1 /*
2 * Mesa 3-D graphics library
3 *
4 * Copyright (C) 1999-2008 Brian Paul All Rights Reserved.
5 * (C) Copyright IBM Corporation 2006
6 * Copyright (C) 2009 VMware, Inc. All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included
16 * in all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
22 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
23 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
24 * OTHER DEALINGS IN THE SOFTWARE.
25 */
26
27
28 /**
29 * \file arrayobj.c
30 *
31 * Implementation of Vertex Array Objects (VAOs), from OpenGL 3.1+ /
32 * the GL_ARB_vertex_array_object extension.
33 *
34 * \todo
35 * The code in this file borrows a lot from bufferobj.c. There's a certain
36 * amount of cruft left over from that origin that may be unnecessary.
37 *
38 * \author Ian Romanick <[email protected]>
39 * \author Brian Paul
40 */
41
42
43 #include "util/glheader.h"
44 #include "hash.h"
45 #include "image.h"
46
47 #include "context.h"
48 #include "bufferobj.h"
49 #include "arrayobj.h"
50 #include "draw_validate.h"
51 #include "macros.h"
52 #include "mtypes.h"
53 #include "state.h"
54 #include "varray.h"
55 #include "util/bitscan.h"
56 #include "util/u_atomic.h"
57 #include "util/u_math.h"
58 #include "util/u_memory.h"
59 #include "api_exec_decl.h"
60
61 const GLubyte
62 _mesa_vao_attribute_map[ATTRIBUTE_MAP_MODE_MAX][VERT_ATTRIB_MAX] =
63 {
64 /* ATTRIBUTE_MAP_MODE_IDENTITY
65 *
66 * Grab vertex processing attribute VERT_ATTRIB_POS from
67 * the VAO attribute VERT_ATTRIB_POS, and grab vertex processing
68 * attribute VERT_ATTRIB_GENERIC0 from the VAO attribute
69 * VERT_ATTRIB_GENERIC0.
70 */
71 {
72 VERT_ATTRIB_POS, /* VERT_ATTRIB_POS */
73 VERT_ATTRIB_NORMAL, /* VERT_ATTRIB_NORMAL */
74 VERT_ATTRIB_COLOR0, /* VERT_ATTRIB_COLOR0 */
75 VERT_ATTRIB_COLOR1, /* VERT_ATTRIB_COLOR1 */
76 VERT_ATTRIB_FOG, /* VERT_ATTRIB_FOG */
77 VERT_ATTRIB_COLOR_INDEX, /* VERT_ATTRIB_COLOR_INDEX */
78 VERT_ATTRIB_TEX0, /* VERT_ATTRIB_TEX0 */
79 VERT_ATTRIB_TEX1, /* VERT_ATTRIB_TEX1 */
80 VERT_ATTRIB_TEX2, /* VERT_ATTRIB_TEX2 */
81 VERT_ATTRIB_TEX3, /* VERT_ATTRIB_TEX3 */
82 VERT_ATTRIB_TEX4, /* VERT_ATTRIB_TEX4 */
83 VERT_ATTRIB_TEX5, /* VERT_ATTRIB_TEX5 */
84 VERT_ATTRIB_TEX6, /* VERT_ATTRIB_TEX6 */
85 VERT_ATTRIB_TEX7, /* VERT_ATTRIB_TEX7 */
86 VERT_ATTRIB_POINT_SIZE, /* VERT_ATTRIB_POINT_SIZE */
87 VERT_ATTRIB_GENERIC0, /* VERT_ATTRIB_GENERIC0 */
88 VERT_ATTRIB_GENERIC1, /* VERT_ATTRIB_GENERIC1 */
89 VERT_ATTRIB_GENERIC2, /* VERT_ATTRIB_GENERIC2 */
90 VERT_ATTRIB_GENERIC3, /* VERT_ATTRIB_GENERIC3 */
91 VERT_ATTRIB_GENERIC4, /* VERT_ATTRIB_GENERIC4 */
92 VERT_ATTRIB_GENERIC5, /* VERT_ATTRIB_GENERIC5 */
93 VERT_ATTRIB_GENERIC6, /* VERT_ATTRIB_GENERIC6 */
94 VERT_ATTRIB_GENERIC7, /* VERT_ATTRIB_GENERIC7 */
95 VERT_ATTRIB_GENERIC8, /* VERT_ATTRIB_GENERIC8 */
96 VERT_ATTRIB_GENERIC9, /* VERT_ATTRIB_GENERIC9 */
97 VERT_ATTRIB_GENERIC10, /* VERT_ATTRIB_GENERIC10 */
98 VERT_ATTRIB_GENERIC11, /* VERT_ATTRIB_GENERIC11 */
99 VERT_ATTRIB_GENERIC12, /* VERT_ATTRIB_GENERIC12 */
100 VERT_ATTRIB_GENERIC13, /* VERT_ATTRIB_GENERIC13 */
101 VERT_ATTRIB_GENERIC14, /* VERT_ATTRIB_GENERIC14 */
102 VERT_ATTRIB_GENERIC15, /* VERT_ATTRIB_GENERIC15 */
103 VERT_ATTRIB_EDGEFLAG, /* VERT_ATTRIB_EDGEFLAG */
104 },
105
106 /* ATTRIBUTE_MAP_MODE_POSITION
107 *
108 * Grab vertex processing attribute VERT_ATTRIB_POS as well as
109 * vertex processing attribute VERT_ATTRIB_GENERIC0 from the
110 * VAO attribute VERT_ATTRIB_POS.
111 */
112 {
113 VERT_ATTRIB_POS, /* VERT_ATTRIB_POS */
114 VERT_ATTRIB_NORMAL, /* VERT_ATTRIB_NORMAL */
115 VERT_ATTRIB_COLOR0, /* VERT_ATTRIB_COLOR0 */
116 VERT_ATTRIB_COLOR1, /* VERT_ATTRIB_COLOR1 */
117 VERT_ATTRIB_FOG, /* VERT_ATTRIB_FOG */
118 VERT_ATTRIB_COLOR_INDEX, /* VERT_ATTRIB_COLOR_INDEX */
119 VERT_ATTRIB_TEX0, /* VERT_ATTRIB_TEX0 */
120 VERT_ATTRIB_TEX1, /* VERT_ATTRIB_TEX1 */
121 VERT_ATTRIB_TEX2, /* VERT_ATTRIB_TEX2 */
122 VERT_ATTRIB_TEX3, /* VERT_ATTRIB_TEX3 */
123 VERT_ATTRIB_TEX4, /* VERT_ATTRIB_TEX4 */
124 VERT_ATTRIB_TEX5, /* VERT_ATTRIB_TEX5 */
125 VERT_ATTRIB_TEX6, /* VERT_ATTRIB_TEX6 */
126 VERT_ATTRIB_TEX7, /* VERT_ATTRIB_TEX7 */
127 VERT_ATTRIB_POINT_SIZE, /* VERT_ATTRIB_POINT_SIZE */
128 VERT_ATTRIB_POS, /* VERT_ATTRIB_GENERIC0 */
129 VERT_ATTRIB_GENERIC1, /* VERT_ATTRIB_GENERIC1 */
130 VERT_ATTRIB_GENERIC2, /* VERT_ATTRIB_GENERIC2 */
131 VERT_ATTRIB_GENERIC3, /* VERT_ATTRIB_GENERIC3 */
132 VERT_ATTRIB_GENERIC4, /* VERT_ATTRIB_GENERIC4 */
133 VERT_ATTRIB_GENERIC5, /* VERT_ATTRIB_GENERIC5 */
134 VERT_ATTRIB_GENERIC6, /* VERT_ATTRIB_GENERIC6 */
135 VERT_ATTRIB_GENERIC7, /* VERT_ATTRIB_GENERIC7 */
136 VERT_ATTRIB_GENERIC8, /* VERT_ATTRIB_GENERIC8 */
137 VERT_ATTRIB_GENERIC9, /* VERT_ATTRIB_GENERIC9 */
138 VERT_ATTRIB_GENERIC10, /* VERT_ATTRIB_GENERIC10 */
139 VERT_ATTRIB_GENERIC11, /* VERT_ATTRIB_GENERIC11 */
140 VERT_ATTRIB_GENERIC12, /* VERT_ATTRIB_GENERIC12 */
141 VERT_ATTRIB_GENERIC13, /* VERT_ATTRIB_GENERIC13 */
142 VERT_ATTRIB_GENERIC14, /* VERT_ATTRIB_GENERIC14 */
143 VERT_ATTRIB_GENERIC15, /* VERT_ATTRIB_GENERIC15 */
144 VERT_ATTRIB_EDGEFLAG, /* VERT_ATTRIB_EDGEFLAG */
145 },
146
147 /* ATTRIBUTE_MAP_MODE_GENERIC0
148 *
149 * Grab vertex processing attribute VERT_ATTRIB_POS as well as
150 * vertex processing attribute VERT_ATTRIB_GENERIC0 from the
151 * VAO attribute VERT_ATTRIB_GENERIC0.
152 */
153 {
154 VERT_ATTRIB_GENERIC0, /* VERT_ATTRIB_POS */
155 VERT_ATTRIB_NORMAL, /* VERT_ATTRIB_NORMAL */
156 VERT_ATTRIB_COLOR0, /* VERT_ATTRIB_COLOR0 */
157 VERT_ATTRIB_COLOR1, /* VERT_ATTRIB_COLOR1 */
158 VERT_ATTRIB_FOG, /* VERT_ATTRIB_FOG */
159 VERT_ATTRIB_COLOR_INDEX, /* VERT_ATTRIB_COLOR_INDEX */
160 VERT_ATTRIB_TEX0, /* VERT_ATTRIB_TEX0 */
161 VERT_ATTRIB_TEX1, /* VERT_ATTRIB_TEX1 */
162 VERT_ATTRIB_TEX2, /* VERT_ATTRIB_TEX2 */
163 VERT_ATTRIB_TEX3, /* VERT_ATTRIB_TEX3 */
164 VERT_ATTRIB_TEX4, /* VERT_ATTRIB_TEX4 */
165 VERT_ATTRIB_TEX5, /* VERT_ATTRIB_TEX5 */
166 VERT_ATTRIB_TEX6, /* VERT_ATTRIB_TEX6 */
167 VERT_ATTRIB_TEX7, /* VERT_ATTRIB_TEX7 */
168 VERT_ATTRIB_POINT_SIZE, /* VERT_ATTRIB_POINT_SIZE */
169 VERT_ATTRIB_GENERIC0, /* VERT_ATTRIB_GENERIC0 */
170 VERT_ATTRIB_GENERIC1, /* VERT_ATTRIB_GENERIC1 */
171 VERT_ATTRIB_GENERIC2, /* VERT_ATTRIB_GENERIC2 */
172 VERT_ATTRIB_GENERIC3, /* VERT_ATTRIB_GENERIC3 */
173 VERT_ATTRIB_GENERIC4, /* VERT_ATTRIB_GENERIC4 */
174 VERT_ATTRIB_GENERIC5, /* VERT_ATTRIB_GENERIC5 */
175 VERT_ATTRIB_GENERIC6, /* VERT_ATTRIB_GENERIC6 */
176 VERT_ATTRIB_GENERIC7, /* VERT_ATTRIB_GENERIC7 */
177 VERT_ATTRIB_GENERIC8, /* VERT_ATTRIB_GENERIC8 */
178 VERT_ATTRIB_GENERIC9, /* VERT_ATTRIB_GENERIC9 */
179 VERT_ATTRIB_GENERIC10, /* VERT_ATTRIB_GENERIC10 */
180 VERT_ATTRIB_GENERIC11, /* VERT_ATTRIB_GENERIC11 */
181 VERT_ATTRIB_GENERIC12, /* VERT_ATTRIB_GENERIC12 */
182 VERT_ATTRIB_GENERIC13, /* VERT_ATTRIB_GENERIC13 */
183 VERT_ATTRIB_GENERIC14, /* VERT_ATTRIB_GENERIC14 */
184 VERT_ATTRIB_GENERIC15, /* VERT_ATTRIB_GENERIC15 */
185 VERT_ATTRIB_EDGEFLAG, /* VERT_ATTRIB_EDGEFLAG */
186 }
187 };
188
189
190 /**
191 * Look up the array object for the given ID.
192 *
193 * \returns
194 * Either a pointer to the array object with the specified ID or \c NULL for
195 * a non-existent ID. The spec defines ID 0 as being technically
196 * non-existent.
197 */
198
199 struct gl_vertex_array_object *
_mesa_lookup_vao(struct gl_context * ctx,GLuint id)200 _mesa_lookup_vao(struct gl_context *ctx, GLuint id)
201 {
202 /* The ARB_direct_state_access specification says:
203 *
204 * "<vaobj> is [compatibility profile:
205 * zero, indicating the default vertex array object, or]
206 * the name of the vertex array object."
207 */
208 if (id == 0) {
209 if (_mesa_is_desktop_gl_compat(ctx))
210 return ctx->Array.DefaultVAO;
211
212 return NULL;
213 } else {
214 struct gl_vertex_array_object *vao;
215
216 if (ctx->Array.LastLookedUpVAO &&
217 ctx->Array.LastLookedUpVAO->Name == id) {
218 vao = ctx->Array.LastLookedUpVAO;
219 } else {
220 vao = (struct gl_vertex_array_object *)
221 _mesa_HashLookupLocked(&ctx->Array.Objects, id);
222
223 _mesa_reference_vao(ctx, &ctx->Array.LastLookedUpVAO, vao);
224 }
225
226 return vao;
227 }
228 }
229
230
231 /**
232 * Looks up the array object for the given ID.
233 *
234 * While _mesa_lookup_vao doesn't generate an error if the object does not
235 * exist, this function comes in two variants.
236 * If is_ext_dsa is false, this function generates a GL_INVALID_OPERATION
237 * error if the array object does not exist. It also returns the default
238 * array object when ctx is a compatibility profile context and id is zero.
239 * If is_ext_dsa is true, 0 is not a valid name. If the name exists but
240 * the object has never been bound, it is initialized.
241 */
242 struct gl_vertex_array_object *
_mesa_lookup_vao_err(struct gl_context * ctx,GLuint id,bool is_ext_dsa,const char * caller)243 _mesa_lookup_vao_err(struct gl_context *ctx, GLuint id,
244 bool is_ext_dsa, const char *caller)
245 {
246 /* The ARB_direct_state_access specification says:
247 *
248 * "<vaobj> is [compatibility profile:
249 * zero, indicating the default vertex array object, or]
250 * the name of the vertex array object."
251 */
252 if (id == 0) {
253 if (is_ext_dsa || _mesa_is_desktop_gl_core(ctx)) {
254 _mesa_error(ctx, GL_INVALID_OPERATION,
255 "%s(zero is not valid vaobj name%s)",
256 caller,
257 is_ext_dsa ? "" : " in a core profile context");
258 return NULL;
259 }
260
261 return ctx->Array.DefaultVAO;
262 } else {
263 struct gl_vertex_array_object *vao;
264
265 if (ctx->Array.LastLookedUpVAO &&
266 ctx->Array.LastLookedUpVAO->Name == id) {
267 vao = ctx->Array.LastLookedUpVAO;
268 } else {
269 vao = (struct gl_vertex_array_object *)
270 _mesa_HashLookupLocked(&ctx->Array.Objects, id);
271
272 /* The ARB_direct_state_access specification says:
273 *
274 * "An INVALID_OPERATION error is generated if <vaobj> is not
275 * [compatibility profile: zero or] the name of an existing
276 * vertex array object."
277 */
278 if (!vao || (!is_ext_dsa && !vao->EverBound)) {
279 _mesa_error(ctx, GL_INVALID_OPERATION,
280 "%s(non-existent vaobj=%u)", caller, id);
281 return NULL;
282 }
283
284 /* The EXT_direct_state_access specification says:
285 *
286 * "If the vertex array object named by the vaobj parameter has not
287 * been previously bound but has been generated (without subsequent
288 * deletion) by GenVertexArrays, the GL first creates a new state
289 * vector in the same manner as when BindVertexArray creates a new
290 * vertex array object."
291 */
292 if (vao && is_ext_dsa && !vao->EverBound)
293 vao->EverBound = true;
294
295 _mesa_reference_vao(ctx, &ctx->Array.LastLookedUpVAO, vao);
296 }
297
298 return vao;
299 }
300 }
301
302
303 /**
304 * For all the vertex binding points in the array object, unbind any pointers
305 * to any buffer objects (VBOs).
306 * This is done just prior to array object destruction.
307 */
308 void
_mesa_unbind_array_object_vbos(struct gl_context * ctx,struct gl_vertex_array_object * obj)309 _mesa_unbind_array_object_vbos(struct gl_context *ctx,
310 struct gl_vertex_array_object *obj)
311 {
312 GLuint i;
313
314 for (i = 0; i < ARRAY_SIZE(obj->BufferBinding); i++)
315 _mesa_reference_buffer_object(ctx, &obj->BufferBinding[i].BufferObj, NULL);
316 }
317
318
319 /**
320 * Allocate and initialize a new vertex array object.
321 */
322 struct gl_vertex_array_object *
_mesa_new_vao(struct gl_context * ctx,GLuint name)323 _mesa_new_vao(struct gl_context *ctx, GLuint name)
324 {
325 struct gl_vertex_array_object *obj = MALLOC_STRUCT(gl_vertex_array_object);
326 if (obj)
327 _mesa_initialize_vao(ctx, obj, name);
328 return obj;
329 }
330
331
332 /**
333 * Delete an array object.
334 */
335 void
_mesa_delete_vao(struct gl_context * ctx,struct gl_vertex_array_object * obj)336 _mesa_delete_vao(struct gl_context *ctx, struct gl_vertex_array_object *obj)
337 {
338 _mesa_unbind_array_object_vbos(ctx, obj);
339 _mesa_reference_buffer_object(ctx, &obj->IndexBufferObj, NULL);
340 free(obj->Label);
341 free(obj);
342 }
343
344
345 /**
346 * Set ptr to vao w/ reference counting.
347 * Note: this should only be called from the _mesa_reference_vao()
348 * inline function.
349 */
350 void
_mesa_reference_vao_(struct gl_context * ctx,struct gl_vertex_array_object ** ptr,struct gl_vertex_array_object * vao)351 _mesa_reference_vao_(struct gl_context *ctx,
352 struct gl_vertex_array_object **ptr,
353 struct gl_vertex_array_object *vao)
354 {
355 assert(*ptr != vao);
356
357 if (*ptr) {
358 /* Unreference the old array object */
359 struct gl_vertex_array_object *oldObj = *ptr;
360
361 bool deleteFlag;
362 if (oldObj->SharedAndImmutable) {
363 deleteFlag = p_atomic_dec_zero(&oldObj->RefCount);
364 } else {
365 assert(oldObj->RefCount > 0);
366 oldObj->RefCount--;
367 deleteFlag = (oldObj->RefCount == 0);
368 }
369
370 if (deleteFlag)
371 _mesa_delete_vao(ctx, oldObj);
372
373 *ptr = NULL;
374 }
375 assert(!*ptr);
376
377 if (vao) {
378 /* reference new array object */
379 if (vao->SharedAndImmutable) {
380 p_atomic_inc(&vao->RefCount);
381 } else {
382 assert(vao->RefCount > 0);
383 vao->RefCount++;
384 }
385
386 *ptr = vao;
387 }
388 }
389
390
391 /**
392 * Initialize a gl_vertex_array_object's arrays.
393 */
394 void
_mesa_initialize_vao(struct gl_context * ctx,struct gl_vertex_array_object * vao,GLuint name)395 _mesa_initialize_vao(struct gl_context *ctx,
396 struct gl_vertex_array_object *vao,
397 GLuint name)
398 {
399 memcpy(vao, &ctx->Array.DefaultVAOState, sizeof(*vao));
400 vao->Name = name;
401 }
402
403
404 /**
405 * Compute the offset range for the provided binding.
406 *
407 * This is a helper function for the below.
408 */
409 static void
compute_vbo_offset_range(const struct gl_vertex_array_object * vao,const struct gl_vertex_buffer_binding * binding,GLsizeiptr * min,GLsizeiptr * max)410 compute_vbo_offset_range(const struct gl_vertex_array_object *vao,
411 const struct gl_vertex_buffer_binding *binding,
412 GLsizeiptr* min, GLsizeiptr* max)
413 {
414 /* The function is meant to work on VBO bindings */
415 assert(binding->BufferObj);
416
417 /* Start with an inverted range of relative offsets. */
418 GLuint min_offset = ~(GLuint)0;
419 GLuint max_offset = 0;
420
421 /* We work on the unmapped originaly VAO array entries. */
422 GLbitfield mask = vao->Enabled & binding->_BoundArrays;
423 /* The binding should be active somehow, not to return inverted ranges */
424 assert(mask);
425 while (mask) {
426 const int i = u_bit_scan(&mask);
427 const GLuint off = vao->VertexAttrib[i].RelativeOffset;
428 min_offset = MIN2(off, min_offset);
429 max_offset = MAX2(off, max_offset);
430 }
431
432 *min = binding->Offset + (GLsizeiptr)min_offset;
433 *max = binding->Offset + (GLsizeiptr)max_offset;
434 }
435
436
437 /**
438 * Update the unique binding and pos/generic0 map tracking in the vao.
439 *
440 * The idea is to build up information in the vao so that a consuming
441 * backend can execute the following to set up buffer and vertex element
442 * information:
443 *
444 * const GLbitfield inputs_read = VERT_BIT_ALL; // backend vp inputs
445 *
446 * // Attribute data is in a VBO.
447 * GLbitfield vbomask = inputs_read & _mesa_draw_vbo_array_bits(ctx);
448 * while (vbomask) {
449 * // The attribute index to start pulling a binding
450 * const gl_vert_attrib i = ffs(vbomask) - 1;
451 * const struct gl_vertex_buffer_binding *const binding
452 * = _mesa_draw_buffer_binding(vao, i);
453 *
454 * <insert code to handle the vertex buffer object at binding>
455 *
456 * const GLbitfield boundmask = _mesa_draw_bound_attrib_bits(binding);
457 * GLbitfield attrmask = vbomask & boundmask;
458 * assert(attrmask);
459 * // Walk attributes belonging to the binding
460 * while (attrmask) {
461 * const gl_vert_attrib attr = u_bit_scan(&attrmask);
462 * const struct gl_array_attributes *const attrib
463 * = _mesa_draw_array_attrib(vao, attr);
464 *
465 * <insert code to handle the vertex element refering to the binding>
466 * }
467 * vbomask &= ~boundmask;
468 * }
469 *
470 * // Process user space buffers
471 * GLbitfield usermask = inputs_read & _mesa_draw_user_array_bits(ctx);
472 * while (usermask) {
473 * // The attribute index to start pulling a binding
474 * const gl_vert_attrib i = ffs(usermask) - 1;
475 * const struct gl_vertex_buffer_binding *const binding
476 * = _mesa_draw_buffer_binding(vao, i);
477 *
478 * <insert code to handle a set of interleaved user space arrays at binding>
479 *
480 * const GLbitfield boundmask = _mesa_draw_bound_attrib_bits(binding);
481 * GLbitfield attrmask = usermask & boundmask;
482 * assert(attrmask);
483 * // Walk interleaved attributes with a common stride and instance divisor
484 * while (attrmask) {
485 * const gl_vert_attrib attr = u_bit_scan(&attrmask);
486 * const struct gl_array_attributes *const attrib
487 * = _mesa_draw_array_attrib(vao, attr);
488 *
489 * <insert code to handle non vbo vertex arrays>
490 * }
491 * usermask &= ~boundmask;
492 * }
493 *
494 * // Process values that should have better been uniforms in the application
495 * GLbitfield curmask = inputs_read & _mesa_draw_current_bits(ctx);
496 * while (curmask) {
497 * const gl_vert_attrib attr = u_bit_scan(&curmask);
498 * const struct gl_array_attributes *const attrib
499 * = _mesa_draw_current_attrib(ctx, attr);
500 *
501 * <insert code to handle current values>
502 * }
503 *
504 *
505 * Note that the scan below must not incoporate any context state.
506 * The rationale is that once a VAO is finalized it should not
507 * be touched anymore. That means, do not incorporate the
508 * gl_context::Array._DrawVAOEnabledAttribs bitmask into this scan.
509 * A backend driver may further reduce the handled vertex processing
510 * inputs based on their vertex shader inputs. But scanning for
511 * collapsable binding points to reduce relocs is done based on the
512 * enabled arrays.
513 * Also VAOs may be shared between contexts due to their use in dlists
514 * thus no context state should bleed into the VAO.
515 */
516 void
_mesa_update_vao_derived_arrays(struct gl_context * ctx,struct gl_vertex_array_object * vao,bool display_list)517 _mesa_update_vao_derived_arrays(struct gl_context *ctx,
518 struct gl_vertex_array_object *vao,
519 bool display_list)
520 {
521 assert(display_list || !ctx->Const.UseVAOFastPath);
522 /* Make sure we do not run into problems with shared objects */
523 assert(!vao->SharedAndImmutable);
524
525 /* Limit used for common binding scanning below. */
526 const GLsizeiptr MaxRelativeOffset =
527 ctx->Const.MaxVertexAttribRelativeOffset;
528
529 /* The gl_vertex_array_object::_AttributeMapMode denotes the way
530 * VERT_ATTRIB_{POS,GENERIC0} mapping is done.
531 *
532 * This mapping is used to map between the OpenGL api visible
533 * VERT_ATTRIB_* arrays to mesa driver arrayinputs or shader inputs.
534 * The mapping only depends on the enabled bits of the
535 * VERT_ATTRIB_{POS,GENERIC0} arrays and is tracked in the VAO.
536 *
537 * This map needs to be applied when finally translating to the bitmasks
538 * as consumed by the driver backends. The duplicate scanning is here
539 * can as well be done in the OpenGL API numbering without this map.
540 */
541 const gl_attribute_map_mode mode = vao->_AttributeMapMode;
542 /* Enabled array bits. */
543 const GLbitfield enabled = vao->Enabled;
544 /* VBO array bits. */
545 const GLbitfield vbos = vao->VertexAttribBufferMask;
546
547 /* Walk those enabled arrays that have a real vbo attached */
548 GLbitfield mask = enabled;
549 while (mask) {
550 /* Do not use u_bit_scan as we can walk multiple attrib arrays at once */
551 const int i = ffs(mask) - 1;
552 /* The binding from the first to be processed attribute. */
553 const GLuint bindex = vao->VertexAttrib[i].BufferBindingIndex;
554 struct gl_vertex_buffer_binding *binding = &vao->BufferBinding[bindex];
555
556 /* The scan goes different for user space arrays than vbos */
557 if (binding->BufferObj) {
558 /* The bound arrays. */
559 const GLbitfield bound = enabled & binding->_BoundArrays;
560
561 /* Start this current effective binding with the actual bound arrays */
562 GLbitfield eff_bound_arrays = bound;
563
564 /*
565 * If there is nothing left to scan just update the effective binding
566 * information. If the VAO is already only using a single binding point
567 * we end up here. So the overhead of this scan for an application
568 * carefully preparing the VAO for draw is low.
569 */
570
571 GLbitfield scanmask = mask & vbos & ~bound;
572 /* Is there something left to scan? */
573 if (scanmask == 0) {
574 /* Just update the back reference from the attrib to the binding and
575 * the effective offset.
576 */
577 GLbitfield attrmask = eff_bound_arrays;
578 while (attrmask) {
579 const int j = u_bit_scan(&attrmask);
580 struct gl_array_attributes *attrib2 = &vao->VertexAttrib[j];
581
582 /* Update the index into the common binding point and offset */
583 attrib2->_EffBufferBindingIndex = bindex;
584 attrib2->_EffRelativeOffset = attrib2->RelativeOffset;
585 assert(attrib2->_EffRelativeOffset <= MaxRelativeOffset);
586 }
587 /* Finally this is the set of effectively bound arrays with the
588 * original binding offset.
589 */
590 binding->_EffOffset = binding->Offset;
591 /* The bound arrays past the VERT_ATTRIB_{POS,GENERIC0} mapping. */
592 binding->_EffBoundArrays =
593 _mesa_vao_enable_to_vp_inputs(mode, eff_bound_arrays);
594
595 } else {
596 /* In the VBO case, scan for attribute/binding
597 * combinations with relative bindings in the range of
598 * [0, ctx->Const.MaxVertexAttribRelativeOffset].
599 * Note that this does also go beyond just interleaved arrays
600 * as long as they use the same VBO, binding parameters and the
601 * offsets stay within bounds that the backend still can handle.
602 */
603
604 GLsizeiptr min_offset, max_offset;
605 compute_vbo_offset_range(vao, binding, &min_offset, &max_offset);
606 assert(max_offset <= min_offset + MaxRelativeOffset);
607
608 /* Now scan. */
609 while (scanmask) {
610 /* Do not use u_bit_scan as we can walk multiple
611 * attrib arrays at once
612 */
613 const int j = ffs(scanmask) - 1;
614 const struct gl_array_attributes *attrib2 =
615 &vao->VertexAttrib[j];
616 const struct gl_vertex_buffer_binding *binding2 =
617 &vao->BufferBinding[attrib2->BufferBindingIndex];
618
619 /* Remove those attrib bits from the mask that are bound to the
620 * same effective binding point.
621 */
622 const GLbitfield bound2 = enabled & binding2->_BoundArrays;
623 scanmask &= ~bound2;
624
625 /* Check if we have an identical binding */
626 if (binding->Stride != binding2->Stride)
627 continue;
628 if (binding->InstanceDivisor != binding2->InstanceDivisor)
629 continue;
630 if (binding->BufferObj != binding2->BufferObj)
631 continue;
632 /* Check if we can fold both bindings into a common binding */
633 GLsizeiptr min_offset2, max_offset2;
634 compute_vbo_offset_range(vao, binding2,
635 &min_offset2, &max_offset2);
636 /* If the relative offset is within the limits ... */
637 if (min_offset + MaxRelativeOffset < max_offset2)
638 continue;
639 if (min_offset2 + MaxRelativeOffset < max_offset)
640 continue;
641 /* ... add this array to the effective binding */
642 eff_bound_arrays |= bound2;
643 min_offset = MIN2(min_offset, min_offset2);
644 max_offset = MAX2(max_offset, max_offset2);
645 assert(max_offset <= min_offset + MaxRelativeOffset);
646 }
647
648 /* Update the back reference from the attrib to the binding */
649 GLbitfield attrmask = eff_bound_arrays;
650 while (attrmask) {
651 const int j = u_bit_scan(&attrmask);
652 struct gl_array_attributes *attrib2 = &vao->VertexAttrib[j];
653 const struct gl_vertex_buffer_binding *binding2 =
654 &vao->BufferBinding[attrib2->BufferBindingIndex];
655
656 /* Update the index into the common binding point and offset */
657 attrib2->_EffBufferBindingIndex = bindex;
658 attrib2->_EffRelativeOffset =
659 binding2->Offset + attrib2->RelativeOffset - min_offset;
660 assert(attrib2->_EffRelativeOffset <= MaxRelativeOffset);
661 }
662 /* Finally this is the set of effectively bound arrays */
663 binding->_EffOffset = min_offset;
664 /* The bound arrays past the VERT_ATTRIB_{POS,GENERIC0} mapping. */
665 binding->_EffBoundArrays =
666 _mesa_vao_enable_to_vp_inputs(mode, eff_bound_arrays);
667 }
668
669 /* Mark all the effective bound arrays as processed. */
670 mask &= ~eff_bound_arrays;
671
672 } else {
673 /* Scanning of common bindings for user space arrays.
674 */
675
676 const struct gl_array_attributes *attrib = &vao->VertexAttrib[i];
677 const GLbitfield bound = VERT_BIT(i);
678
679 /* Note that user space array pointers can only happen using a one
680 * to one binding point to array mapping.
681 * The OpenGL 4.x/ARB_vertex_attrib_binding api does not support
682 * user space arrays collected at multiple binding points.
683 * The only provider of user space interleaved arrays with a single
684 * binding point is the mesa internal vbo module. But that one
685 * provides a perfect interleaved set of arrays.
686 *
687 * If this would not be true we would potentially get attribute arrays
688 * with user space pointers that may not lie within the
689 * MaxRelativeOffset range but still attached to a single binding.
690 * Then we would need to store the effective attribute and binding
691 * grouping information in a seperate array beside
692 * gl_array_attributes/gl_vertex_buffer_binding.
693 */
694 assert(util_bitcount(binding->_BoundArrays & vao->Enabled) == 1
695 || (vao->Enabled & ~binding->_BoundArrays) == 0);
696
697 /* Start this current effective binding with the array */
698 GLbitfield eff_bound_arrays = bound;
699
700 const GLubyte *ptr = attrib->Ptr;
701 unsigned vertex_end = attrib->Format._ElementSize;
702
703 /* Walk other user space arrays and see which are interleaved
704 * using the same binding parameters.
705 */
706 GLbitfield scanmask = mask & ~vbos & ~bound;
707 while (scanmask) {
708 const int j = u_bit_scan(&scanmask);
709 const struct gl_array_attributes *attrib2 = &vao->VertexAttrib[j];
710 const struct gl_vertex_buffer_binding *binding2 =
711 &vao->BufferBinding[attrib2->BufferBindingIndex];
712
713 /* See the comment at the same assert above. */
714 assert(util_bitcount(binding2->_BoundArrays & vao->Enabled) == 1
715 || (vao->Enabled & ~binding->_BoundArrays) == 0);
716
717 /* Check if we have an identical binding */
718 if (binding->Stride != binding2->Stride)
719 continue;
720 if (binding->InstanceDivisor != binding2->InstanceDivisor)
721 continue;
722 if (ptr <= attrib2->Ptr) {
723 if (ptr + binding->Stride < attrib2->Ptr +
724 attrib2->Format._ElementSize)
725 continue;
726 unsigned end = attrib2->Ptr + attrib2->Format._ElementSize - ptr;
727 vertex_end = MAX2(vertex_end, end);
728 } else {
729 if (attrib2->Ptr + binding->Stride < ptr + vertex_end)
730 continue;
731 vertex_end += (GLsizei)(ptr - attrib2->Ptr);
732 ptr = attrib2->Ptr;
733 }
734
735 /* User space buffer object */
736 assert(!binding2->BufferObj);
737
738 eff_bound_arrays |= VERT_BIT(j);
739 }
740
741 /* Update the back reference from the attrib to the binding */
742 GLbitfield attrmask = eff_bound_arrays;
743 while (attrmask) {
744 const int j = u_bit_scan(&attrmask);
745 struct gl_array_attributes *attrib2 = &vao->VertexAttrib[j];
746
747 /* Update the index into the common binding point and the offset */
748 attrib2->_EffBufferBindingIndex = bindex;
749 attrib2->_EffRelativeOffset = attrib2->Ptr - ptr;
750 assert(attrib2->_EffRelativeOffset <= binding->Stride);
751 }
752 /* Finally this is the set of effectively bound arrays */
753 binding->_EffOffset = (GLintptr)ptr;
754 /* The bound arrays past the VERT_ATTRIB_{POS,GENERIC0} mapping. */
755 binding->_EffBoundArrays =
756 _mesa_vao_enable_to_vp_inputs(mode, eff_bound_arrays);
757
758 /* Mark all the effective bound arrays as processed. */
759 mask &= ~eff_bound_arrays;
760 }
761 }
762
763 #ifndef NDEBUG
764 /* Make sure the above code works as expected. */
765 for (gl_vert_attrib attr = 0; attr < VERT_ATTRIB_MAX; ++attr) {
766 /* Query the original api defined attrib/binding information ... */
767 const unsigned char *const map =_mesa_vao_attribute_map[mode];
768 if (vao->Enabled & VERT_BIT(map[attr])) {
769 const struct gl_array_attributes *attrib =
770 &vao->VertexAttrib[map[attr]];
771 const struct gl_vertex_buffer_binding *binding =
772 &vao->BufferBinding[attrib->BufferBindingIndex];
773 /* ... and compare that with the computed attrib/binding */
774 const struct gl_vertex_buffer_binding *binding2 =
775 &vao->BufferBinding[attrib->_EffBufferBindingIndex];
776 assert(binding->Stride == binding2->Stride);
777 assert(binding->InstanceDivisor == binding2->InstanceDivisor);
778 assert(binding->BufferObj == binding2->BufferObj);
779 if (binding->BufferObj) {
780 assert(attrib->_EffRelativeOffset <= MaxRelativeOffset);
781 assert(binding->Offset + attrib->RelativeOffset ==
782 binding2->_EffOffset + attrib->_EffRelativeOffset);
783 } else {
784 assert(attrib->_EffRelativeOffset < binding->Stride);
785 assert((GLintptr)attrib->Ptr ==
786 binding2->_EffOffset + attrib->_EffRelativeOffset);
787 }
788 }
789 }
790 #endif
791 }
792
793
794 /**
795 * Map buffer objects used in attribute arrays.
796 */
797 void
_mesa_vao_map_arrays(struct gl_context * ctx,struct gl_vertex_array_object * vao,GLbitfield access)798 _mesa_vao_map_arrays(struct gl_context *ctx, struct gl_vertex_array_object *vao,
799 GLbitfield access)
800 {
801 GLbitfield mask = vao->Enabled & vao->VertexAttribBufferMask;
802 while (mask) {
803 /* Do not use u_bit_scan as we can walk multiple attrib arrays at once */
804 const gl_vert_attrib attr = ffs(mask) - 1;
805 const GLubyte bindex = vao->VertexAttrib[attr].BufferBindingIndex;
806 struct gl_vertex_buffer_binding *binding = &vao->BufferBinding[bindex];
807 mask &= ~binding->_BoundArrays;
808
809 struct gl_buffer_object *bo = binding->BufferObj;
810 assert(bo);
811 if (_mesa_bufferobj_mapped(bo, MAP_INTERNAL))
812 continue;
813
814 _mesa_bufferobj_map_range(ctx, 0, bo->Size, access, bo, MAP_INTERNAL);
815 }
816 }
817
818
819 /**
820 * Map buffer objects used in the vao, attribute arrays and index buffer.
821 */
822 void
_mesa_vao_map(struct gl_context * ctx,struct gl_vertex_array_object * vao,GLbitfield access)823 _mesa_vao_map(struct gl_context *ctx, struct gl_vertex_array_object *vao,
824 GLbitfield access)
825 {
826 struct gl_buffer_object *bo = vao->IndexBufferObj;
827
828 /* map the index buffer, if there is one, and not already mapped */
829 if (bo && !_mesa_bufferobj_mapped(bo, MAP_INTERNAL))
830 _mesa_bufferobj_map_range(ctx, 0, bo->Size, access, bo, MAP_INTERNAL);
831
832 _mesa_vao_map_arrays(ctx, vao, access);
833 }
834
835
836 /**
837 * Unmap buffer objects used in attribute arrays.
838 */
839 void
_mesa_vao_unmap_arrays(struct gl_context * ctx,struct gl_vertex_array_object * vao)840 _mesa_vao_unmap_arrays(struct gl_context *ctx,
841 struct gl_vertex_array_object *vao)
842 {
843 GLbitfield mask = vao->Enabled & vao->VertexAttribBufferMask;
844 while (mask) {
845 /* Do not use u_bit_scan as we can walk multiple attrib arrays at once */
846 const gl_vert_attrib attr = ffs(mask) - 1;
847 const GLubyte bindex = vao->VertexAttrib[attr].BufferBindingIndex;
848 struct gl_vertex_buffer_binding *binding = &vao->BufferBinding[bindex];
849 mask &= ~binding->_BoundArrays;
850
851 struct gl_buffer_object *bo = binding->BufferObj;
852 assert(bo);
853 if (!_mesa_bufferobj_mapped(bo, MAP_INTERNAL))
854 continue;
855
856 _mesa_bufferobj_unmap(ctx, bo, MAP_INTERNAL);
857 }
858 }
859
860
861 /**
862 * Unmap buffer objects used in the vao, attribute arrays and index buffer.
863 */
864 void
_mesa_vao_unmap(struct gl_context * ctx,struct gl_vertex_array_object * vao)865 _mesa_vao_unmap(struct gl_context *ctx, struct gl_vertex_array_object *vao)
866 {
867 struct gl_buffer_object *bo = vao->IndexBufferObj;
868
869 /* unmap the index buffer, if there is one, and still mapped */
870 if (bo && _mesa_bufferobj_mapped(bo, MAP_INTERNAL))
871 _mesa_bufferobj_unmap(ctx, bo, MAP_INTERNAL);
872
873 _mesa_vao_unmap_arrays(ctx, vao);
874 }
875
876
877 /**********************************************************************/
878 /* API Functions */
879 /**********************************************************************/
880
881
882 /**
883 * ARB version of glBindVertexArray()
884 */
885 static ALWAYS_INLINE void
bind_vertex_array(struct gl_context * ctx,GLuint id,bool no_error)886 bind_vertex_array(struct gl_context *ctx, GLuint id, bool no_error)
887 {
888 struct gl_vertex_array_object *const oldObj = ctx->Array.VAO;
889 struct gl_vertex_array_object *newObj = NULL;
890
891 assert(oldObj != NULL);
892
893 if (oldObj->Name == id)
894 return; /* rebinding the same array object- no change */
895
896 /*
897 * Get pointer to new array object (newObj)
898 */
899 if (id == 0) {
900 /* The spec says there is no array object named 0, but we use
901 * one internally because it simplifies things.
902 */
903 newObj = ctx->Array.DefaultVAO;
904 }
905 else {
906 /* non-default array object */
907 newObj = _mesa_lookup_vao(ctx, id);
908 if (!no_error && !newObj) {
909 _mesa_error(ctx, GL_INVALID_OPERATION,
910 "glBindVertexArray(non-gen name)");
911 return;
912 }
913
914 newObj->EverBound = GL_TRUE;
915 }
916
917 _mesa_reference_vao(ctx, &ctx->Array.VAO, newObj);
918 _mesa_set_draw_vao(ctx, newObj);
919
920 /* Update the valid-to-render state if binding on unbinding default VAO
921 * if drawing with the default VAO is invalid.
922 */
923 if (_mesa_is_desktop_gl_core(ctx) &&
924 (oldObj == ctx->Array.DefaultVAO) != (newObj == ctx->Array.DefaultVAO))
925 _mesa_update_valid_to_render_state(ctx);
926 }
927
928
929 void GLAPIENTRY
_mesa_BindVertexArray_no_error(GLuint id)930 _mesa_BindVertexArray_no_error(GLuint id)
931 {
932 GET_CURRENT_CONTEXT(ctx);
933 bind_vertex_array(ctx, id, true);
934 }
935
936
937 void GLAPIENTRY
_mesa_BindVertexArray(GLuint id)938 _mesa_BindVertexArray(GLuint id)
939 {
940 GET_CURRENT_CONTEXT(ctx);
941 bind_vertex_array(ctx, id, false);
942 }
943
944
945 /**
946 * Delete a set of array objects.
947 *
948 * \param n Number of array objects to delete.
949 * \param ids Array of \c n array object IDs.
950 */
951 static void
delete_vertex_arrays(struct gl_context * ctx,GLsizei n,const GLuint * ids)952 delete_vertex_arrays(struct gl_context *ctx, GLsizei n, const GLuint *ids)
953 {
954 GLsizei i;
955
956 for (i = 0; i < n; i++) {
957 /* IDs equal to 0 should be silently ignored. */
958 if (!ids[i])
959 continue;
960
961 struct gl_vertex_array_object *obj = _mesa_lookup_vao(ctx, ids[i]);
962
963 if (obj) {
964 assert(obj->Name == ids[i]);
965
966 /* If the array object is currently bound, the spec says "the binding
967 * for that object reverts to zero and the default vertex array
968 * becomes current."
969 */
970 if (obj == ctx->Array.VAO)
971 _mesa_BindVertexArray_no_error(0);
972
973 /* The ID is immediately freed for re-use */
974 _mesa_HashRemoveLocked(&ctx->Array.Objects, obj->Name);
975
976 if (ctx->Array.LastLookedUpVAO == obj)
977 _mesa_reference_vao(ctx, &ctx->Array.LastLookedUpVAO, NULL);
978
979 /* Unreference the array object.
980 * If refcount hits zero, the object will be deleted.
981 */
982 _mesa_reference_vao(ctx, &obj, NULL);
983 }
984 }
985 }
986
987
988 void GLAPIENTRY
_mesa_DeleteVertexArrays_no_error(GLsizei n,const GLuint * ids)989 _mesa_DeleteVertexArrays_no_error(GLsizei n, const GLuint *ids)
990 {
991 GET_CURRENT_CONTEXT(ctx);
992 delete_vertex_arrays(ctx, n, ids);
993 }
994
995
996 void GLAPIENTRY
_mesa_DeleteVertexArrays(GLsizei n,const GLuint * ids)997 _mesa_DeleteVertexArrays(GLsizei n, const GLuint *ids)
998 {
999 GET_CURRENT_CONTEXT(ctx);
1000
1001 if (n < 0) {
1002 _mesa_error(ctx, GL_INVALID_VALUE, "glDeleteVertexArray(n)");
1003 return;
1004 }
1005
1006 delete_vertex_arrays(ctx, n, ids);
1007 }
1008
1009
1010 /**
1011 * Generate a set of unique array object IDs and store them in \c arrays.
1012 * Helper for _mesa_GenVertexArrays() and _mesa_CreateVertexArrays()
1013 * below.
1014 *
1015 * \param n Number of IDs to generate.
1016 * \param arrays Array of \c n locations to store the IDs.
1017 * \param create Indicates that the objects should also be created.
1018 * \param func The name of the GL entry point.
1019 */
1020 static void
gen_vertex_arrays(struct gl_context * ctx,GLsizei n,GLuint * arrays,bool create,const char * func)1021 gen_vertex_arrays(struct gl_context *ctx, GLsizei n, GLuint *arrays,
1022 bool create, const char *func)
1023 {
1024 GLint i;
1025
1026 if (!arrays)
1027 return;
1028
1029 _mesa_HashFindFreeKeys(&ctx->Array.Objects, arrays, n);
1030
1031 /* For the sake of simplicity we create the array objects in both
1032 * the Gen* and Create* cases. The only difference is the value of
1033 * EverBound, which is set to true in the Create* case.
1034 */
1035 for (i = 0; i < n; i++) {
1036 struct gl_vertex_array_object *obj;
1037
1038 obj = _mesa_new_vao(ctx, arrays[i]);
1039 if (!obj) {
1040 _mesa_error(ctx, GL_OUT_OF_MEMORY, "%s", func);
1041 return;
1042 }
1043 obj->EverBound = create;
1044 _mesa_HashInsertLocked(&ctx->Array.Objects, obj->Name, obj);
1045 }
1046 }
1047
1048
1049 static void
gen_vertex_arrays_err(struct gl_context * ctx,GLsizei n,GLuint * arrays,bool create,const char * func)1050 gen_vertex_arrays_err(struct gl_context *ctx, GLsizei n, GLuint *arrays,
1051 bool create, const char *func)
1052 {
1053 if (n < 0) {
1054 _mesa_error(ctx, GL_INVALID_VALUE, "%s(n < 0)", func);
1055 return;
1056 }
1057
1058 gen_vertex_arrays(ctx, n, arrays, create, func);
1059 }
1060
1061
1062 /**
1063 * ARB version of glGenVertexArrays()
1064 * All arrays will be required to live in VBOs.
1065 */
1066 void GLAPIENTRY
_mesa_GenVertexArrays_no_error(GLsizei n,GLuint * arrays)1067 _mesa_GenVertexArrays_no_error(GLsizei n, GLuint *arrays)
1068 {
1069 GET_CURRENT_CONTEXT(ctx);
1070 gen_vertex_arrays(ctx, n, arrays, false, "glGenVertexArrays");
1071 }
1072
1073
1074 void GLAPIENTRY
_mesa_GenVertexArrays(GLsizei n,GLuint * arrays)1075 _mesa_GenVertexArrays(GLsizei n, GLuint *arrays)
1076 {
1077 GET_CURRENT_CONTEXT(ctx);
1078 gen_vertex_arrays_err(ctx, n, arrays, false, "glGenVertexArrays");
1079 }
1080
1081
1082 /**
1083 * ARB_direct_state_access
1084 * Generates ID's and creates the array objects.
1085 */
1086 void GLAPIENTRY
_mesa_CreateVertexArrays_no_error(GLsizei n,GLuint * arrays)1087 _mesa_CreateVertexArrays_no_error(GLsizei n, GLuint *arrays)
1088 {
1089 GET_CURRENT_CONTEXT(ctx);
1090 gen_vertex_arrays(ctx, n, arrays, true, "glCreateVertexArrays");
1091 }
1092
1093
1094 void GLAPIENTRY
_mesa_CreateVertexArrays(GLsizei n,GLuint * arrays)1095 _mesa_CreateVertexArrays(GLsizei n, GLuint *arrays)
1096 {
1097 GET_CURRENT_CONTEXT(ctx);
1098 gen_vertex_arrays_err(ctx, n, arrays, true, "glCreateVertexArrays");
1099 }
1100
1101
1102 /**
1103 * Determine if ID is the name of an array object.
1104 *
1105 * \param id ID of the potential array object.
1106 * \return \c GL_TRUE if \c id is the name of a array object,
1107 * \c GL_FALSE otherwise.
1108 */
1109 GLboolean GLAPIENTRY
_mesa_IsVertexArray(GLuint id)1110 _mesa_IsVertexArray( GLuint id )
1111 {
1112 struct gl_vertex_array_object * obj;
1113 GET_CURRENT_CONTEXT(ctx);
1114 ASSERT_OUTSIDE_BEGIN_END_WITH_RETVAL(ctx, GL_FALSE);
1115
1116 obj = _mesa_lookup_vao(ctx, id);
1117
1118 return obj != NULL && obj->EverBound;
1119 }
1120
1121
1122 /**
1123 * Sets the element array buffer binding of a vertex array object.
1124 *
1125 * This is the ARB_direct_state_access equivalent of
1126 * glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, buffer).
1127 */
1128 static ALWAYS_INLINE void
vertex_array_element_buffer(struct gl_context * ctx,GLuint vaobj,GLuint buffer,bool no_error)1129 vertex_array_element_buffer(struct gl_context *ctx, GLuint vaobj, GLuint buffer,
1130 bool no_error)
1131 {
1132 struct gl_vertex_array_object *vao;
1133 struct gl_buffer_object *bufObj;
1134
1135 ASSERT_OUTSIDE_BEGIN_END(ctx);
1136
1137 if (!no_error) {
1138 /* The GL_ARB_direct_state_access specification says:
1139 *
1140 * "An INVALID_OPERATION error is generated by
1141 * VertexArrayElementBuffer if <vaobj> is not [compatibility profile:
1142 * zero or] the name of an existing vertex array object."
1143 */
1144 vao =_mesa_lookup_vao_err(ctx, vaobj, false, "glVertexArrayElementBuffer");
1145 if (!vao)
1146 return;
1147 } else {
1148 vao = _mesa_lookup_vao(ctx, vaobj);
1149 }
1150
1151 if (buffer != 0) {
1152 if (!no_error) {
1153 /* The GL_ARB_direct_state_access specification says:
1154 *
1155 * "An INVALID_OPERATION error is generated if <buffer> is not zero
1156 * or the name of an existing buffer object."
1157 */
1158 bufObj = _mesa_lookup_bufferobj_err(ctx, buffer,
1159 "glVertexArrayElementBuffer");
1160 } else {
1161 bufObj = _mesa_lookup_bufferobj(ctx, buffer);
1162 }
1163
1164 if (!bufObj)
1165 return;
1166 } else {
1167 bufObj = NULL;
1168 }
1169
1170 _mesa_reference_buffer_object(ctx, &vao->IndexBufferObj, bufObj);
1171 }
1172
1173
1174 void GLAPIENTRY
_mesa_VertexArrayElementBuffer_no_error(GLuint vaobj,GLuint buffer)1175 _mesa_VertexArrayElementBuffer_no_error(GLuint vaobj, GLuint buffer)
1176 {
1177 GET_CURRENT_CONTEXT(ctx);
1178 vertex_array_element_buffer(ctx, vaobj, buffer, true);
1179 }
1180
1181
1182 void GLAPIENTRY
_mesa_VertexArrayElementBuffer(GLuint vaobj,GLuint buffer)1183 _mesa_VertexArrayElementBuffer(GLuint vaobj, GLuint buffer)
1184 {
1185 GET_CURRENT_CONTEXT(ctx);
1186 vertex_array_element_buffer(ctx, vaobj, buffer, false);
1187 }
1188
1189
1190 void GLAPIENTRY
_mesa_GetVertexArrayiv(GLuint vaobj,GLenum pname,GLint * param)1191 _mesa_GetVertexArrayiv(GLuint vaobj, GLenum pname, GLint *param)
1192 {
1193 GET_CURRENT_CONTEXT(ctx);
1194 struct gl_vertex_array_object *vao;
1195
1196 ASSERT_OUTSIDE_BEGIN_END(ctx);
1197
1198 /* The GL_ARB_direct_state_access specification says:
1199 *
1200 * "An INVALID_OPERATION error is generated if <vaobj> is not
1201 * [compatibility profile: zero or] the name of an existing
1202 * vertex array object."
1203 */
1204 vao = _mesa_lookup_vao_err(ctx, vaobj, false, "glGetVertexArrayiv");
1205 if (!vao)
1206 return;
1207
1208 /* The GL_ARB_direct_state_access specification says:
1209 *
1210 * "An INVALID_ENUM error is generated if <pname> is not
1211 * ELEMENT_ARRAY_BUFFER_BINDING."
1212 */
1213 if (pname != GL_ELEMENT_ARRAY_BUFFER_BINDING) {
1214 _mesa_error(ctx, GL_INVALID_ENUM,
1215 "glGetVertexArrayiv(pname != "
1216 "GL_ELEMENT_ARRAY_BUFFER_BINDING)");
1217 return;
1218 }
1219
1220 param[0] = vao->IndexBufferObj ? vao->IndexBufferObj->Name : 0;
1221 }
1222