xref: /aosp_15_r20/external/mesa3d/src/intel/vulkan_hasvk/genX_gpu_memcpy.c (revision 6104692788411f58d303aa86923a9ff6ecaded22)
1 /*
2  * Copyright © 2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23 
24 #include "anv_private.h"
25 
26 #include "genxml/gen_macros.h"
27 #include "genxml/genX_pack.h"
28 
29 #include "common/intel_l3_config.h"
30 
31 /**
32  * This file implements some lightweight memcpy/memset operations on the GPU
33  * using a vertex buffer and streamout.
34  */
35 
36 /**
37  * Returns the greatest common divisor of a and b that is a power of two.
38  */
39 static uint64_t
gcd_pow2_u64(uint64_t a,uint64_t b)40 gcd_pow2_u64(uint64_t a, uint64_t b)
41 {
42    assert(a > 0 || b > 0);
43 
44    unsigned a_log2 = ffsll(a) - 1;
45    unsigned b_log2 = ffsll(b) - 1;
46 
47    /* If either a or b is 0, then a_log2 or b_log2 will be UINT_MAX in which
48     * case, the MIN2() will take the other one.  If both are 0 then we will
49     * hit the assert above.
50     */
51    return 1 << MIN2(a_log2, b_log2);
52 }
53 
54 static void
emit_common_so_memcpy(struct anv_batch * batch,struct anv_device * device,const struct intel_l3_config * l3_config)55 emit_common_so_memcpy(struct anv_batch *batch, struct anv_device *device,
56                       const struct intel_l3_config *l3_config)
57 {
58 #if GFX_VER >= 8
59    anv_batch_emit(batch, GENX(3DSTATE_VF_INSTANCING), vfi) {
60       vfi.InstancingEnable = false;
61       vfi.VertexElementIndex = 0;
62    }
63    anv_batch_emit(batch, GENX(3DSTATE_VF_SGVS), sgvs);
64 #endif
65 
66    /* Disable all shader stages */
67    anv_batch_emit(batch, GENX(3DSTATE_VS), vs);
68    anv_batch_emit(batch, GENX(3DSTATE_HS), hs);
69    anv_batch_emit(batch, GENX(3DSTATE_TE), te);
70    anv_batch_emit(batch, GENX(3DSTATE_DS), DS);
71    anv_batch_emit(batch, GENX(3DSTATE_GS), gs);
72    anv_batch_emit(batch, GENX(3DSTATE_PS), gs);
73 
74    anv_batch_emit(batch, GENX(3DSTATE_SBE), sbe) {
75       sbe.VertexURBEntryReadOffset = 1;
76       sbe.NumberofSFOutputAttributes = 1;
77       sbe.VertexURBEntryReadLength = 1;
78 #if GFX_VER >= 8
79       sbe.ForceVertexURBEntryReadLength = true;
80       sbe.ForceVertexURBEntryReadOffset = true;
81 #endif
82    }
83 
84    /* Emit URB setup.  We tell it that the VS is active because we want it to
85     * allocate space for the VS.  Even though one isn't run, we need VUEs to
86     * store the data that VF is going to pass to SOL.
87     */
88    const unsigned entry_size[4] = { DIV_ROUND_UP(32, 64), 1, 1, 1 };
89 
90    genX(emit_urb_setup)(device, batch, l3_config,
91                         VK_SHADER_STAGE_VERTEX_BIT, entry_size, NULL);
92 
93 #if GFX_VER >= 8
94    anv_batch_emit(batch, GENX(3DSTATE_VF_TOPOLOGY), topo) {
95       topo.PrimitiveTopologyType = _3DPRIM_POINTLIST;
96    }
97 #endif
98 
99    anv_batch_emit(batch, GENX(3DSTATE_VF_STATISTICS), vf) {
100       vf.StatisticsEnable = false;
101    }
102 }
103 
104 static void
emit_so_memcpy(struct anv_batch * batch,struct anv_device * device,struct anv_address dst,struct anv_address src,uint32_t size)105 emit_so_memcpy(struct anv_batch *batch, struct anv_device *device,
106                struct anv_address dst, struct anv_address src,
107                uint32_t size)
108 {
109    /* The maximum copy block size is 4 32-bit components at a time. */
110    assert(size % 4 == 0);
111    unsigned bs = gcd_pow2_u64(16, size);
112 
113    enum isl_format format;
114    switch (bs) {
115    case 4:  format = ISL_FORMAT_R32_UINT;          break;
116    case 8:  format = ISL_FORMAT_R32G32_UINT;       break;
117    case 16: format = ISL_FORMAT_R32G32B32A32_UINT; break;
118    default:
119       unreachable("Invalid size");
120    }
121 
122    uint32_t *dw;
123    dw = anv_batch_emitn(batch, 5, GENX(3DSTATE_VERTEX_BUFFERS));
124    GENX(VERTEX_BUFFER_STATE_pack)(batch, dw + 1,
125       &(struct GENX(VERTEX_BUFFER_STATE)) {
126          .VertexBufferIndex = 32, /* Reserved for this */
127          .AddressModifyEnable = true,
128          .BufferStartingAddress = src,
129          .BufferPitch = bs,
130          .MOCS = anv_mocs(device, src.bo, 0),
131 #if (GFX_VER >= 8)
132          .BufferSize = size,
133 #else
134          .EndAddress = anv_address_add(src, size - 1),
135 #endif
136       });
137 
138    dw = anv_batch_emitn(batch, 3, GENX(3DSTATE_VERTEX_ELEMENTS));
139    GENX(VERTEX_ELEMENT_STATE_pack)(batch, dw + 1,
140       &(struct GENX(VERTEX_ELEMENT_STATE)) {
141          .VertexBufferIndex = 32,
142          .Valid = true,
143          .SourceElementFormat = format,
144          .SourceElementOffset = 0,
145          .Component0Control = (bs >= 4) ? VFCOMP_STORE_SRC : VFCOMP_STORE_0,
146          .Component1Control = (bs >= 8) ? VFCOMP_STORE_SRC : VFCOMP_STORE_0,
147          .Component2Control = (bs >= 12) ? VFCOMP_STORE_SRC : VFCOMP_STORE_0,
148          .Component3Control = (bs >= 16) ? VFCOMP_STORE_SRC : VFCOMP_STORE_0,
149       });
150 
151 
152    anv_batch_emit(batch, GENX(3DSTATE_SO_BUFFER), sob) {
153       sob.SOBufferIndex = 0;
154       sob.MOCS = anv_mocs(device, dst.bo, ISL_SURF_USAGE_STREAM_OUT_BIT),
155       sob.SurfaceBaseAddress = dst;
156 
157 #if GFX_VER >= 8
158       sob.SOBufferEnable = true;
159       sob.SurfaceSize = size / 4 - 1;
160 #else
161       sob.SurfacePitch = bs;
162       sob.SurfaceEndAddress = anv_address_add(dst, size);
163 #endif
164 
165 #if GFX_VER >= 8
166       /* As SOL writes out data, it updates the SO_WRITE_OFFSET registers with
167        * the end position of the stream.  We need to reset this value to 0 at
168        * the beginning of the run or else SOL will start at the offset from
169        * the previous draw.
170        */
171       sob.StreamOffsetWriteEnable = true;
172       sob.StreamOffset = 0;
173 #endif
174    }
175 
176 #if GFX_VER <= 7
177    /* The hardware can do this for us on BDW+ (see above) */
178    anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_IMM), load) {
179       load.RegisterOffset = GENX(SO_WRITE_OFFSET0_num);
180       load.DataDWord = 0;
181    }
182 #endif
183 
184    dw = anv_batch_emitn(batch, 5, GENX(3DSTATE_SO_DECL_LIST),
185                         .StreamtoBufferSelects0 = (1 << 0),
186                         .NumEntries0 = 1);
187    GENX(SO_DECL_ENTRY_pack)(batch, dw + 3,
188       &(struct GENX(SO_DECL_ENTRY)) {
189          .Stream0Decl = {
190             .OutputBufferSlot = 0,
191             .RegisterIndex = 0,
192             .ComponentMask = (1 << (bs / 4)) - 1,
193          },
194       });
195 
196    anv_batch_emit(batch, GENX(3DSTATE_STREAMOUT), so) {
197       so.SOFunctionEnable = true;
198       so.RenderingDisable = true;
199       so.Stream0VertexReadOffset = 0;
200       so.Stream0VertexReadLength = DIV_ROUND_UP(32, 64);
201 #if GFX_VER >= 8
202       so.Buffer0SurfacePitch = bs;
203 #else
204       so.SOBufferEnable0 = true;
205 #endif
206    }
207 
208    anv_batch_emit(batch, GENX(3DPRIMITIVE), prim) {
209       prim.VertexAccessType         = SEQUENTIAL;
210       prim.PrimitiveTopologyType    = _3DPRIM_POINTLIST;
211       prim.VertexCountPerInstance   = size / bs;
212       prim.StartVertexLocation      = 0;
213       prim.InstanceCount            = 1;
214       prim.StartInstanceLocation    = 0;
215       prim.BaseVertexLocation       = 0;
216    }
217 }
218 
219 void
genX(emit_so_memcpy_init)220 genX(emit_so_memcpy_init)(struct anv_memcpy_state *state,
221                           struct anv_device *device,
222                           struct anv_batch *batch)
223 {
224    memset(state, 0, sizeof(*state));
225 
226    state->batch = batch;
227    state->device = device;
228 
229    const struct intel_l3_config *cfg = intel_get_default_l3_config(device->info);
230    genX(emit_l3_config)(batch, device, cfg);
231 
232    anv_batch_emit(batch, GENX(PIPELINE_SELECT), ps) {
233       ps.PipelineSelection = _3D;
234    }
235 
236    emit_common_so_memcpy(batch, device, cfg);
237 }
238 
239 void
genX(emit_so_memcpy_fini)240 genX(emit_so_memcpy_fini)(struct anv_memcpy_state *state)
241 {
242    genX(emit_apply_pipe_flushes)(state->batch, state->device, _3D,
243                                  ANV_PIPE_END_OF_PIPE_SYNC_BIT);
244 
245    anv_batch_emit(state->batch, GENX(MI_BATCH_BUFFER_END), end);
246 
247    if ((state->batch->next - state->batch->start) & 4)
248       anv_batch_emit(state->batch, GENX(MI_NOOP), noop);
249 }
250 
251 void
genX(emit_so_memcpy)252 genX(emit_so_memcpy)(struct anv_memcpy_state *state,
253                      struct anv_address dst, struct anv_address src,
254                      uint32_t size)
255 {
256    if (GFX_VER >= 8 && !anv_use_relocations(state->device->physical) &&
257        anv_gfx8_9_vb_cache_range_needs_workaround(&state->vb_bound,
258                                                   &state->vb_dirty,
259                                                   src, size)) {
260       genX(emit_apply_pipe_flushes)(state->batch, state->device, _3D,
261                                     ANV_PIPE_CS_STALL_BIT |
262                                     ANV_PIPE_VF_CACHE_INVALIDATE_BIT);
263       memset(&state->vb_dirty, 0, sizeof(state->vb_dirty));
264    }
265 
266    emit_so_memcpy(state->batch, state->device, dst, src, size);
267 }
268 
269 void
genX(cmd_buffer_so_memcpy)270 genX(cmd_buffer_so_memcpy)(struct anv_cmd_buffer *cmd_buffer,
271                            struct anv_address dst, struct anv_address src,
272                            uint32_t size)
273 {
274    if (size == 0)
275       return;
276 
277    if (!cmd_buffer->state.current_l3_config) {
278       const struct intel_l3_config *cfg =
279          intel_get_default_l3_config(cmd_buffer->device->info);
280       genX(cmd_buffer_config_l3)(cmd_buffer, cfg);
281    }
282 
283    genX(cmd_buffer_set_binding_for_gfx8_vb_flush)(cmd_buffer, 32, src, size);
284    genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
285 
286    genX(flush_pipeline_select_3d)(cmd_buffer);
287 
288    emit_common_so_memcpy(&cmd_buffer->batch, cmd_buffer->device,
289                          cmd_buffer->state.current_l3_config);
290    emit_so_memcpy(&cmd_buffer->batch, cmd_buffer->device, dst, src, size);
291 
292    genX(cmd_buffer_update_dirty_vbs_for_gfx8_vb_flush)(cmd_buffer, SEQUENTIAL,
293                                                        1ull << 32);
294 
295    /* Invalidate pipeline & raster discard since we touch
296     * 3DSTATE_STREAMOUT.
297     */
298    cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_PIPELINE;
299    BITSET_SET(cmd_buffer->vk.dynamic_graphics_state.dirty,
300               MESA_VK_DYNAMIC_RS_RASTERIZER_DISCARD_ENABLE);
301 }
302