
1079          populate_wm_prog_key(pipeline,
1080                               robust_flags,
1081                               state->dynamic, state->ms, state->rp,
1082                               &stages[s].key.wm);
1083          break;
1084       }
1085       default:
1086          unreachable("Invalid graphics shader stage");
1087       }
1088 
1089       stages[s].feedback.duration += os_time_get_nano() - stage_start;
1090       stages[s].feedback.flags |= VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT;
1091    }
1092 
1093    assert(pipeline->active_stages & VK_SHADER_STAGE_VERTEX_BIT);
1094 }
1095 
1096 static bool
anv_graphics_pipeline_load_cached_shaders(struct anv_graphics_pipeline * pipeline,struct vk_pipeline_cache * cache,struct anv_pipeline_stage * stages,VkPipelineCreationFeedback * pipeline_feedback)1097 anv_graphics_pipeline_load_cached_shaders(struct anv_graphics_pipeline *pipeline,
1098                                           struct vk_pipeline_cache *cache,
1099                                           struct anv_pipeline_stage *stages,
1100                                           VkPipelineCreationFeedback *pipeline_feedback)
1101 {
1102    unsigned found = 0;
1103    unsigned cache_hits = 0;
1104    for (unsigned s = 0; s < ANV_GRAPHICS_SHADER_STAGE_COUNT; s++) {
1105       if (!stages[s].info)
1106          continue;
1107 
1108       int64_t stage_start = os_time_get_nano();
1109 
1110       bool cache_hit;
1111       struct anv_shader_bin *bin =
1112          anv_device_search_for_kernel(pipeline->base.device, cache,
1113                                       &stages[s].cache_key,
1114                                       sizeof(stages[s].cache_key), &cache_hit);
1115       if (bin) {
1116          found++;
1117          pipeline->shaders[s] = bin;
1118       }
1119 
1120       if (cache_hit) {
1121          cache_hits++;
1122          stages[s].feedback.flags |=
1123             VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT;
1124       }
1125       stages[s].feedback.duration += os_time_get_nano() - stage_start;
1126    }
1127 
1128    if (found == __builtin_popcount(pipeline->active_stages)) {
1129       if (cache_hits == found) {
1130          pipeline_feedback->flags |=
1131             VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT;
1132       }
1133       /* We found all our shaders in the cache.  We're done. */
1134       for (unsigned s = 0; s < ARRAY_SIZE(pipeline->shaders); s++) {
1135          if (!stages[s].info)
1136             continue;
1137 
1138          anv_pipeline_add_executables(&pipeline->base, &stages[s],
1139                                       pipeline->shaders[s]);
1140       }
1141       return true;
1142    } else if (found > 0) {
1143       /* We found some but not all of our shaders. This shouldn't happen most
1144        * of the time but it can if we have a partially populated pipeline
1145        * cache.
1146        */
1147       assert(found < __builtin_popcount(pipeline->active_stages));
1148 
1149       vk_perf(VK_LOG_OBJS(cache ? &cache->base :
1150                                   &pipeline->base.device->vk.base),
1151               "Found a partial pipeline in the cache.  This is "
1152               "most likely caused by an incomplete pipeline cache "
1153               "import or export");
1154 
1155       /* We're going to have to recompile anyway, so just throw away our
1156        * references to the shaders in the cache.  We'll get them out of the
1157        * cache again as part of the compilation process.
1158        */
1159       for (unsigned s = 0; s < ARRAY_SIZE(pipeline->shaders); s++) {
1160          stages[s].feedback.flags = 0;
1161          if (pipeline->shaders[s]) {
1162             anv_shader_bin_unref(pipeline->base.device, pipeline->shaders[s]);
1163             pipeline->shaders[s] = NULL;
1164          }
1165       }
1166    }
1167 
1168    return false;
1169 }
1170 
1171 static const gl_shader_stage graphics_shader_order[] = {
1172    MESA_SHADER_VERTEX,
1173    MESA_SHADER_TESS_CTRL,
1174    MESA_SHADER_TESS_EVAL,
1175    MESA_SHADER_GEOMETRY,
1176 
1177    MESA_SHADER_FRAGMENT,
1178 };
1179 
1180 static VkResult
anv_graphics_pipeline_load_nir(struct anv_graphics_pipeline * pipeline,struct vk_pipeline_cache * cache,struct anv_pipeline_stage * stages,void * pipeline_ctx)1181 anv_graphics_pipeline_load_nir(struct anv_graphics_pipeline *pipeline,
1182                                struct vk_pipeline_cache *cache,
1183                                struct anv_pipeline_stage *stages,
1184                                void *pipeline_ctx)
1185 {
1186    for (unsigned i = 0; i < ARRAY_SIZE(graphics_shader_order); i++) {
1187       gl_shader_stage s = graphics_shader_order[i];
1188       if (!stages[s].info)
1189          continue;
1190 
1191       int64_t stage_start = os_time_get_nano();
1192 
1193       assert(stages[s].stage == s);
1194       assert(pipeline->shaders[s] == NULL);
1195 
1196       stages[s].bind_map = (struct anv_pipeline_bind_map) {
1197          .surface_to_descriptor = stages[s].surface_to_descriptor,
1198          .sampler_to_descriptor = stages[s].sampler_to_descriptor
1199       };
1200 
1201       stages[s].nir = anv_pipeline_stage_get_nir(&pipeline->base, cache,
1202                                                  pipeline_ctx,
1203                                                  &stages[s]);
1204       if (stages[s].nir == NULL) {
1205          return vk_error(pipeline, VK_ERROR_UNKNOWN);
1206       }
1207 
1208       stages[s].feedback.duration += os_time_get_nano() - stage_start;
1209    }
1210 
1211    return VK_SUCCESS;
1212 }
1213 
1214 static VkResult
anv_graphics_pipeline_compile(struct anv_graphics_pipeline * pipeline,struct vk_pipeline_cache * cache,const VkGraphicsPipelineCreateInfo * info,const struct vk_graphics_pipeline_state * state)1215 anv_graphics_pipeline_compile(struct anv_graphics_pipeline *pipeline,
1216                               struct vk_pipeline_cache *cache,
1217                               const VkGraphicsPipelineCreateInfo *info,
1218                               const struct vk_graphics_pipeline_state *state)
1219 {
1220    ANV_FROM_HANDLE(anv_pipeline_layout, layout, info->layout);
1221    VkResult result;
1222 
1223    const VkPipelineCreateFlags2KHR pipeline_flags =
1224       vk_graphics_pipeline_create_flags(info);
1225 
1226    VkPipelineCreationFeedback pipeline_feedback = {
1227       .flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT,
1228    };
1229    int64_t pipeline_start = os_time_get_nano();
1230 
1231    const struct elk_compiler *compiler = pipeline->base.device->physical->compiler;
1232    struct anv_pipeline_stage stages[ANV_GRAPHICS_SHADER_STAGE_COUNT] = {};
1233    for (uint32_t i = 0; i < info->stageCount; i++) {
1234       gl_shader_stage stage = vk_to_mesa_shader_stage(info->pStages[i].stage);
1235       stages[stage].stage = stage;
1236       stages[stage].pipeline_flags = pipeline_flags;
1237       stages[stage].info = &info->pStages[i];
1238    }
1239 
1240    anv_graphics_pipeline_init_keys(pipeline, state, stages);
1241 
1242    unsigned char sha1[20];
1243    anv_pipeline_hash_graphics(pipeline, layout, stages, sha1);
1244 
1245    for (unsigned s = 0; s < ARRAY_SIZE(stages); s++) {
1246       if (!stages[s].info)
1247          continue;
1248 
1249       stages[s].cache_key.stage = s;
1250       memcpy(stages[s].cache_key.sha1, sha1, sizeof(sha1));
1251    }
1252 
1253    const bool skip_cache_lookup =
1254       (pipeline->base.flags & VK_PIPELINE_CREATE_CAPTURE_INTERNAL_REPRESENTATIONS_BIT_KHR);
1255    if (!skip_cache_lookup) {
1256       bool found_all_shaders =
1257          anv_graphics_pipeline_load_cached_shaders(pipeline, cache, stages,
1258                                                    &pipeline_feedback);
1259       if (found_all_shaders)
1260          goto done;
1261    }
1262 
1263    if (info->flags & VK_PIPELINE_CREATE_FAIL_ON_PIPELINE_COMPILE_REQUIRED_BIT)
1264       return VK_PIPELINE_COMPILE_REQUIRED;
1265 
1266    void *pipeline_ctx = ralloc_context(NULL);
1267 
1268    result = anv_graphics_pipeline_load_nir(pipeline, cache, stages,
1269                                            pipeline_ctx);
1270    if (result != VK_SUCCESS)
1271       goto fail;
1272 
1273    /* Walk backwards to link */
1274    struct anv_pipeline_stage *next_stage = NULL;
1275    for (int i = ARRAY_SIZE(graphics_shader_order) - 1; i >= 0; i--) {
1276       gl_shader_stage s = graphics_shader_order[i];
1277       if (!stages[s].info)
1278          continue;
1279 
1280       switch (s) {
1281       case MESA_SHADER_VERTEX:
1282          anv_pipeline_link_vs(compiler, &stages[s], next_stage);
1283          break;
1284       case MESA_SHADER_TESS_CTRL:
1285          anv_pipeline_link_tcs(compiler, &stages[s], next_stage);
1286          break;
1287       case MESA_SHADER_TESS_EVAL:
1288          anv_pipeline_link_tes(compiler, &stages[s], next_stage);
1289          break;
1290       case MESA_SHADER_GEOMETRY:
1291          anv_pipeline_link_gs(compiler, &stages[s], next_stage);
1292          break;
1293       case MESA_SHADER_FRAGMENT:
1294          anv_pipeline_link_fs(compiler, &stages[s], state->rp);
1295          break;
1296       default:
1297          unreachable("Invalid graphics shader stage");
1298       }
1299 
1300       next_stage = &stages[s];
1301    }
1302 
1303    struct anv_pipeline_stage *prev_stage = NULL;
1304    for (unsigned i = 0; i < ARRAY_SIZE(graphics_shader_order); i++) {
1305       gl_shader_stage s = graphics_shader_order[i];
1306       if (!stages[s].info)
1307          continue;
1308 
1309       int64_t stage_start = os_time_get_nano();
1310 
1311       void *stage_ctx = ralloc_context(NULL);
1312 
1313       anv_pipeline_lower_nir(&pipeline->base, stage_ctx, &stages[s], layout);
1314 
1315       if (prev_stage && compiler->nir_options[s]->unify_interfaces) {
1316          prev_stage->nir->info.outputs_written |= stages[s].nir->info.inputs_read &
1317                   ~(VARYING_BIT_TESS_LEVEL_INNER | VARYING_BIT_TESS_LEVEL_OUTER);
1318          stages[s].nir->info.inputs_read |= prev_stage->nir->info.outputs_written &
1319                   ~(VARYING_BIT_TESS_LEVEL_INNER | VARYING_BIT_TESS_LEVEL_OUTER);
1320          prev_stage->nir->info.patch_outputs_written |= stages[s].nir->info.patch_inputs_read;
1321          stages[s].nir->info.patch_inputs_read |= prev_stage->nir->info.patch_outputs_written;
1322       }
1323 
1324       ralloc_free(stage_ctx);
1325 
1326       stages[s].feedback.duration += os_time_get_nano() - stage_start;
1327 
1328       prev_stage = &stages[s];
1329    }
1330 
1331    prev_stage = NULL;
1332    for (unsigned i = 0; i < ARRAY_SIZE(graphics_shader_order); i++) {
1333       gl_shader_stage s = graphics_shader_order[i];
1334       if (!stages[s].info)
1335          continue;
1336 
1337       int64_t stage_start = os_time_get_nano();
1338 
1339       void *stage_ctx = ralloc_context(NULL);
1340 
1341       switch (s) {
1342       case MESA_SHADER_VERTEX:
1343          anv_pipeline_compile_vs(compiler, stage_ctx, pipeline,
1344                                  &stages[s]);
1345          break;
1346       case MESA_SHADER_TESS_CTRL:
1347          anv_pipeline_compile_tcs(compiler, stage_ctx, pipeline->base.device,
1348                                   &stages[s], prev_stage);
1349          break;
1350       case MESA_SHADER_TESS_EVAL:
1351          anv_pipeline_compile_tes(compiler, stage_ctx, pipeline->base.device,
1352                                   &stages[s], prev_stage);
1353          break;
1354       case MESA_SHADER_GEOMETRY:
1355          anv_pipeline_compile_gs(compiler, stage_ctx, pipeline->base.device,
1356                                  &stages[s], prev_stage);
1357          break;
1358       case MESA_SHADER_FRAGMENT:
1359          anv_pipeline_compile_fs(compiler, stage_ctx, pipeline->base.device,
1360                                  &stages[s], prev_stage);
1361          break;
1362       default:
1363          unreachable("Invalid graphics shader stage");
1364       }
1365       if (stages[s].code == NULL) {
1366          ralloc_free(stage_ctx);
1367          result = vk_error(pipeline->base.device, VK_ERROR_OUT_OF_HOST_MEMORY);
1368          goto fail;
1369       }
1370 
1371       anv_nir_validate_push_layout(&stages[s].prog_data.base,
1372                                    &stages[s].bind_map);
1373 
1374       struct anv_shader_bin *bin =
1375          anv_device_upload_kernel(pipeline->base.device, cache, s,
1376                                   &stages[s].cache_key,
1377                                   sizeof(stages[s].cache_key),
1378                                   stages[s].code,
1379                                   stages[s].prog_data.base.program_size,
1380                                   &stages[s].prog_data.base,
1381                                   elk_prog_data_size(s),
1382                                   stages[s].stats, stages[s].num_stats,
1383                                   stages[s].nir->xfb_info,
1384                                   &stages[s].bind_map);
1385       if (!bin) {
1386          ralloc_free(stage_ctx);
1387          result = vk_error(pipeline, VK_ERROR_OUT_OF_HOST_MEMORY);
1388          goto fail;
1389       }
1390 
1391       anv_pipeline_add_executables(&pipeline->base, &stages[s], bin);
1392 
1393       pipeline->shaders[s] = bin;
1394       ralloc_free(stage_ctx);
1395 
1396       stages[s].feedback.duration += os_time_get_nano() - stage_start;
1397 
1398       prev_stage = &stages[s];
1399    }
1400 
1401    ralloc_free(pipeline_ctx);
1402 
1403 done:
1404 
1405    pipeline_feedback.duration = os_time_get_nano() - pipeline_start;
1406 
1407    const VkPipelineCreationFeedbackCreateInfo *create_feedback =
1408       vk_find_struct_const(info->pNext, PIPELINE_CREATION_FEEDBACK_CREATE_INFO);
1409    if (create_feedback) {
1410       *create_feedback->pPipelineCreationFeedback = pipeline_feedback;
1411 
1412       uint32_t stage_count = create_feedback->pipelineStageCreationFeedbackCount;
1413       assert(stage_count == 0 || info->stageCount == stage_count);
1414       for (uint32_t i = 0; i < stage_count; i++) {
1415          gl_shader_stage s = vk_to_mesa_shader_stage(info->pStages[i].stage);
1416          create_feedback->pPipelineStageCreationFeedbacks[i] = stages[s].feedback;
1417       }
1418    }
1419 
1420    return VK_SUCCESS;
1421 
1422 fail:
1423    ralloc_free(pipeline_ctx);
1424 
1425    for (unsigned s = 0; s < ARRAY_SIZE(pipeline->shaders); s++) {
1426       if (pipeline->shaders[s])
1427          anv_shader_bin_unref(pipeline->base.device, pipeline->shaders[s]);
1428    }
1429 
1430    return result;
1431 }
1432 
1433 static VkResult
anv_pipeline_compile_cs(struct anv_compute_pipeline * pipeline,struct vk_pipeline_cache * cache,const VkComputePipelineCreateInfo * info)1434 anv_pipeline_compile_cs(struct anv_compute_pipeline *pipeline,
1435                         struct vk_pipeline_cache *cache,
1436                         const VkComputePipelineCreateInfo *info)
1437 {
1438    const VkPipelineShaderStageCreateInfo *sinfo = &info->stage;
1439    assert(sinfo->stage == VK_SHADER_STAGE_COMPUTE_BIT);
1440 
1441    VkPipelineCreationFeedback pipeline_feedback = {
1442       .flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT,
1443    };
1444    int64_t pipeline_start = os_time_get_nano();
1445 
1446    struct anv_device *device = pipeline->base.device;
1447    const struct elk_compiler *compiler = device->physical->compiler;
1448 
1449    struct anv_pipeline_stage stage = {
1450       .stage = MESA_SHADER_COMPUTE,
1451       .pipeline_flags = vk_compute_pipeline_create_flags(info),
1452       .info = &info->stage,
1453       .cache_key = {
1454          .stage = MESA_SHADER_COMPUTE,
1455       },
1456       .feedback = {
1457          .flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT,
1458       },
1459    };
1460    vk_pipeline_hash_shader_stage(stage.pipeline_flags, &info->stage,
1461                                  NULL, stage.shader_sha1);
1462 
1463    struct anv_shader_bin *bin = NULL;
1464 
1465    populate_cs_prog_key(device,
1466                         anv_device_get_robust_flags(device),
1467                         &stage.key.cs);
1468 
1469    ANV_FROM_HANDLE(anv_pipeline_layout, layout, info->layout);
1470 
1471    const bool skip_cache_lookup =
1472       (pipeline->base.flags & VK_PIPELINE_CREATE_CAPTURE_INTERNAL_REPRESENTATIONS_BIT_KHR);
1473 
1474    anv_pipeline_hash_compute(pipeline, layout, &stage, stage.cache_key.sha1);
1475 
1476    bool cache_hit = false;
1477    if (!skip_cache_lookup) {
1478       bin = anv_device_search_for_kernel(device, cache,
1479                                          &stage.cache_key,
1480                                          sizeof(stage.cache_key),
1481                                          &cache_hit);
1482    }
1483 
1484    if (bin == NULL &&
1485        (info->flags & VK_PIPELINE_CREATE_FAIL_ON_PIPELINE_COMPILE_REQUIRED_BIT))
1486       return VK_PIPELINE_COMPILE_REQUIRED;
1487 
1488    void *mem_ctx = ralloc_context(NULL);
1489    if (bin == NULL) {
1490       int64_t stage_start = os_time_get_nano();
1491 
1492       stage.bind_map = (struct anv_pipeline_bind_map) {
1493          .surface_to_descriptor = stage.surface_to_descriptor,
1494          .sampler_to_descriptor = stage.sampler_to_descriptor
1495       };
1496 
1497       /* Set up a binding for the gl_NumWorkGroups */
1498       stage.bind_map.surface_count = 1;
1499       stage.bind_map.surface_to_descriptor[0] = (struct anv_pipeline_binding) {
1500          .set = ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS,
1501       };
1502 
1503       stage.nir = anv_pipeline_stage_get_nir(&pipeline->base, cache, mem_ctx, &stage);
1504       if (stage.nir == NULL) {
1505          ralloc_free(mem_ctx);
1506          return vk_error(pipeline, VK_ERROR_UNKNOWN);
1507       }
1508 
1509       anv_pipeline_lower_nir(&pipeline->base, mem_ctx, &stage, layout);
1510 
1511       unsigned local_size = stage.nir->info.workgroup_size[0] *
1512                             stage.nir->info.workgroup_size[1] *
1513                             stage.nir->info.workgroup_size[2];
1514 
1515       /* Games don't always request full subgroups when they should,
1516        * which can cause bugs, as they may expect bigger size of the
1517        * subgroup than we choose for the execution.
1518        */
1519       if (device->physical->instance->assume_full_subgroups &&
1520           stage.nir->info.uses_wide_subgroup_intrinsics &&
1521           stage.nir->info.subgroup_size == SUBGROUP_SIZE_API_CONSTANT &&
1522           local_size &&
1523           local_size % ELK_SUBGROUP_SIZE == 0)
1524          stage.nir->info.subgroup_size = SUBGROUP_SIZE_FULL_SUBGROUPS;
1525 
1526       /* If the client requests that we dispatch full subgroups but doesn't
1527        * allow us to pick a subgroup size, we have to smash it to the API
1528        * value of 32.  Performance will likely be terrible in this case but
1529        * there's nothing we can do about that.  The client should have chosen
1530        * a size.
1531        */
1532       if (stage.nir->info.subgroup_size == SUBGROUP_SIZE_FULL_SUBGROUPS)
1533          stage.nir->info.subgroup_size =
1534             device->physical->instance->assume_full_subgroups != 0 ?
1535             device->physical->instance->assume_full_subgroups : ELK_SUBGROUP_SIZE;
1536 
1537       stage.num_stats = 1;
1538 
1539       struct elk_compile_cs_params params = {
1540          .base = {
1541             .nir = stage.nir,
1542             .stats = stage.stats,
1543             .log_data = device,
1544             .mem_ctx = mem_ctx,
1545          },
1546          .key = &stage.key.cs,
1547          .prog_data = &stage.prog_data.cs,
1548       };
1549 
1550       stage.code = elk_compile_cs(compiler, &params);
1551       if (stage.code == NULL) {
1552          ralloc_free(mem_ctx);
1553          return vk_error(pipeline, VK_ERROR_OUT_OF_HOST_MEMORY);
1554       }
1555 
1556       anv_nir_validate_push_layout(&stage.prog_data.base, &stage.bind_map);
1557 
1558       if (!stage.prog_data.cs.uses_num_work_groups) {
1559          assert(stage.bind_map.surface_to_descriptor[0].set ==
1560                 ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS);
1561          stage.bind_map.surface_to_descriptor[0].set = ANV_DESCRIPTOR_SET_NULL;
1562       }
1563 
1564       const unsigned code_size = stage.prog_data.base.program_size;
1565       bin = anv_device_upload_kernel(device, cache,
1566                                      MESA_SHADER_COMPUTE,
1567                                      &stage.cache_key, sizeof(stage.cache_key),
1568                                      stage.code, code_size,
1569                                      &stage.prog_data.base,
1570                                      sizeof(stage.prog_data.cs),
1571                                      stage.stats, stage.num_stats,
1572                                      NULL, &stage.bind_map);
1573       if (!bin) {
1574          ralloc_free(mem_ctx);
1575          return vk_error(pipeline, VK_ERROR_OUT_OF_HOST_MEMORY);
1576       }
1577 
1578       stage.feedback.duration = os_time_get_nano() - stage_start;
1579    }
1580 
1581    anv_pipeline_add_executables(&pipeline->base, &stage, bin);
1582 
1583    ralloc_free(mem_ctx);
1584 
1585    if (cache_hit) {
1586       stage.feedback.flags |=
1587          VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT;
1588       pipeline_feedback.flags |=
1589          VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT;
1590    }
1591    pipeline_feedback.duration = os_time_get_nano() - pipeline_start;
1592 
1593    const VkPipelineCreationFeedbackCreateInfo *create_feedback =
1594       vk_find_struct_const(info->pNext, PIPELINE_CREATION_FEEDBACK_CREATE_INFO);
1595    if (create_feedback) {
1596       *create_feedback->pPipelineCreationFeedback = pipeline_feedback;
1597 
1598       if (create_feedback->pipelineStageCreationFeedbackCount) {
1599          assert(create_feedback->pipelineStageCreationFeedbackCount == 1);
1600          create_feedback->pPipelineStageCreationFeedbacks[0] = stage.feedback;
1601       }
1602    }
1603 
1604    pipeline->cs = bin;
1605 
1606    return VK_SUCCESS;
1607 }
1608 
1609 static VkResult
anv_compute_pipeline_create(struct anv_device * device,struct vk_pipeline_cache * cache,const VkComputePipelineCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkPipeline * pPipeline)1610 anv_compute_pipeline_create(struct anv_device *device,
1611                             struct vk_pipeline_cache *cache,
1612                             const VkComputePipelineCreateInfo *pCreateInfo,
1613                             const VkAllocationCallbacks *pAllocator,
1614                             VkPipeline *pPipeline)
1615 {
1616    struct anv_compute_pipeline *pipeline;
1617    VkResult result;
1618 
1619    assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO);
1620 
1621    pipeline = vk_zalloc2(&device->vk.alloc, pAllocator, sizeof(*pipeline), 8,
1622                          VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1623    if (pipeline == NULL)
1624       return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
1625 
1626    result = anv_pipeline_init(&pipeline->base, device,
1627                               ANV_PIPELINE_COMPUTE, pCreateInfo->flags,
1628                               pAllocator);
1629    if (result != VK_SUCCESS) {
1630       vk_free2(&device->vk.alloc, pAllocator, pipeline);
1631       return result;
1632    }
1633 
1634    anv_batch_set_storage(&pipeline->base.batch, ANV_NULL_ADDRESS,
1635                          pipeline->batch_data, sizeof(pipeline->batch_data));
1636 
1637    result = anv_pipeline_compile_cs(pipeline, cache, pCreateInfo);
1638    if (result != VK_SUCCESS) {
1639       anv_pipeline_finish(&pipeline->base, device, pAllocator);
1640       vk_free2(&device->vk.alloc, pAllocator, pipeline);
1641       return result;
1642    }
1643 
1644    anv_genX(device->info, compute_pipeline_emit)(pipeline);
1645 
1646    *pPipeline = anv_pipeline_to_handle(&pipeline->base);
1647 
1648    return pipeline->base.batch.status;
1649 }
1650 
anv_CreateComputePipelines(VkDevice _device,VkPipelineCache pipelineCache,uint32_t count,const VkComputePipelineCreateInfo * pCreateInfos,const VkAllocationCallbacks * pAllocator,VkPipeline * pPipelines)1651 VkResult anv_CreateComputePipelines(
1652     VkDevice                                    _device,
1653     VkPipelineCache                             pipelineCache,
1654     uint32_t                                    count,
1655     const VkComputePipelineCreateInfo*          pCreateInfos,
1656     const VkAllocationCallbacks*                pAllocator,
1657     VkPipeline*                                 pPipelines)
1658 {
1659    ANV_FROM_HANDLE(anv_device, device, _device);
1660    ANV_FROM_HANDLE(vk_pipeline_cache, pipeline_cache, pipelineCache);
1661 
1662    VkResult result = VK_SUCCESS;
1663 
1664    unsigned i;
1665    for (i = 0; i < count; i++) {
1666       VkResult res = anv_compute_pipeline_create(device, pipeline_cache,
1667                                                  &pCreateInfos[i],
1668                                                  pAllocator, &pPipelines[i]);
1669 
1670       if (res == VK_SUCCESS)
1671          continue;
1672 
1673       /* Bail out on the first error != VK_PIPELINE_COMPILE_REQUIRED as it
1674        * is not obvious what error should be report upon 2 different failures.
1675        * */
1676       result = res;
1677       if (res != VK_PIPELINE_COMPILE_REQUIRED)
1678          break;
1679 
1680       pPipelines[i] = VK_NULL_HANDLE;
1681 
1682       if (pCreateInfos[i].flags & VK_PIPELINE_CREATE_EARLY_RETURN_ON_FAILURE_BIT)
1683          break;
1684    }
1685 
1686    for (; i < count; i++)
1687       pPipelines[i] = VK_NULL_HANDLE;
1688 
1689    return result;
1690 }
1691 
1692 /**
1693  * Calculate the desired L3 partitioning based on the current state of the
1694  * pipeline.  For now this simply returns the conservative defaults calculated
1695  * by get_default_l3_weights(), but we could probably do better by gathering
1696  * more statistics from the pipeline state (e.g. guess of expected URB usage
1697  * and bound surfaces), or by using feed-back from performance counters.
1698  */
1699 void
anv_pipeline_setup_l3_config(struct anv_pipeline * pipeline,bool needs_slm)1700 anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm)
1701 {
1702    const struct intel_device_info *devinfo = pipeline->device->info;
1703 
1704    const struct intel_l3_weights w =
1705       intel_get_default_l3_weights(devinfo, true, needs_slm);
1706 
1707    pipeline->l3_config = intel_get_l3_config(devinfo, w);
1708 }
1709 
1710 static VkResult
anv_graphics_pipeline_init(struct anv_graphics_pipeline * pipeline,struct anv_device * device,struct vk_pipeline_cache * cache,const struct VkGraphicsPipelineCreateInfo * pCreateInfo,const struct vk_graphics_pipeline_state * state,const VkAllocationCallbacks * alloc)1711 anv_graphics_pipeline_init(struct anv_graphics_pipeline *pipeline,
1712                            struct anv_device *device,
1713                            struct vk_pipeline_cache *cache,
1714                            const struct VkGraphicsPipelineCreateInfo *pCreateInfo,
1715                            const struct vk_graphics_pipeline_state *state,
1716                            const VkAllocationCallbacks *alloc)
1717 {
1718    VkResult result;
1719 
1720    result = anv_pipeline_init(&pipeline->base, device,
1721                               ANV_PIPELINE_GRAPHICS, pCreateInfo->flags,
1722                               alloc);
1723    if (result != VK_SUCCESS)
1724       return result;
1725 
1726    anv_batch_set_storage(&pipeline->base.batch, ANV_NULL_ADDRESS,
1727                          pipeline->batch_data, sizeof(pipeline->batch_data));
1728 
1729    pipeline->active_stages = 0;
1730    for (uint32_t i = 0; i < pCreateInfo->stageCount; i++)
1731       pipeline->active_stages |= pCreateInfo->pStages[i].stage;
1732 
1733    if (pipeline->active_stages & VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT)
1734       pipeline->active_stages |= VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT;
1735 
1736    pipeline->dynamic_state.ms.sample_locations = &pipeline->sample_locations;
1737    vk_dynamic_graphics_state_fill(&pipeline->dynamic_state, state);
1738 
1739    pipeline->depth_clamp_enable = state->rs->depth_clamp_enable;
1740    pipeline->depth_clip_enable =
1741       vk_rasterization_state_depth_clip_enable(state->rs);
1742    pipeline->view_mask = state->rp->view_mask;
1743 
1744    result = anv_graphics_pipeline_compile(pipeline, cache, pCreateInfo, state);
1745    if (result != VK_SUCCESS) {
1746       anv_pipeline_finish(&pipeline->base, device, alloc);
1747       return result;
1748    }
1749 
1750    anv_pipeline_setup_l3_config(&pipeline->base, false);
1751 
1752    const uint64_t inputs_read = get_vs_prog_data(pipeline)->inputs_read;
1753 
1754    u_foreach_bit(a, state->vi->attributes_valid) {
1755       if (inputs_read & BITFIELD64_BIT(VERT_ATTRIB_GENERIC0 + a))
1756          pipeline->vb_used |= BITFIELD64_BIT(state->vi->attributes[a].binding);
1757    }
1758 
1759    u_foreach_bit(b, state->vi->bindings_valid) {
1760       pipeline->vb[b].stride = state->vi->bindings[b].stride;
1761       pipeline->vb[b].instanced = state->vi->bindings[b].input_rate ==
1762          VK_VERTEX_INPUT_RATE_INSTANCE;
1763       pipeline->vb[b].instance_divisor = state->vi->bindings[b].divisor;
1764    }
1765 
1766    pipeline->instance_multiplier = 1;
1767    if (pipeline->view_mask)
1768       pipeline->instance_multiplier = util_bitcount(pipeline->view_mask);
1769 
1770    pipeline->negative_one_to_one =
1771       state->vp != NULL && state->vp->depth_clip_negative_one_to_one;
1772 
1773    /* Store line mode, polygon mode and rasterization samples, these are used
1774     * for dynamic primitive topology.
1775     */
1776    pipeline->polygon_mode = state->rs->polygon_mode;
1777    pipeline->rasterization_samples =
1778       state->ms != NULL ? state->ms->rasterization_samples : 1;
1779    pipeline->line_mode = state->rs->line.mode;
1780    if (pipeline->line_mode == VK_LINE_RASTERIZATION_MODE_DEFAULT_EXT) {
1781       if (pipeline->rasterization_samples > 1) {
1782          pipeline->line_mode = VK_LINE_RASTERIZATION_MODE_RECTANGULAR_EXT;
1783       } else {
1784          pipeline->line_mode = VK_LINE_RASTERIZATION_MODE_BRESENHAM_EXT;
1785       }
1786    }
1787    pipeline->patch_control_points =
1788       state->ts != NULL ? state->ts->patch_control_points : 0;
1789 
1790    /* Store the color write masks, to be merged with color write enable if
1791     * dynamic.
1792     */
1793    if (state->cb != NULL) {
1794       for (unsigned i = 0; i < state->cb->attachment_count; i++)
1795          pipeline->color_comp_writes[i] = state->cb->attachments[i].write_mask;
1796    }
1797 
1798    return VK_SUCCESS;
1799 }
1800 
1801 static VkResult
anv_graphics_pipeline_create(struct anv_device * device,struct vk_pipeline_cache * cache,const VkGraphicsPipelineCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkPipeline * pPipeline)1802 anv_graphics_pipeline_create(struct anv_device *device,
1803                              struct vk_pipeline_cache *cache,
1804                              const VkGraphicsPipelineCreateInfo *pCreateInfo,
1805                              const VkAllocationCallbacks *pAllocator,
1806                              VkPipeline *pPipeline)
1807 {
1808    struct anv_graphics_pipeline *pipeline;
1809    VkResult result;
1810 
1811    assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO);
1812 
1813    pipeline = vk_zalloc2(&device->vk.alloc, pAllocator, sizeof(*pipeline), 8,
1814                          VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1815    if (pipeline == NULL)
1816       return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
1817 
1818    struct vk_graphics_pipeline_all_state all;
1819    struct vk_graphics_pipeline_state state = { };
1820    result = vk_graphics_pipeline_state_fill(&device->vk, &state, pCreateInfo,
1821                                             NULL /* driver_rp */,
1822                                             0 /* driver_rp_flags */,
1823                                             &all, NULL, 0, NULL);
1824    if (result != VK_SUCCESS) {
1825       vk_free2(&device->vk.alloc, pAllocator, pipeline);
1826       return result;
1827    }
1828 
1829    result = anv_graphics_pipeline_init(pipeline, device, cache,
1830                                        pCreateInfo, &state, pAllocator);
1831    if (result != VK_SUCCESS) {
1832       vk_free2(&device->vk.alloc, pAllocator, pipeline);
1833       return result;
1834    }
1835 
1836    anv_genX(device->info, graphics_pipeline_emit)(pipeline, &state);
1837 
1838    *pPipeline = anv_pipeline_to_handle(&pipeline->base);
1839 
1840    return pipeline->base.batch.status;
1841 }
1842 
anv_CreateGraphicsPipelines(VkDevice _device,VkPipelineCache pipelineCache,uint32_t count,const VkGraphicsPipelineCreateInfo * pCreateInfos,const VkAllocationCallbacks * pAllocator,VkPipeline * pPipelines)1843 VkResult anv_CreateGraphicsPipelines(
1844     VkDevice                                    _device,
1845     VkPipelineCache                             pipelineCache,
1846     uint32_t                                    count,
1847     const VkGraphicsPipelineCreateInfo*         pCreateInfos,
1848     const VkAllocationCallbacks*                pAllocator,
1849     VkPipeline*                                 pPipelines)
1850 {
1851    ANV_FROM_HANDLE(anv_device, device, _device);
1852    ANV_FROM_HANDLE(vk_pipeline_cache, pipeline_cache, pipelineCache);
1853 
1854    VkResult result = VK_SUCCESS;
1855 
1856    unsigned i;
1857    for (i = 0; i < count; i++) {
1858       VkResult res = anv_graphics_pipeline_create(device,
1859                                                   pipeline_cache,
1860                                                   &pCreateInfos[i],
1861                                                   pAllocator, &pPipelines[i]);
1862 
1863       if (res == VK_SUCCESS)
1864          continue;
1865 
1866       /* Bail out on the first error != VK_PIPELINE_COMPILE_REQUIRED as it
1867        * is not obvious what error should be report upon 2 different failures.
1868        * */
1869       result = res;
1870       if (res != VK_PIPELINE_COMPILE_REQUIRED)
1871          break;
1872 
1873       pPipelines[i] = VK_NULL_HANDLE;
1874 
1875       if (pCreateInfos[i].flags & VK_PIPELINE_CREATE_EARLY_RETURN_ON_FAILURE_BIT)
1876          break;
1877    }
1878 
1879    for (; i < count; i++)
1880       pPipelines[i] = VK_NULL_HANDLE;
1881 
1882    return result;
1883 }
1884 
1885 #define WRITE_STR(field, ...) ({                               \
1886    memset(field, 0, sizeof(field));                            \
1887    UNUSED int i = snprintf(field, sizeof(field), __VA_ARGS__); \
1888    assert(i > 0 && i < sizeof(field));                         \
1889 })
1890 
anv_GetPipelineExecutablePropertiesKHR(VkDevice device,const VkPipelineInfoKHR * pPipelineInfo,uint32_t * pExecutableCount,VkPipelineExecutablePropertiesKHR * pProperties)1891 VkResult anv_GetPipelineExecutablePropertiesKHR(
1892     VkDevice                                    device,
1893     const VkPipelineInfoKHR*                    pPipelineInfo,
1894     uint32_t*                                   pExecutableCount,
1895     VkPipelineExecutablePropertiesKHR*          pProperties)
1896 {
1897    ANV_FROM_HANDLE(anv_pipeline, pipeline, pPipelineInfo->pipeline);
1898    VK_OUTARRAY_MAKE_TYPED(VkPipelineExecutablePropertiesKHR, out,
1899                           pProperties, pExecutableCount);
1900 
1901    util_dynarray_foreach (&pipeline->executables, struct anv_pipeline_executable, exe) {
1902       vk_outarray_append_typed(VkPipelineExecutablePropertiesKHR, &out, props) {
1903          gl_shader_stage stage = exe->stage;
1904          props->stages = mesa_to_vk_shader_stage(stage);
1905 
1906          unsigned simd_width = exe->stats.dispatch_width;
1907          if (stage == MESA_SHADER_FRAGMENT) {
1908             WRITE_STR(props->name, "%s%d %s",
1909                       simd_width ? "SIMD" : "vec",
1910                       simd_width ? simd_width : 4,
1911                       _mesa_shader_stage_to_string(stage));
1912          } else {
1913             WRITE_STR(props->name, "%s", _mesa_shader_stage_to_string(stage));
1914          }
1915          WRITE_STR(props->description, "%s%d %s shader",
1916                    simd_width ? "SIMD" : "vec",
1917                    simd_width ? simd_width : 4,
1918                    _mesa_shader_stage_to_string(stage));
1919 
1920          /* The compiler gives us a dispatch width of 0 for vec4 but Vulkan
1921           * wants a subgroup size of 1.
1922           */
1923          props->subgroupSize = MAX2(simd_width, 1);
1924       }
1925    }
1926 
1927    return vk_outarray_status(&out);
1928 }
1929 
1930 static const struct anv_pipeline_executable *
anv_pipeline_get_executable(struct anv_pipeline * pipeline,uint32_t index)1931 anv_pipeline_get_executable(struct anv_pipeline *pipeline, uint32_t index)
1932 {
1933    assert(index < util_dynarray_num_elements(&pipeline->executables,
1934                                              struct anv_pipeline_executable));
1935    return util_dynarray_element(
1936       &pipeline->executables, struct anv_pipeline_executable, index);
1937 }
1938 
anv_GetPipelineExecutableStatisticsKHR(VkDevice device,const VkPipelineExecutableInfoKHR * pExecutableInfo,uint32_t * pStatisticCount,VkPipelineExecutableStatisticKHR * pStatistics)1939 VkResult anv_GetPipelineExecutableStatisticsKHR(
1940     VkDevice                                    device,
1941     const VkPipelineExecutableInfoKHR*          pExecutableInfo,
1942     uint32_t*                                   pStatisticCount,
1943     VkPipelineExecutableStatisticKHR*           pStatistics)
1944 {
1945    ANV_FROM_HANDLE(anv_pipeline, pipeline, pExecutableInfo->pipeline);
1946    VK_OUTARRAY_MAKE_TYPED(VkPipelineExecutableStatisticKHR, out,
1947                           pStatistics, pStatisticCount);
1948 
1949    const struct anv_pipeline_executable *exe =
1950       anv_pipeline_get_executable(pipeline, pExecutableInfo->executableIndex);
1951 
1952    const struct elk_stage_prog_data *prog_data;
1953    switch (pipeline->type) {
1954    case ANV_PIPELINE_GRAPHICS: {
1955       prog_data = anv_pipeline_to_graphics(pipeline)->shaders[exe->stage]->prog_data;
1956       break;
1957    }
1958    case ANV_PIPELINE_COMPUTE: {
1959       prog_data = anv_pipeline_to_compute(pipeline)->cs->prog_data;
1960       break;
1961    }
1962    default:
1963       unreachable("invalid pipeline type");
1964    }
1965 
1966    vk_outarray_append_typed(VkPipelineExecutableStatisticKHR, &out, stat) {
1967       WRITE_STR(stat->name, "Instruction Count");
1968       WRITE_STR(stat->description,
1969                 "Number of GEN instructions in the final generated "
1970                 "shader executable.");
1971       stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
1972       stat->value.u64 = exe->stats.instructions;
1973    }
1974 
1975    vk_outarray_append_typed(VkPipelineExecutableStatisticKHR, &out, stat) {
1976       WRITE_STR(stat->name, "SEND Count");
1977       WRITE_STR(stat->description,
1978                 "Number of instructions in the final generated shader "
1979                 "executable which access external units such as the "
1980                 "constant cache or the sampler.");
1981       stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
1982       stat->value.u64 = exe->stats.sends;
1983    }
1984 
1985    vk_outarray_append_typed(VkPipelineExecutableStatisticKHR, &out, stat) {
1986       WRITE_STR(stat->name, "Loop Count");
1987       WRITE_STR(stat->description,
1988                 "Number of loops (not unrolled) in the final generated "
1989                 "shader executable.");
1990       stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
1991       stat->value.u64 = exe->stats.loops;
1992    }
1993 
1994    vk_outarray_append_typed(VkPipelineExecutableStatisticKHR, &out, stat) {
1995       WRITE_STR(stat->name, "Cycle Count");
1996       WRITE_STR(stat->description,
1997                 "Estimate of the number of EU cycles required to execute "
1998                 "the final generated executable.  This is an estimate only "
1999                 "and may vary greatly from actual run-time performance.");
2000       stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
2001       stat->value.u64 = exe->stats.cycles;
2002    }
2003 
2004    vk_outarray_append_typed(VkPipelineExecutableStatisticKHR, &out, stat) {
2005       WRITE_STR(stat->name, "Spill Count");
2006       WRITE_STR(stat->description,
2007                 "Number of scratch spill operations.  This gives a rough "
2008                 "estimate of the cost incurred due to spilling temporary "
2009                 "values to memory.  If this is non-zero, you may want to "
2010                 "adjust your shader to reduce register pressure.");
2011       stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
2012       stat->value.u64 = exe->stats.spills;
2013    }
2014 
2015    vk_outarray_append_typed(VkPipelineExecutableStatisticKHR, &out, stat) {
2016       WRITE_STR(stat->name, "Fill Count");
2017       WRITE_STR(stat->description,
2018                 "Number of scratch fill operations.  This gives a rough "
2019                 "estimate of the cost incurred due to spilling temporary "
2020                 "values to memory.  If this is non-zero, you may want to "
2021                 "adjust your shader to reduce register pressure.");
2022       stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
2023       stat->value.u64 = exe->stats.fills;
2024    }
2025 
2026    vk_outarray_append_typed(VkPipelineExecutableStatisticKHR, &out, stat) {
2027       WRITE_STR(stat->name, "Scratch Memory Size");
2028       WRITE_STR(stat->description,
2029                 "Number of bytes of scratch memory required by the "
2030                 "generated shader executable.  If this is non-zero, you "
2031                 "may want to adjust your shader to reduce register "
2032                 "pressure.");
2033       stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
2034       stat->value.u64 = prog_data->total_scratch;
2035    }
2036 
2037    if (gl_shader_stage_uses_workgroup(exe->stage)) {
2038       vk_outarray_append_typed(VkPipelineExecutableStatisticKHR, &out, stat) {
2039          WRITE_STR(stat->name, "Workgroup Memory Size");
2040          WRITE_STR(stat->description,
2041                    "Number of bytes of workgroup shared memory used by this "
2042                    "shader including any padding.");
2043          stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
2044          stat->value.u64 = prog_data->total_shared;
2045       }
2046    }
2047 
2048    return vk_outarray_status(&out);
2049 }
2050 
2051 static bool
write_ir_text(VkPipelineExecutableInternalRepresentationKHR * ir,const char * data)2052 write_ir_text(VkPipelineExecutableInternalRepresentationKHR* ir,
2053               const char *data)
2054 {
2055    ir->isText = VK_TRUE;
2056 
2057    size_t data_len = strlen(data) + 1;
2058 
2059    if (ir->pData == NULL) {
2060       ir->dataSize = data_len;
2061       return true;
2062    }
2063 
2064    strncpy(ir->pData, data, ir->dataSize);
2065    if (ir->dataSize < data_len)
2066       return false;
2067 
2068    ir->dataSize = data_len;
2069    return true;
2070 }
2071 
anv_GetPipelineExecutableInternalRepresentationsKHR(VkDevice device,const VkPipelineExecutableInfoKHR * pExecutableInfo,uint32_t * pInternalRepresentationCount,VkPipelineExecutableInternalRepresentationKHR * pInternalRepresentations)2072 VkResult anv_GetPipelineExecutableInternalRepresentationsKHR(
2073     VkDevice                                    device,
2074     const VkPipelineExecutableInfoKHR*          pExecutableInfo,
2075     uint32_t*                                   pInternalRepresentationCount,
2076     VkPipelineExecutableInternalRepresentationKHR* pInternalRepresentations)
2077 {
2078    ANV_FROM_HANDLE(anv_pipeline, pipeline, pExecutableInfo->pipeline);
2079    VK_OUTARRAY_MAKE_TYPED(VkPipelineExecutableInternalRepresentationKHR, out,
2080                           pInternalRepresentations, pInternalRepresentationCount);
2081    bool incomplete_text = false;
2082 
2083    const struct anv_pipeline_executable *exe =
2084       anv_pipeline_get_executable(pipeline, pExecutableInfo->executableIndex);
2085 
2086    if (exe->nir) {
2087       vk_outarray_append_typed(VkPipelineExecutableInternalRepresentationKHR, &out, ir) {
2088          WRITE_STR(ir->name, "Final NIR");
2089          WRITE_STR(ir->description,
2090                    "Final NIR before going into the back-end compiler");
2091 
2092          if (!write_ir_text(ir, exe->nir))
2093             incomplete_text = true;
2094       }
2095    }
2096 
2097    if (exe->disasm) {
2098       vk_outarray_append_typed(VkPipelineExecutableInternalRepresentationKHR, &out, ir) {
2099          WRITE_STR(ir->name, "GEN Assembly");
2100          WRITE_STR(ir->description,
2101                    "Final GEN assembly for the generated shader binary");
2102 
2103          if (!write_ir_text(ir, exe->disasm))
2104             incomplete_text = true;
2105       }
2106    }
2107 
2108    return incomplete_text ? VK_INCOMPLETE : vk_outarray_status(&out);
2109 }
2110