1 /*
2 * Copyright 2011 Christoph Bumiller
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 */
22
23 #include "nv50_ir.h"
24 #include "nv50_ir_build_util.h"
25
26 #include "nv50_ir_target_nvc0.h"
27 #include "nv50_ir_lowering_nvc0.h"
28
29 #include <limits>
30
31 namespace nv50_ir {
32
33 #define QOP_ADD 0
34 #define QOP_SUBR 1
35 #define QOP_SUB 2
36 #define QOP_MOV2 3
37
38 // UL UR LL LR
39 #define QUADOP(q, r, s, t) \
40 ((QOP_##q << 6) | (QOP_##r << 4) | \
41 (QOP_##s << 2) | (QOP_##t << 0))
42
43 void
handleDIV(Instruction * i)44 NVC0LegalizeSSA::handleDIV(Instruction *i)
45 {
46 FlowInstruction *call;
47 int builtin;
48
49 bld.setPosition(i, false);
50
51 // Generate movs to the input regs for the call we want to generate
52 for (int s = 0; i->srcExists(s); ++s) {
53 Instruction *ld = i->getSrc(s)->getInsn();
54 // check if we are moving an immediate, propagate it in that case
55 if (!ld || ld->fixed || (ld->op != OP_LOAD && ld->op != OP_MOV) ||
56 !(ld->src(0).getFile() == FILE_IMMEDIATE))
57 bld.mkMovToReg(s, i->getSrc(s));
58 else {
59 assert(ld->getSrc(0) != NULL);
60 bld.mkMovToReg(s, ld->getSrc(0));
61 // Clear the src, to make code elimination possible here before we
62 // delete the instruction i later
63 i->setSrc(s, NULL);
64 if (ld->isDead())
65 delete_Instruction(prog, ld);
66 }
67 }
68
69 switch (i->dType) {
70 case TYPE_U32: builtin = NVC0_BUILTIN_DIV_U32; break;
71 case TYPE_S32: builtin = NVC0_BUILTIN_DIV_S32; break;
72 default:
73 return;
74 }
75 call = bld.mkFlow(OP_CALL, NULL, CC_ALWAYS, NULL);
76 bld.mkMovFromReg(i->getDef(0), i->op == OP_DIV ? 0 : 1);
77 bld.mkClobber(FILE_GPR, (i->op == OP_DIV) ? 0xe : 0xd, 2);
78 bld.mkClobber(FILE_PREDICATE, (i->dType == TYPE_S32) ? 0xf : 0x3, 0);
79
80 call->fixed = 1;
81 call->absolute = call->builtin = 1;
82 call->target.builtin = builtin;
83 delete_Instruction(prog, i);
84 }
85
86 void
handleRCPRSQLib(Instruction * i,Value * src[])87 NVC0LegalizeSSA::handleRCPRSQLib(Instruction *i, Value *src[])
88 {
89 FlowInstruction *call;
90 Value *def[2];
91 int builtin;
92
93 def[0] = bld.mkMovToReg(0, src[0])->getDef(0);
94 def[1] = bld.mkMovToReg(1, src[1])->getDef(0);
95
96 if (i->op == OP_RCP)
97 builtin = NVC0_BUILTIN_RCP_F64;
98 else
99 builtin = NVC0_BUILTIN_RSQ_F64;
100
101 call = bld.mkFlow(OP_CALL, NULL, CC_ALWAYS, NULL);
102 def[0] = bld.getSSA();
103 def[1] = bld.getSSA();
104 bld.mkMovFromReg(def[0], 0);
105 bld.mkMovFromReg(def[1], 1);
106 bld.mkClobber(FILE_GPR, 0x3fc, 2);
107 bld.mkClobber(FILE_PREDICATE, i->op == OP_RSQ ? 0x3 : 0x1, 0);
108 bld.mkOp2(OP_MERGE, TYPE_U64, i->getDef(0), def[0], def[1]);
109
110 call->fixed = 1;
111 call->absolute = call->builtin = 1;
112 call->target.builtin = builtin;
113 delete_Instruction(prog, i);
114
115 prog->fp64 = true;
116 }
117
118 void
handleRCPRSQ(Instruction * i)119 NVC0LegalizeSSA::handleRCPRSQ(Instruction *i)
120 {
121 assert(i->dType == TYPE_F64);
122 // There are instructions that will compute the high 32 bits of the 64-bit
123 // float. We will just stick 0 in the bottom 32 bits.
124
125 bld.setPosition(i, false);
126
127 // 1. Take the source and it up.
128 Value *src[2], *dst[2], *def = i->getDef(0);
129 bld.mkSplit(src, 4, i->getSrc(0));
130
131 int chip = prog->getTarget()->getChipset();
132 if (chip >= NVISA_GK104_CHIPSET) {
133 handleRCPRSQLib(i, src);
134 return;
135 }
136
137 // 2. We don't care about the low 32 bits of the destination. Stick a 0 in.
138 dst[0] = bld.loadImm(NULL, 0);
139 dst[1] = bld.getSSA();
140
141 // 3. The new version of the instruction takes the high 32 bits of the
142 // source and outputs the high 32 bits of the destination.
143 i->setSrc(0, src[1]);
144 i->setDef(0, dst[1]);
145 i->setType(TYPE_F32);
146 i->subOp = NV50_IR_SUBOP_RCPRSQ_64H;
147
148 // 4. Recombine the two dst pieces back into the original destination.
149 bld.setPosition(i, true);
150 bld.mkOp2(OP_MERGE, TYPE_U64, def, dst[0], dst[1]);
151 }
152
153 void
handleFTZ(Instruction * i)154 NVC0LegalizeSSA::handleFTZ(Instruction *i)
155 {
156 // Only want to flush float inputs
157 assert(i->sType == TYPE_F32);
158
159 // If we're already flushing denorms (and NaN's) to zero, no need for this.
160 if (i->dnz)
161 return;
162
163 // Only certain classes of operations can flush
164 OpClass cls = prog->getTarget()->getOpClass(i->op);
165 if (cls != OPCLASS_ARITH && cls != OPCLASS_COMPARE &&
166 cls != OPCLASS_CONVERT)
167 return;
168
169 i->ftz = true;
170 }
171
172 void
handleTEXLOD(TexInstruction * i)173 NVC0LegalizeSSA::handleTEXLOD(TexInstruction *i)
174 {
175 if (i->tex.levelZero)
176 return;
177
178 ImmediateValue lod;
179
180 // The LOD argument comes right after the coordinates (before depth bias,
181 // offsets, etc).
182 int arg = i->tex.target.getArgCount();
183
184 // SM30+ stores the indirect handle as a separate arg, which comes before
185 // the LOD.
186 if (prog->getTarget()->getChipset() >= NVISA_GK104_CHIPSET &&
187 i->tex.rIndirectSrc >= 0)
188 arg++;
189 // SM20 stores indirect handle combined with array coordinate
190 if (prog->getTarget()->getChipset() < NVISA_GK104_CHIPSET &&
191 !i->tex.target.isArray() &&
192 i->tex.rIndirectSrc >= 0)
193 arg++;
194
195 if (!i->src(arg).getImmediate(lod) || !lod.isInteger(0))
196 return;
197
198 if (i->op == OP_TXL)
199 i->op = OP_TEX;
200 i->tex.levelZero = true;
201 i->moveSources(arg + 1, -1);
202 }
203
204 void
handleShift(Instruction * lo)205 NVC0LegalizeSSA::handleShift(Instruction *lo)
206 {
207 Value *shift = lo->getSrc(1);
208 Value *dst64 = lo->getDef(0);
209 Value *src[2], *dst[2];
210 operation op = lo->op;
211
212 bld.setPosition(lo, false);
213
214 bld.mkSplit(src, 4, lo->getSrc(0));
215
216 // SM30 and prior don't have the fancy new SHF.L/R ops. So the logic has to
217 // be completely emulated. For SM35+, we can use the more directed SHF
218 // operations.
219 if (prog->getTarget()->getChipset() < NVISA_GK20A_CHIPSET) {
220 // The strategy here is to handle shifts >= 32 and less than 32 as
221 // separate parts.
222 //
223 // For SHL:
224 // If the shift is <= 32, then
225 // (HI,LO) << x = (HI << x | (LO >> (32 - x)), LO << x)
226 // If the shift is > 32, then
227 // (HI,LO) << x = (LO << (x - 32), 0)
228 //
229 // For SHR:
230 // If the shift is <= 32, then
231 // (HI,LO) >> x = (HI >> x, (HI << (32 - x)) | LO >> x)
232 // If the shift is > 32, then
233 // (HI,LO) >> x = (0, HI >> (x - 32))
234 //
235 // Note that on NVIDIA hardware, a shift > 32 yields a 0 value, which we
236 // can use to our advantage. Also note the structural similarities
237 // between the right/left cases. The main difference is swapping hi/lo
238 // on input and output.
239
240 Value *x32_minus_shift, *pred, *hi1, *hi2;
241 DataType type = isSignedIntType(lo->dType) ? TYPE_S32 : TYPE_U32;
242 operation antiop = op == OP_SHR ? OP_SHL : OP_SHR;
243 if (op == OP_SHR)
244 std::swap(src[0], src[1]);
245 bld.mkOp2(OP_ADD, TYPE_U32, (x32_minus_shift = bld.getSSA()), shift, bld.mkImm(0x20))
246 ->src(0).mod = Modifier(NV50_IR_MOD_NEG);
247 bld.mkCmp(OP_SET, CC_LE, TYPE_U8, (pred = bld.getSSA(1, FILE_PREDICATE)),
248 TYPE_U32, shift, bld.mkImm(32));
249 // Compute HI (shift <= 32)
250 bld.mkOp2(OP_OR, TYPE_U32, (hi1 = bld.getSSA()),
251 bld.mkOp2v(op, TYPE_U32, bld.getSSA(), src[1], shift),
252 bld.mkOp2v(antiop, TYPE_U32, bld.getSSA(), src[0], x32_minus_shift))
253 ->setPredicate(CC_P, pred);
254 // Compute LO (all shift values)
255 bld.mkOp2(op, type, (dst[0] = bld.getSSA()), src[0], shift);
256 // Compute HI (shift > 32)
257 bld.mkOp2(op, type, (hi2 = bld.getSSA()), src[0],
258 bld.mkOp1v(OP_NEG, TYPE_S32, bld.getSSA(), x32_minus_shift))
259 ->setPredicate(CC_NOT_P, pred);
260 bld.mkOp2(OP_UNION, TYPE_U32, (dst[1] = bld.getSSA()), hi1, hi2);
261 if (op == OP_SHR)
262 std::swap(dst[0], dst[1]);
263 bld.mkOp2(OP_MERGE, TYPE_U64, dst64, dst[0], dst[1]);
264 delete_Instruction(prog, lo);
265 return;
266 }
267
268 Instruction *hi = new_Instruction(func, op, TYPE_U32);
269 lo->bb->insertAfter(lo, hi);
270
271 hi->sType = lo->sType;
272 lo->dType = TYPE_U32;
273
274 hi->setDef(0, (dst[1] = bld.getSSA()));
275 if (lo->op == OP_SHR)
276 hi->subOp |= NV50_IR_SUBOP_SHIFT_HIGH;
277 lo->setDef(0, (dst[0] = bld.getSSA()));
278
279 bld.setPosition(hi, true);
280
281 if (lo->op == OP_SHL)
282 std::swap(hi, lo);
283
284 hi->setSrc(0, new_ImmediateValue(prog, 0u));
285 hi->setSrc(1, shift);
286 hi->setSrc(2, lo->op == OP_SHL ? src[0] : src[1]);
287
288 lo->setSrc(0, src[0]);
289 lo->setSrc(1, shift);
290 lo->setSrc(2, src[1]);
291
292 bld.mkOp2(OP_MERGE, TYPE_U64, dst64, dst[0], dst[1]);
293 }
294
295 void
handleSET(CmpInstruction * cmp)296 NVC0LegalizeSSA::handleSET(CmpInstruction *cmp)
297 {
298 DataType hTy = cmp->sType == TYPE_S64 ? TYPE_S32 : TYPE_U32;
299 Value *carry;
300 Value *src0[2], *src1[2];
301 bld.setPosition(cmp, false);
302
303 bld.mkSplit(src0, 4, cmp->getSrc(0));
304 bld.mkSplit(src1, 4, cmp->getSrc(1));
305 bld.mkOp2(OP_SUB, hTy, NULL, src0[0], src1[0])
306 ->setFlagsDef(0, (carry = bld.getSSA(1, FILE_FLAGS)));
307 cmp->setFlagsSrc(cmp->srcCount(), carry);
308 cmp->setSrc(0, src0[1]);
309 cmp->setSrc(1, src1[1]);
310 cmp->sType = hTy;
311 }
312
313 void
handleBREV(Instruction * i)314 NVC0LegalizeSSA::handleBREV(Instruction *i)
315 {
316 i->op = OP_EXTBF;
317 i->subOp = NV50_IR_SUBOP_EXTBF_REV;
318 i->setSrc(1, bld.mkImm(0x2000));
319 }
320
321 bool
visit(Function * fn)322 NVC0LegalizeSSA::visit(Function *fn)
323 {
324 bld.setProgram(fn->getProgram());
325 return true;
326 }
327
328 bool
visit(BasicBlock * bb)329 NVC0LegalizeSSA::visit(BasicBlock *bb)
330 {
331 Instruction *next;
332 for (Instruction *i = bb->getEntry(); i; i = next) {
333 next = i->next;
334
335 if (i->sType == TYPE_F32 && prog->getType() != Program::TYPE_COMPUTE)
336 handleFTZ(i);
337
338 switch (i->op) {
339 case OP_DIV:
340 case OP_MOD:
341 if (i->sType != TYPE_F32)
342 handleDIV(i);
343 break;
344 case OP_RCP:
345 case OP_RSQ:
346 if (i->dType == TYPE_F64)
347 handleRCPRSQ(i);
348 break;
349 case OP_TXL:
350 case OP_TXF:
351 handleTEXLOD(i->asTex());
352 break;
353 case OP_SHR:
354 case OP_SHL:
355 if (typeSizeof(i->sType) == 8)
356 handleShift(i);
357 break;
358 case OP_SET:
359 case OP_SET_AND:
360 case OP_SET_OR:
361 case OP_SET_XOR:
362 if (typeSizeof(i->sType) == 8 && i->sType != TYPE_F64)
363 handleSET(i->asCmp());
364 break;
365 case OP_BREV:
366 handleBREV(i);
367 break;
368 default:
369 break;
370 }
371 }
372 return true;
373 }
374
NVC0LegalizePostRA(const Program * prog)375 NVC0LegalizePostRA::NVC0LegalizePostRA(const Program *prog)
376 : rZero(NULL),
377 carry(NULL),
378 pOne(NULL),
379 needTexBar(prog->getTarget()->getChipset() >= 0xe0 &&
380 prog->getTarget()->getChipset() < 0x110)
381 {
382 }
383
384 bool
insnDominatedBy(const Instruction * later,const Instruction * early) const385 NVC0LegalizePostRA::insnDominatedBy(const Instruction *later,
386 const Instruction *early) const
387 {
388 if (early->bb == later->bb)
389 return early->serial < later->serial;
390 return later->bb->dominatedBy(early->bb);
391 }
392
393 void
addTexUse(std::list<TexUse> & uses,Instruction * usei,const Instruction * texi)394 NVC0LegalizePostRA::addTexUse(std::list<TexUse> &uses,
395 Instruction *usei, const Instruction *texi)
396 {
397 bool add = true;
398 bool dominated = insnDominatedBy(usei, texi);
399 // Uses before the tex have to all be included. Just because an earlier
400 // instruction dominates another instruction doesn't mean that there's no
401 // way to get from the tex to the later instruction. For example you could
402 // have nested loops, with the tex in the inner loop, and uses before it in
403 // both loops - even though the outer loop's instruction would dominate the
404 // inner's, we still want a texbar before the inner loop's instruction.
405 //
406 // However we can still use the eliding logic between uses dominated by the
407 // tex instruction, as that is unambiguously correct.
408 if (dominated) {
409 for (std::list<TexUse>::iterator it = uses.begin(); it != uses.end();) {
410 if (it->after) {
411 if (insnDominatedBy(usei, it->insn)) {
412 add = false;
413 break;
414 }
415 if (insnDominatedBy(it->insn, usei)) {
416 it = uses.erase(it);
417 continue;
418 }
419 }
420 ++it;
421 }
422 }
423 if (add)
424 uses.push_back(TexUse(usei, texi, dominated));
425 }
426
427 // While it might be tempting to use the an algorithm that just looks at tex
428 // uses, not all texture results are guaranteed to be used on all paths. In
429 // the case where along some control flow path a texture result is never used,
430 // we might reuse that register for something else, creating a
431 // write-after-write hazard. So we have to manually look through all
432 // instructions looking for ones that reference the registers in question.
433 void
findFirstUses(Instruction * texi,std::list<TexUse> & uses)434 NVC0LegalizePostRA::findFirstUses(
435 Instruction *texi, std::list<TexUse> &uses)
436 {
437 int minGPR = texi->def(0).rep()->reg.data.id;
438 int maxGPR = minGPR + texi->def(0).rep()->reg.size / 4 - 1;
439
440 std::unordered_set<const BasicBlock *> visited;
441 findFirstUsesBB(minGPR, maxGPR, texi->next, texi, uses, visited);
442 }
443
444 void
findFirstUsesBB(int minGPR,int maxGPR,Instruction * start,const Instruction * texi,std::list<TexUse> & uses,std::unordered_set<const BasicBlock * > & visited)445 NVC0LegalizePostRA::findFirstUsesBB(
446 int minGPR, int maxGPR, Instruction *start,
447 const Instruction *texi, std::list<TexUse> &uses,
448 std::unordered_set<const BasicBlock *> &visited)
449 {
450 const BasicBlock *bb = start->bb;
451
452 // We don't process the whole bb the first time around. This is correct,
453 // however we might be in a loop and hit this BB again, and need to process
454 // the full thing. So only mark a bb as visited if we processed it from the
455 // beginning.
456 if (start == bb->getEntry()) {
457 if (visited.find(bb) != visited.end())
458 return;
459 visited.insert(bb);
460 }
461
462 for (Instruction *insn = start; insn != bb->getExit(); insn = insn->next) {
463 if (insn->isNop())
464 continue;
465
466 for (int d = 0; insn->defExists(d); ++d) {
467 const Value *def = insn->def(d).rep();
468 if (insn->def(d).getFile() != FILE_GPR ||
469 def->reg.data.id + def->reg.size / 4 - 1 < minGPR ||
470 def->reg.data.id > maxGPR)
471 continue;
472 addTexUse(uses, insn, texi);
473 return;
474 }
475
476 for (int s = 0; insn->srcExists(s); ++s) {
477 const Value *src = insn->src(s).rep();
478 if (insn->src(s).getFile() != FILE_GPR ||
479 src->reg.data.id + src->reg.size / 4 - 1 < minGPR ||
480 src->reg.data.id > maxGPR)
481 continue;
482 addTexUse(uses, insn, texi);
483 return;
484 }
485 }
486
487 for (Graph::EdgeIterator ei = bb->cfg.outgoing(); !ei.end(); ei.next()) {
488 findFirstUsesBB(minGPR, maxGPR, BasicBlock::get(ei.getNode())->getEntry(),
489 texi, uses, visited);
490 }
491 }
492
493 // Texture barriers:
494 // This pass is a bit long and ugly and can probably be optimized.
495 //
496 // 1. obtain a list of TEXes and their outputs' first use(s)
497 // 2. calculate the barrier level of each first use (minimal number of TEXes,
498 // over all paths, between the TEX and the use in question)
499 // 3. for each barrier, if all paths from the source TEX to that barrier
500 // contain a barrier of lesser level, it can be culled
501 bool
insertTextureBarriers(Function * fn)502 NVC0LegalizePostRA::insertTextureBarriers(Function *fn)
503 {
504 std::list<TexUse> *uses;
505 std::vector<Instruction *> texes;
506 std::vector<int> bbFirstTex;
507 std::vector<int> bbFirstUse;
508 std::vector<int> texCounts;
509 std::vector<TexUse> useVec;
510 ArrayList insns;
511
512 fn->orderInstructions(insns);
513
514 texCounts.resize(fn->allBBlocks.getSize(), 0);
515 bbFirstTex.resize(fn->allBBlocks.getSize(), insns.getSize());
516 bbFirstUse.resize(fn->allBBlocks.getSize(), insns.getSize());
517
518 // tag BB CFG nodes by their id for later
519 for (ArrayList::Iterator i = fn->allBBlocks.iterator(); !i.end(); i.next()) {
520 BasicBlock *bb = reinterpret_cast<BasicBlock *>(i.get());
521 if (bb)
522 bb->cfg.tag = bb->getId();
523 }
524
525 // gather the first uses for each TEX
526 for (unsigned int i = 0; i < insns.getSize(); ++i) {
527 Instruction *tex = reinterpret_cast<Instruction *>(insns.get(i));
528 if (isTextureOp(tex->op)) {
529 texes.push_back(tex);
530 if (!texCounts.at(tex->bb->getId()))
531 bbFirstTex[tex->bb->getId()] = texes.size() - 1;
532 texCounts[tex->bb->getId()]++;
533 }
534 }
535 insns.clear();
536 if (texes.empty())
537 return false;
538 uses = new std::list<TexUse>[texes.size()];
539 if (!uses)
540 return false;
541 for (size_t i = 0; i < texes.size(); ++i) {
542 findFirstUses(texes[i], uses[i]);
543 }
544
545 // determine the barrier level at each use
546 for (size_t i = 0; i < texes.size(); ++i) {
547 for (std::list<TexUse>::iterator u = uses[i].begin(); u != uses[i].end();
548 ++u) {
549 BasicBlock *tb = texes[i]->bb;
550 BasicBlock *ub = u->insn->bb;
551 if (tb == ub) {
552 u->level = 0;
553 for (size_t j = i + 1; j < texes.size() &&
554 texes[j]->bb == tb && texes[j]->serial < u->insn->serial;
555 ++j)
556 u->level++;
557 } else {
558 u->level = fn->cfg.findLightestPathWeight(&tb->cfg,
559 &ub->cfg, texCounts);
560 if (u->level < 0) {
561 WARN("Failed to find path TEX -> TEXBAR\n");
562 u->level = 0;
563 continue;
564 }
565 // this counted all TEXes in the origin block, correct that
566 u->level -= i - bbFirstTex.at(tb->getId()) + 1 /* this TEX */;
567 // and did not count the TEXes in the destination block, add those
568 for (size_t j = bbFirstTex.at(ub->getId()); j < texes.size() &&
569 texes[j]->bb == ub && texes[j]->serial < u->insn->serial;
570 ++j)
571 u->level++;
572 }
573 assert(u->level >= 0);
574 useVec.push_back(*u);
575 }
576 }
577 delete[] uses;
578
579 // insert the barriers
580 for (size_t i = 0; i < useVec.size(); ++i) {
581 Instruction *prev = useVec[i].insn->prev;
582 if (useVec[i].level < 0)
583 continue;
584 if (prev && prev->op == OP_TEXBAR) {
585 if (prev->subOp > useVec[i].level)
586 prev->subOp = useVec[i].level;
587 prev->setSrc(prev->srcCount(), useVec[i].tex->getDef(0));
588 } else {
589 Instruction *bar = new_Instruction(func, OP_TEXBAR, TYPE_NONE);
590 bar->fixed = 1;
591 bar->subOp = useVec[i].level;
592 // make use explicit to ease latency calculation
593 bar->setSrc(bar->srcCount(), useVec[i].tex->getDef(0));
594 useVec[i].insn->bb->insertBefore(useVec[i].insn, bar);
595 }
596 }
597
598 if (fn->getProgram()->optLevel < 3)
599 return true;
600
601 std::vector<Limits> limitT, limitB, limitS; // entry, exit, single
602
603 limitT.resize(fn->allBBlocks.getSize(), Limits(0, 0));
604 limitB.resize(fn->allBBlocks.getSize(), Limits(0, 0));
605 limitS.resize(fn->allBBlocks.getSize());
606
607 // cull unneeded barriers (should do that earlier, but for simplicity)
608 IteratorRef bi = fn->cfg.iteratorCFG();
609 // first calculate min/max outstanding TEXes for each BB
610 for (bi->reset(); !bi->end(); bi->next()) {
611 Graph::Node *n = reinterpret_cast<Graph::Node *>(bi->get());
612 BasicBlock *bb = BasicBlock::get(n);
613 int min = 0;
614 int max = std::numeric_limits<int>::max();
615 for (Instruction *i = bb->getFirst(); i; i = i->next) {
616 if (isTextureOp(i->op)) {
617 min++;
618 if (max < std::numeric_limits<int>::max())
619 max++;
620 } else
621 if (i->op == OP_TEXBAR) {
622 min = MIN2(min, i->subOp);
623 max = MIN2(max, i->subOp);
624 }
625 }
626 // limits when looking at an isolated block
627 limitS[bb->getId()].min = min;
628 limitS[bb->getId()].max = max;
629 }
630 // propagate the min/max values
631 for (unsigned int l = 0; l <= fn->loopNestingBound; ++l) {
632 for (bi->reset(); !bi->end(); bi->next()) {
633 Graph::Node *n = reinterpret_cast<Graph::Node *>(bi->get());
634 BasicBlock *bb = BasicBlock::get(n);
635 const int bbId = bb->getId();
636 for (Graph::EdgeIterator ei = n->incident(); !ei.end(); ei.next()) {
637 BasicBlock *in = BasicBlock::get(ei.getNode());
638 const int inId = in->getId();
639 limitT[bbId].min = MAX2(limitT[bbId].min, limitB[inId].min);
640 limitT[bbId].max = MAX2(limitT[bbId].max, limitB[inId].max);
641 }
642 // I just hope this is correct ...
643 if (limitS[bbId].max == std::numeric_limits<int>::max()) {
644 // no barrier
645 limitB[bbId].min = limitT[bbId].min + limitS[bbId].min;
646 limitB[bbId].max = limitT[bbId].max + limitS[bbId].min;
647 } else {
648 // block contained a barrier
649 limitB[bbId].min = MIN2(limitS[bbId].max,
650 limitT[bbId].min + limitS[bbId].min);
651 limitB[bbId].max = MIN2(limitS[bbId].max,
652 limitT[bbId].max + limitS[bbId].min);
653 }
654 }
655 }
656 // finally delete unnecessary barriers
657 for (bi->reset(); !bi->end(); bi->next()) {
658 Graph::Node *n = reinterpret_cast<Graph::Node *>(bi->get());
659 BasicBlock *bb = BasicBlock::get(n);
660 Instruction *prev = NULL;
661 Instruction *next;
662 int max = limitT[bb->getId()].max;
663 for (Instruction *i = bb->getFirst(); i; i = next) {
664 next = i->next;
665 if (i->op == OP_TEXBAR) {
666 if (i->subOp >= max) {
667 delete_Instruction(prog, i);
668 i = NULL;
669 } else {
670 max = i->subOp;
671 if (prev && prev->op == OP_TEXBAR && prev->subOp >= max) {
672 delete_Instruction(prog, prev);
673 prev = NULL;
674 }
675 }
676 } else
677 if (isTextureOp(i->op)) {
678 max++;
679 }
680 if (i && !i->isNop())
681 prev = i;
682 }
683 }
684 return true;
685 }
686
687 bool
visit(Function * fn)688 NVC0LegalizePostRA::visit(Function *fn)
689 {
690 if (needTexBar)
691 insertTextureBarriers(fn);
692
693 rZero = new_LValue(fn, FILE_GPR);
694 pOne = new_LValue(fn, FILE_PREDICATE);
695 carry = new_LValue(fn, FILE_FLAGS);
696
697 rZero->reg.data.id = (prog->getTarget()->getChipset() >= NVISA_GK20A_CHIPSET) ? 255 : 63;
698 carry->reg.data.id = 0;
699 pOne->reg.data.id = 7;
700
701 return true;
702 }
703
704 void
replaceZero(Instruction * i)705 NVC0LegalizePostRA::replaceZero(Instruction *i)
706 {
707 for (int s = 0; i->srcExists(s); ++s) {
708 if (s == 2 && i->op == OP_SUCLAMP)
709 continue;
710 if (s == 1 && i->op == OP_SHLADD)
711 continue;
712 ImmediateValue *imm = i->getSrc(s)->asImm();
713 if (imm) {
714 if (i->op == OP_SELP && s == 2) {
715 i->setSrc(s, pOne);
716 if (imm->reg.data.u64 == 0)
717 i->src(s).mod = i->src(s).mod ^ Modifier(NV50_IR_MOD_NOT);
718 } else if (imm->reg.data.u64 == 0) {
719 i->setSrc(s, rZero);
720 }
721 }
722 }
723 }
724
725 // replace CONT with BRA for single unconditional continue
726 bool
tryReplaceContWithBra(BasicBlock * bb)727 NVC0LegalizePostRA::tryReplaceContWithBra(BasicBlock *bb)
728 {
729 if (bb->cfg.incidentCount() != 2 || bb->getEntry()->op != OP_PRECONT)
730 return false;
731 Graph::EdgeIterator ei = bb->cfg.incident();
732 if (ei.getType() != Graph::Edge::BACK)
733 ei.next();
734 if (ei.getType() != Graph::Edge::BACK)
735 return false;
736 BasicBlock *contBB = BasicBlock::get(ei.getNode());
737
738 if (!contBB->getExit() || contBB->getExit()->op != OP_CONT ||
739 contBB->getExit()->getPredicate())
740 return false;
741 contBB->getExit()->op = OP_BRA;
742 bb->remove(bb->getEntry()); // delete PRECONT
743
744 ei.next();
745 assert(ei.end() || ei.getType() != Graph::Edge::BACK);
746 return true;
747 }
748
749 // replace branches to join blocks with join ops
750 void
propagateJoin(BasicBlock * bb)751 NVC0LegalizePostRA::propagateJoin(BasicBlock *bb)
752 {
753 if (bb->getEntry()->op != OP_JOIN || bb->getEntry()->asFlow()->limit)
754 return;
755 for (Graph::EdgeIterator ei = bb->cfg.incident(); !ei.end(); ei.next()) {
756 BasicBlock *in = BasicBlock::get(ei.getNode());
757 Instruction *exit = in->getExit();
758 if (!exit) {
759 in->insertTail(new FlowInstruction(func, OP_JOIN, bb));
760 // there should always be a terminator instruction
761 WARN("inserted missing terminator in BB:%i\n", in->getId());
762 } else
763 if (exit->op == OP_BRA) {
764 exit->op = OP_JOIN;
765 exit->asFlow()->limit = 1; // must-not-propagate marker
766 }
767 }
768 bb->remove(bb->getEntry());
769 }
770
771 // replaces instructions which would end up as f2f or i2i with faster
772 // alternatives:
773 // - fabs(a) -> fadd(0, abs a)
774 // - fneg(a) -> fadd(neg 0, neg a)
775 // - ineg(a) -> iadd(0, neg a)
776 // - fneg(abs a) -> fadd(neg 0, neg abs a)
777 // - sat(a) -> sat add(0, a)
778 void
replaceCvt(Instruction * cvt)779 NVC0LegalizePostRA::replaceCvt(Instruction *cvt)
780 {
781 if (!isFloatType(cvt->sType) && typeSizeof(cvt->sType) != 4)
782 return;
783 if (cvt->sType != cvt->dType)
784 return;
785 // we could make it work, but in this case we have optimizations disabled
786 // and we don't really care either way.
787 if (cvt->src(0).getFile() != FILE_GPR &&
788 cvt->src(0).getFile() != FILE_MEMORY_CONST)
789 return;
790
791 Modifier mod0, mod1;
792
793 switch (cvt->op) {
794 case OP_ABS:
795 if (cvt->src(0).mod)
796 return;
797 if (!isFloatType(cvt->sType))
798 return;
799 mod0 = 0;
800 mod1 = NV50_IR_MOD_ABS;
801 break;
802 case OP_NEG:
803 if (!isFloatType(cvt->sType) && cvt->src(0).mod)
804 return;
805 if (isFloatType(cvt->sType) &&
806 (cvt->src(0).mod && cvt->src(0).mod != Modifier(NV50_IR_MOD_ABS)))
807 return;
808
809 mod0 = isFloatType(cvt->sType) ? NV50_IR_MOD_NEG : 0;
810 mod1 = cvt->src(0).mod == Modifier(NV50_IR_MOD_ABS) ?
811 NV50_IR_MOD_NEG_ABS : NV50_IR_MOD_NEG;
812 break;
813 case OP_SAT:
814 if (!isFloatType(cvt->sType) && cvt->src(0).mod.abs())
815 return;
816 mod0 = 0;
817 mod1 = cvt->src(0).mod;
818 cvt->saturate = true;
819 break;
820 default:
821 return;
822 }
823
824 cvt->op = OP_ADD;
825 cvt->moveSources(0, 1);
826 cvt->setSrc(0, rZero);
827 cvt->src(0).mod = mod0;
828 cvt->src(1).mod = mod1;
829 }
830
831 bool
visit(BasicBlock * bb)832 NVC0LegalizePostRA::visit(BasicBlock *bb)
833 {
834 Instruction *i, *next;
835
836 // remove pseudo operations and non-fixed no-ops, split 64 bit operations
837 for (i = bb->getFirst(); i; i = next) {
838 next = i->next;
839 if (i->op == OP_EMIT || i->op == OP_RESTART) {
840 if (!i->getDef(0)->refCount())
841 i->setDef(0, NULL);
842 if (i->src(0).getFile() == FILE_IMMEDIATE)
843 i->setSrc(0, rZero); // initial value must be 0
844 replaceZero(i);
845 } else
846 if (i->isNop()) {
847 bb->remove(i);
848 } else
849 if (i->op == OP_BAR && i->subOp == NV50_IR_SUBOP_BAR_SYNC &&
850 prog->getType() != Program::TYPE_COMPUTE) {
851 // It seems like barriers are never required for tessellation since
852 // the warp size is 32, and there are always at most 32 tcs threads.
853 bb->remove(i);
854 } else
855 if (i->op == OP_LOAD && i->subOp == NV50_IR_SUBOP_LDC_IS) {
856 int offset = i->src(0).get()->reg.data.offset;
857 if (abs(offset) >= 0x10000)
858 i->src(0).get()->reg.fileIndex += offset >> 16;
859 i->src(0).get()->reg.data.offset = (int)(short)offset;
860 } else {
861 // TODO: Move this to before register allocation for operations that
862 // need the $c register !
863 if (typeSizeof(i->sType) == 8 || typeSizeof(i->dType) == 8) {
864 Instruction *hi;
865 hi = BuildUtil::split64BitOpPostRA(func, i, rZero, carry);
866 if (hi)
867 next = hi;
868 }
869
870 if (i->op != OP_MOV && i->op != OP_PFETCH)
871 replaceZero(i);
872
873 if (i->op == OP_SAT || i->op == OP_NEG || i->op == OP_ABS)
874 replaceCvt(i);
875 }
876 }
877 if (!bb->getEntry())
878 return true;
879
880 if (!tryReplaceContWithBra(bb))
881 propagateJoin(bb);
882
883 return true;
884 }
885
NVC0LoweringPass(Program * prog)886 NVC0LoweringPass::NVC0LoweringPass(Program *prog) : targ(prog->getTarget()),
887 gpEmitAddress(NULL)
888 {
889 bld.setProgram(prog);
890 }
891
892 bool
visit(Function * fn)893 NVC0LoweringPass::visit(Function *fn)
894 {
895 if (prog->getType() == Program::TYPE_GEOMETRY) {
896 assert(!strncmp(fn->getName(), "MAIN", 4));
897 // TODO: when we generate actual functions pass this value along somehow
898 bld.setPosition(BasicBlock::get(fn->cfg.getRoot()), false);
899 gpEmitAddress = bld.loadImm(NULL, 0)->asLValue();
900 if (fn->cfgExit) {
901 bld.setPosition(BasicBlock::get(fn->cfgExit)->getExit(), false);
902 if (prog->getTarget()->getChipset() >= NVISA_GV100_CHIPSET)
903 bld.mkOp1(OP_FINAL, TYPE_NONE, NULL, gpEmitAddress)->fixed = 1;
904 bld.mkMovToReg(0, gpEmitAddress);
905 }
906 }
907 return true;
908 }
909
910 bool
visit(BasicBlock * bb)911 NVC0LoweringPass::visit(BasicBlock *bb)
912 {
913 return true;
914 }
915
916 inline Value *
loadTexHandle(Value * ptr,unsigned int slot)917 NVC0LoweringPass::loadTexHandle(Value *ptr, unsigned int slot)
918 {
919 uint8_t b = prog->driver->io.auxCBSlot;
920 uint32_t off = prog->driver->io.texBindBase + slot * 4;
921
922 if (ptr)
923 ptr = bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(), ptr, bld.mkImm(2));
924
925 return bld.
926 mkLoadv(TYPE_U32, bld.mkSymbol(FILE_MEMORY_CONST, b, TYPE_U32, off), ptr);
927 }
928
929 // move array source to first slot, convert to u16, add indirections
930 bool
handleTEX(TexInstruction * i)931 NVC0LoweringPass::handleTEX(TexInstruction *i)
932 {
933 const int dim = i->tex.target.getDim() + i->tex.target.isCube();
934 const int arg = i->tex.target.getArgCount() - i->tex.target.isMS();
935 const int lyr = arg - 1;
936 const int chipset = prog->getTarget()->getChipset();
937
938 /* Only normalize in the non-explicit derivatives case. For explicit
939 * derivatives, this is handled in handleManualTXD.
940 */
941 if (i->tex.target.isCube() && i->dPdx[0].get() == NULL) {
942 Value *src[3], *val;
943 int c;
944 for (c = 0; c < 3; ++c)
945 src[c] = bld.mkOp1v(OP_ABS, TYPE_F32, bld.getSSA(), i->getSrc(c));
946 val = bld.getScratch();
947 bld.mkOp2(OP_MAX, TYPE_F32, val, src[0], src[1]);
948 bld.mkOp2(OP_MAX, TYPE_F32, val, src[2], val);
949 bld.mkOp1(OP_RCP, TYPE_F32, val, val);
950 for (c = 0; c < 3; ++c) {
951 i->setSrc(c, bld.mkOp2v(OP_MUL, TYPE_F32, bld.getSSA(),
952 i->getSrc(c), val));
953 }
954 }
955
956 // Arguments to the TEX instruction are a little insane. Even though the
957 // encoding is identical between SM20 and SM30, the arguments mean
958 // different things between Fermi and Kepler+. A lot of arguments are
959 // optional based on flags passed to the instruction. This summarizes the
960 // order of things.
961 //
962 // Fermi:
963 // array/indirect
964 // coords
965 // sample
966 // lod bias
967 // depth compare
968 // offsets:
969 // - tg4: 8 bits each, either 2 (1 offset reg) or 8 (2 offset reg)
970 // - other: 4 bits each, single reg
971 //
972 // Kepler+:
973 // indirect handle
974 // array (+ offsets for txd in upper 16 bits)
975 // coords
976 // sample
977 // lod bias
978 // depth compare
979 // offsets (same as fermi, except txd which takes it with array)
980 //
981 // Maxwell (tex):
982 // array
983 // coords
984 // indirect handle
985 // sample
986 // lod bias
987 // depth compare
988 // offsets
989 //
990 // Maxwell (txd):
991 // indirect handle
992 // coords
993 // array + offsets
994 // derivatives
995
996 if (chipset >= NVISA_GK104_CHIPSET) {
997 if (i->tex.rIndirectSrc >= 0 || i->tex.sIndirectSrc >= 0) {
998 // XXX this ignores tsc, and assumes a 1:1 mapping
999 assert(i->tex.rIndirectSrc >= 0);
1000 if (!i->tex.bindless) {
1001 Value *hnd = loadTexHandle(i->getIndirectR(), i->tex.r);
1002 i->tex.r = 0xff;
1003 i->tex.s = 0x1f;
1004 i->setIndirectR(hnd);
1005 }
1006 i->setIndirectS(NULL);
1007 } else if (i->tex.r == i->tex.s || i->op == OP_TXF) {
1008 if (i->tex.r == 0xffff)
1009 i->tex.r = prog->driver->io.fbtexBindBase / 4;
1010 else
1011 i->tex.r += prog->driver->io.texBindBase / 4;
1012 i->tex.s = 0; // only a single cX[] value possible here
1013 } else {
1014 Value *hnd = bld.getScratch();
1015 Value *rHnd = loadTexHandle(NULL, i->tex.r);
1016 Value *sHnd = loadTexHandle(NULL, i->tex.s);
1017
1018 bld.mkOp3(OP_INSBF, TYPE_U32, hnd, rHnd, bld.mkImm(0x1400), sHnd);
1019
1020 i->tex.r = 0; // not used for indirect tex
1021 i->tex.s = 0;
1022 i->setIndirectR(hnd);
1023 }
1024 if (i->tex.target.isArray()) {
1025 LValue *layer = new_LValue(func, FILE_GPR);
1026 Value *src = i->getSrc(lyr);
1027 /* Vulkan requires that a negative index on a texelFetch() count as
1028 * out-of-bounds but a negative index on any other texture operation
1029 * gets clamped to 0. (See the spec section entitled "(u,v,w,a) to
1030 * (i,j,k,l,n) Transformation And Array Layer Selection").
1031 *
1032 * For TXF, we take a U32 MAX with 0xffff, ensuring that negative
1033 * array indices clamp to 0xffff and will be considered out-of-bounds
1034 * by the hardware (there are a maximum of 2048 array indices in an
1035 * image descriptor). For everything else, we use a saturating F32
1036 * to U16 conversion which will clamp negative array indices to 0 and
1037 * large positive indices to 0xffff. The hardware will further clamp
1038 * positive array indices to the maximum in the image descriptor.
1039 */
1040 if (i->op == OP_TXF) {
1041 bld.mkOp2(OP_MIN, TYPE_U32, layer, src, bld.loadImm(NULL, 0xffff));
1042 } else {
1043 bld.mkCvt(OP_CVT, TYPE_U16, layer, TYPE_F32, src)->saturate = true;
1044 }
1045 if (i->op != OP_TXD || chipset < NVISA_GM107_CHIPSET) {
1046 for (int s = dim; s >= 1; --s)
1047 i->setSrc(s, i->getSrc(s - 1));
1048 i->setSrc(0, layer);
1049 } else {
1050 i->setSrc(dim, layer);
1051 }
1052 }
1053 // Move the indirect reference to the first place
1054 if (i->tex.rIndirectSrc >= 0 && (
1055 i->op == OP_TXD || chipset < NVISA_GM107_CHIPSET)) {
1056 Value *hnd = i->getIndirectR();
1057
1058 i->setIndirectR(NULL);
1059 i->moveSources(0, 1);
1060 i->setSrc(0, hnd);
1061 i->tex.rIndirectSrc = 0;
1062 i->tex.sIndirectSrc = -1;
1063 }
1064 // Move the indirect reference to right after the coords
1065 else if (i->tex.rIndirectSrc >= 0 && chipset >= NVISA_GM107_CHIPSET) {
1066 Value *hnd = i->getIndirectR();
1067
1068 i->setIndirectR(NULL);
1069 i->moveSources(arg, 1);
1070 i->setSrc(arg, hnd);
1071 i->tex.rIndirectSrc = 0;
1072 i->tex.sIndirectSrc = -1;
1073 }
1074 } else
1075 // (nvc0) generate and move the tsc/tic/array source to the front
1076 if (i->tex.target.isArray() || i->tex.rIndirectSrc >= 0 || i->tex.sIndirectSrc >= 0) {
1077 LValue *src = new_LValue(func, FILE_GPR); // 0xttxsaaaa
1078
1079 Value *ticRel = i->getIndirectR();
1080 Value *tscRel = i->getIndirectS();
1081
1082 if (i->tex.r == 0xffff) {
1083 i->tex.r = 0x20;
1084 i->tex.s = 0x10;
1085 }
1086
1087 if (ticRel) {
1088 i->setSrc(i->tex.rIndirectSrc, NULL);
1089 if (i->tex.r)
1090 ticRel = bld.mkOp2v(OP_ADD, TYPE_U32, bld.getScratch(),
1091 ticRel, bld.mkImm(i->tex.r));
1092 }
1093 if (tscRel) {
1094 i->setSrc(i->tex.sIndirectSrc, NULL);
1095 if (i->tex.s)
1096 tscRel = bld.mkOp2v(OP_ADD, TYPE_U32, bld.getScratch(),
1097 tscRel, bld.mkImm(i->tex.s));
1098 }
1099
1100 Value *arrayIndex = i->tex.target.isArray() ? i->getSrc(lyr) : NULL;
1101 if (arrayIndex) {
1102 for (int s = dim; s >= 1; --s)
1103 i->setSrc(s, i->getSrc(s - 1));
1104 i->setSrc(0, arrayIndex);
1105 } else {
1106 i->moveSources(0, 1);
1107 }
1108
1109 if (arrayIndex) {
1110 if (i->op == OP_TXF) {
1111 bld.mkOp2(OP_MIN, TYPE_U32, src, arrayIndex, bld.loadImm(NULL, 0xffff));
1112 } else {
1113 bld.mkCvt(OP_CVT, TYPE_U16, src, TYPE_F32, arrayIndex)->saturate = true;
1114 }
1115 } else {
1116 bld.loadImm(src, 0);
1117 }
1118
1119 if (ticRel)
1120 bld.mkOp3(OP_INSBF, TYPE_U32, src, ticRel, bld.mkImm(0x0917), src);
1121 if (tscRel)
1122 bld.mkOp3(OP_INSBF, TYPE_U32, src, tscRel, bld.mkImm(0x0710), src);
1123
1124 i->setSrc(0, src);
1125 }
1126
1127 // For nvc0, the sample id has to be in the second operand, as the offset
1128 // does. Right now we don't know how to pass both in, and this case can't
1129 // happen with OpenGL. On nve0, the sample id is part of the texture
1130 // coordinate argument.
1131 assert(chipset >= NVISA_GK104_CHIPSET ||
1132 !i->tex.useOffsets || !i->tex.target.isMS());
1133
1134 // offset is between lod and dc
1135 if (i->tex.useOffsets) {
1136 int n, c;
1137 int s = i->srcCount(0xff, true);
1138 if (i->op != OP_TXD || chipset < NVISA_GK104_CHIPSET) {
1139 if (i->tex.target.isShadow())
1140 s--;
1141 if (i->srcExists(s)) // move potential predicate out of the way
1142 i->moveSources(s, 1);
1143 if (i->tex.useOffsets == 4 && i->srcExists(s + 1))
1144 i->moveSources(s + 1, 1);
1145 }
1146 if (i->op == OP_TXG) {
1147 // Either there is 1 offset, which goes into the 2 low bytes of the
1148 // first source, or there are 4 offsets, which go into 2 sources (8
1149 // values, 1 byte each).
1150 Value *offs[2] = {NULL, NULL};
1151 for (n = 0; n < i->tex.useOffsets; n++) {
1152 for (c = 0; c < 2; ++c) {
1153 if ((n % 2) == 0 && c == 0)
1154 bld.mkMov(offs[n / 2] = bld.getScratch(), i->offset[n][c].get());
1155 else
1156 bld.mkOp3(OP_INSBF, TYPE_U32,
1157 offs[n / 2],
1158 i->offset[n][c].get(),
1159 bld.mkImm(0x800 | ((n * 16 + c * 8) % 32)),
1160 offs[n / 2]);
1161 }
1162 }
1163 i->setSrc(s, offs[0]);
1164 if (offs[1])
1165 i->setSrc(s + 1, offs[1]);
1166 } else {
1167 unsigned imm = 0;
1168 assert(i->tex.useOffsets == 1);
1169 for (c = 0; c < 3; ++c) {
1170 ImmediateValue val;
1171 if (!i->offset[0][c].getImmediate(val))
1172 assert(!"non-immediate offset passed to non-TXG");
1173 imm |= (val.reg.data.u32 & 0xf) << (c * 4);
1174 }
1175 if (i->op == OP_TXD && chipset >= NVISA_GK104_CHIPSET) {
1176 // The offset goes into the upper 16 bits of the array index. So
1177 // create it if it's not already there, and INSBF it if it already
1178 // is.
1179 s = (i->tex.rIndirectSrc >= 0) ? 1 : 0;
1180 if (chipset >= NVISA_GM107_CHIPSET)
1181 s += dim;
1182 if (i->tex.target.isArray()) {
1183 Value *offset = bld.getScratch();
1184 bld.mkOp3(OP_INSBF, TYPE_U32, offset,
1185 bld.loadImm(NULL, imm), bld.mkImm(0xc10),
1186 i->getSrc(s));
1187 i->setSrc(s, offset);
1188 } else {
1189 i->moveSources(s, 1);
1190 i->setSrc(s, bld.loadImm(NULL, imm << 16));
1191 }
1192 } else {
1193 i->setSrc(s, bld.loadImm(NULL, imm));
1194 }
1195 }
1196 }
1197
1198 return true;
1199 }
1200
1201 bool
handleManualTXD(TexInstruction * i)1202 NVC0LoweringPass::handleManualTXD(TexInstruction *i)
1203 {
1204 // Always done from the l0 perspective. This is the way that NVIDIA's
1205 // driver does it, and doing it from the "current" lane's perspective
1206 // doesn't seem to always work for reasons that aren't altogether clear,
1207 // even in frag shaders.
1208 //
1209 // Note that we must move not only the coordinates into lane0, but also all
1210 // ancillary arguments, like array indices and depth compare as they may
1211 // differ between lanes. Offsets for TXD are supposed to be uniform, so we
1212 // leave them alone.
1213 static const uint8_t qOps[2] =
1214 { QUADOP(MOV2, ADD, MOV2, ADD), QUADOP(MOV2, MOV2, ADD, ADD) };
1215
1216 Value *def[4][4];
1217 Value *crd[3], *arr[2], *shadow;
1218 Instruction *tex;
1219 Value *zero = bld.loadImm(bld.getSSA(), 0);
1220 int l, c;
1221 const int dim = i->tex.target.getDim() + i->tex.target.isCube();
1222
1223 // This function is invoked after handleTEX lowering, so we have to expect
1224 // the arguments in the order that the hw wants them. For Fermi, array and
1225 // indirect are both in the leading arg, while for Kepler, array and
1226 // indirect are separate (and both precede the coordinates). Maxwell is
1227 // handled in a separate function.
1228 int array;
1229 if (targ->getChipset() < NVISA_GK104_CHIPSET)
1230 array = i->tex.target.isArray() || i->tex.rIndirectSrc >= 0;
1231 else
1232 array = i->tex.target.isArray() + (i->tex.rIndirectSrc >= 0);
1233
1234 i->op = OP_TEX; // no need to clone dPdx/dPdy later
1235
1236 for (c = 0; c < dim; ++c)
1237 crd[c] = bld.getScratch();
1238 for (c = 0; c < array; ++c)
1239 arr[c] = bld.getScratch();
1240 shadow = bld.getScratch();
1241
1242 for (l = 0; l < 4; ++l) {
1243 Value *src[3], *val;
1244
1245 bld.mkOp(OP_QUADON, TYPE_NONE, NULL);
1246 // we're using the texture result from lane 0 in all cases, so make sure
1247 // that lane 0 is pointing at the proper array index, indirect value,
1248 // and depth compare.
1249 if (l != 0) {
1250 for (c = 0; c < array; ++c)
1251 bld.mkQuadop(0x00, arr[c], l, i->getSrc(c), zero);
1252 if (i->tex.target.isShadow()) {
1253 // The next argument after coords is the depth compare
1254 bld.mkQuadop(0x00, shadow, l, i->getSrc(array + dim), zero);
1255 }
1256 }
1257 // mov position coordinates from lane l to all lanes
1258 for (c = 0; c < dim; ++c)
1259 bld.mkQuadop(0x00, crd[c], l, i->getSrc(c + array), zero);
1260 // add dPdx from lane l to lanes dx
1261 for (c = 0; c < dim; ++c)
1262 bld.mkQuadop(qOps[0], crd[c], l, i->dPdx[c].get(), crd[c]);
1263 // add dPdy from lane l to lanes dy
1264 for (c = 0; c < dim; ++c)
1265 bld.mkQuadop(qOps[1], crd[c], l, i->dPdy[c].get(), crd[c]);
1266 // normalize cube coordinates
1267 if (i->tex.target.isCube()) {
1268 for (c = 0; c < 3; ++c)
1269 src[c] = bld.mkOp1v(OP_ABS, TYPE_F32, bld.getSSA(), crd[c]);
1270 val = bld.getScratch();
1271 bld.mkOp2(OP_MAX, TYPE_F32, val, src[0], src[1]);
1272 bld.mkOp2(OP_MAX, TYPE_F32, val, src[2], val);
1273 bld.mkOp1(OP_RCP, TYPE_F32, val, val);
1274 for (c = 0; c < 3; ++c)
1275 src[c] = bld.mkOp2v(OP_MUL, TYPE_F32, bld.getSSA(), crd[c], val);
1276 } else {
1277 for (c = 0; c < dim; ++c)
1278 src[c] = crd[c];
1279 }
1280 // texture
1281 bld.insert(tex = cloneForward(func, i));
1282 if (l != 0) {
1283 for (c = 0; c < array; ++c)
1284 tex->setSrc(c, arr[c]);
1285 if (i->tex.target.isShadow())
1286 tex->setSrc(array + dim, shadow);
1287 }
1288 for (c = 0; c < dim; ++c)
1289 tex->setSrc(c + array, src[c]);
1290 // broadcast results from lane 0 to all lanes so that the moves *into*
1291 // the target lane pick up the proper value.
1292 if (l != 0)
1293 for (c = 0; i->defExists(c); ++c)
1294 bld.mkQuadop(0x00, tex->getDef(c), 0, tex->getDef(c), zero);
1295 bld.mkOp(OP_QUADPOP, TYPE_NONE, NULL);
1296
1297 // save results
1298 for (c = 0; i->defExists(c); ++c) {
1299 Instruction *mov;
1300 def[c][l] = bld.getSSA();
1301 mov = bld.mkMov(def[c][l], tex->getDef(c));
1302 mov->fixed = 1;
1303 mov->lanes = 1 << l;
1304 }
1305 }
1306
1307 for (c = 0; i->defExists(c); ++c) {
1308 Instruction *u = bld.mkOp(OP_UNION, TYPE_U32, i->getDef(c));
1309 for (l = 0; l < 4; ++l)
1310 u->setSrc(l, def[c][l]);
1311 }
1312
1313 i->bb->remove(i);
1314 return true;
1315 }
1316
1317 bool
handleTXD(TexInstruction * txd)1318 NVC0LoweringPass::handleTXD(TexInstruction *txd)
1319 {
1320 int dim = txd->tex.target.getDim() + txd->tex.target.isCube();
1321 unsigned arg = txd->tex.target.getArgCount();
1322 unsigned expected_args = arg;
1323 const int chipset = prog->getTarget()->getChipset();
1324
1325 if (chipset >= NVISA_GK104_CHIPSET) {
1326 if (!txd->tex.target.isArray() && txd->tex.useOffsets)
1327 expected_args++;
1328 if (txd->tex.rIndirectSrc >= 0 || txd->tex.sIndirectSrc >= 0)
1329 expected_args++;
1330 } else {
1331 if (txd->tex.useOffsets)
1332 expected_args++;
1333 if (!txd->tex.target.isArray() && (
1334 txd->tex.rIndirectSrc >= 0 || txd->tex.sIndirectSrc >= 0))
1335 expected_args++;
1336 }
1337
1338 if (expected_args > 4 ||
1339 dim > 2 ||
1340 txd->tex.target.isShadow())
1341 txd->op = OP_TEX;
1342
1343 handleTEX(txd);
1344 while (txd->srcExists(arg))
1345 ++arg;
1346
1347 txd->tex.derivAll = true;
1348 if (txd->op == OP_TEX)
1349 return handleManualTXD(txd);
1350
1351 assert(arg == expected_args);
1352 for (int c = 0; c < dim; ++c) {
1353 txd->setSrc(arg + c * 2 + 0, txd->dPdx[c]);
1354 txd->setSrc(arg + c * 2 + 1, txd->dPdy[c]);
1355 txd->dPdx[c].set(NULL);
1356 txd->dPdy[c].set(NULL);
1357 }
1358
1359 // In this case we have fewer than 4 "real" arguments, which means that
1360 // handleTEX didn't apply any padding. However we have to make sure that
1361 // the second "group" of arguments still gets padded up to 4.
1362 if (chipset >= NVISA_GK104_CHIPSET) {
1363 int s = arg + 2 * dim;
1364 if (s >= 4 && s < 7) {
1365 if (txd->srcExists(s)) // move potential predicate out of the way
1366 txd->moveSources(s, 7 - s);
1367 while (s < 7)
1368 txd->setSrc(s++, bld.loadImm(NULL, 0));
1369 }
1370 }
1371
1372 return true;
1373 }
1374
1375 bool
handleTXQ(TexInstruction * txq)1376 NVC0LoweringPass::handleTXQ(TexInstruction *txq)
1377 {
1378 const int chipset = prog->getTarget()->getChipset();
1379 if (chipset >= NVISA_GK104_CHIPSET && txq->tex.rIndirectSrc < 0)
1380 txq->tex.r += prog->driver->io.texBindBase / 4;
1381
1382 if (txq->tex.rIndirectSrc < 0)
1383 return true;
1384
1385 Value *ticRel = txq->getIndirectR();
1386
1387 txq->setIndirectS(NULL);
1388 txq->tex.sIndirectSrc = -1;
1389
1390 assert(ticRel);
1391
1392 if (chipset < NVISA_GK104_CHIPSET) {
1393 LValue *src = new_LValue(func, FILE_GPR); // 0xttxsaaaa
1394
1395 txq->setSrc(txq->tex.rIndirectSrc, NULL);
1396 if (txq->tex.r)
1397 ticRel = bld.mkOp2v(OP_ADD, TYPE_U32, bld.getScratch(),
1398 ticRel, bld.mkImm(txq->tex.r));
1399
1400 bld.mkOp2(OP_SHL, TYPE_U32, src, ticRel, bld.mkImm(0x17));
1401
1402 txq->moveSources(0, 1);
1403 txq->setSrc(0, src);
1404 } else {
1405 Value *hnd;
1406 if (txq->tex.bindless) {
1407 hnd = txq->getIndirectR();
1408 } else {
1409 hnd = loadTexHandle(txq->getIndirectR(), txq->tex.r);
1410 txq->tex.r = 0xff;
1411 txq->tex.s = 0x1f;
1412 }
1413
1414 txq->setIndirectR(NULL);
1415 txq->moveSources(0, 1);
1416 txq->setSrc(0, hnd);
1417 txq->tex.rIndirectSrc = 0;
1418 }
1419
1420 return true;
1421 }
1422
1423 bool
handleTXLQ(TexInstruction * i)1424 NVC0LoweringPass::handleTXLQ(TexInstruction *i)
1425 {
1426 /* The outputs are inverted compared to what the TGSI instruction
1427 * expects. Take that into account in the mask.
1428 */
1429 assert((i->tex.mask & ~3) == 0);
1430 if (i->tex.mask == 1)
1431 i->tex.mask = 2;
1432 else if (i->tex.mask == 2)
1433 i->tex.mask = 1;
1434 handleTEX(i);
1435 bld.setPosition(i, true);
1436
1437 /* The returned values are not quite what we want:
1438 * (a) convert from s16/u16 to f32
1439 * (b) multiply by 1/256
1440 */
1441 for (int def = 0; def < 2; ++def) {
1442 if (!i->defExists(def))
1443 continue;
1444 enum DataType type = TYPE_S16;
1445 if (i->tex.mask == 2 || def > 0)
1446 type = TYPE_U16;
1447 bld.mkCvt(OP_CVT, TYPE_F32, i->getDef(def), type, i->getDef(def));
1448 bld.mkOp2(OP_MUL, TYPE_F32, i->getDef(def),
1449 i->getDef(def), bld.loadImm(NULL, 1.0f / 256));
1450 }
1451 if (i->tex.mask == 3) {
1452 LValue *t = new_LValue(func, FILE_GPR);
1453 bld.mkMov(t, i->getDef(0));
1454 bld.mkMov(i->getDef(0), i->getDef(1));
1455 bld.mkMov(i->getDef(1), t);
1456 }
1457 return true;
1458 }
1459
1460 bool
handleBUFQ(Instruction * bufq)1461 NVC0LoweringPass::handleBUFQ(Instruction *bufq)
1462 {
1463 bufq->op = OP_MOV;
1464 bufq->setSrc(0, loadBufLength32(bufq->getIndirect(0, 1),
1465 bufq->getSrc(0)->reg.fileIndex * 16));
1466 bufq->setIndirect(0, 0, NULL);
1467 bufq->setIndirect(0, 1, NULL);
1468 return true;
1469 }
1470
1471 void
handleSharedATOMNVE4(Instruction * atom)1472 NVC0LoweringPass::handleSharedATOMNVE4(Instruction *atom)
1473 {
1474 assert(atom->src(0).getFile() == FILE_MEMORY_SHARED);
1475
1476 BasicBlock *currBB = atom->bb;
1477 BasicBlock *tryLockBB = atom->bb->splitBefore(atom, false);
1478 BasicBlock *joinBB = atom->bb->splitAfter(atom);
1479 BasicBlock *setAndUnlockBB = new BasicBlock(func);
1480 BasicBlock *failLockBB = new BasicBlock(func);
1481
1482 bld.setPosition(currBB, true);
1483 assert(!currBB->joinAt);
1484 currBB->joinAt = bld.mkFlow(OP_JOINAT, joinBB, CC_ALWAYS, NULL);
1485
1486 CmpInstruction *pred =
1487 bld.mkCmp(OP_SET, CC_EQ, TYPE_U32, bld.getSSA(1, FILE_PREDICATE),
1488 TYPE_U32, bld.mkImm(0), bld.mkImm(1));
1489
1490 bld.mkFlow(OP_BRA, tryLockBB, CC_ALWAYS, NULL);
1491 currBB->cfg.attach(&tryLockBB->cfg, Graph::Edge::TREE);
1492
1493 bld.setPosition(tryLockBB, true);
1494
1495 Instruction *ld =
1496 bld.mkLoad(TYPE_U32, atom->getDef(0), atom->getSrc(0)->asSym(),
1497 atom->getIndirect(0, 0));
1498 ld->setDef(1, bld.getSSA(1, FILE_PREDICATE));
1499 ld->subOp = NV50_IR_SUBOP_LOAD_LOCKED;
1500
1501 bld.mkFlow(OP_BRA, setAndUnlockBB, CC_P, ld->getDef(1));
1502 bld.mkFlow(OP_BRA, failLockBB, CC_ALWAYS, NULL);
1503 tryLockBB->cfg.attach(&failLockBB->cfg, Graph::Edge::CROSS);
1504 tryLockBB->cfg.attach(&setAndUnlockBB->cfg, Graph::Edge::TREE);
1505
1506 tryLockBB->cfg.detach(&joinBB->cfg);
1507 bld.remove(atom);
1508
1509 bld.setPosition(setAndUnlockBB, true);
1510 Value *stVal;
1511 if (atom->subOp == NV50_IR_SUBOP_ATOM_EXCH) {
1512 // Read the old value, and write the new one.
1513 stVal = atom->getSrc(1);
1514 } else if (atom->subOp == NV50_IR_SUBOP_ATOM_CAS) {
1515 CmpInstruction *set =
1516 bld.mkCmp(OP_SET, CC_EQ, TYPE_U32, bld.getSSA(),
1517 TYPE_U32, ld->getDef(0), atom->getSrc(1));
1518
1519 bld.mkCmp(OP_SLCT, CC_NE, TYPE_U32, (stVal = bld.getSSA()),
1520 TYPE_U32, atom->getSrc(2), ld->getDef(0), set->getDef(0));
1521 } else {
1522 operation op;
1523
1524 switch (atom->subOp) {
1525 case NV50_IR_SUBOP_ATOM_ADD:
1526 op = OP_ADD;
1527 break;
1528 case NV50_IR_SUBOP_ATOM_AND:
1529 op = OP_AND;
1530 break;
1531 case NV50_IR_SUBOP_ATOM_OR:
1532 op = OP_OR;
1533 break;
1534 case NV50_IR_SUBOP_ATOM_XOR:
1535 op = OP_XOR;
1536 break;
1537 case NV50_IR_SUBOP_ATOM_MIN:
1538 op = OP_MIN;
1539 break;
1540 case NV50_IR_SUBOP_ATOM_MAX:
1541 op = OP_MAX;
1542 break;
1543 default:
1544 assert(0);
1545 return;
1546 }
1547
1548 stVal = bld.mkOp2v(op, atom->dType, bld.getSSA(), ld->getDef(0),
1549 atom->getSrc(1));
1550 }
1551
1552 Instruction *st =
1553 bld.mkStore(OP_STORE, TYPE_U32, atom->getSrc(0)->asSym(),
1554 atom->getIndirect(0, 0), stVal);
1555 st->setDef(0, pred->getDef(0));
1556 st->subOp = NV50_IR_SUBOP_STORE_UNLOCKED;
1557
1558 bld.mkFlow(OP_BRA, failLockBB, CC_ALWAYS, NULL);
1559 setAndUnlockBB->cfg.attach(&failLockBB->cfg, Graph::Edge::TREE);
1560
1561 // Lock until the store has not been performed.
1562 bld.setPosition(failLockBB, true);
1563 bld.mkFlow(OP_BRA, tryLockBB, CC_NOT_P, pred->getDef(0));
1564 bld.mkFlow(OP_BRA, joinBB, CC_ALWAYS, NULL);
1565 failLockBB->cfg.attach(&tryLockBB->cfg, Graph::Edge::BACK);
1566 failLockBB->cfg.attach(&joinBB->cfg, Graph::Edge::TREE);
1567
1568 bld.setPosition(joinBB, false);
1569 bld.mkFlow(OP_JOIN, NULL, CC_ALWAYS, NULL)->fixed = 1;
1570 }
1571
1572 void
handleSharedATOM(Instruction * atom)1573 NVC0LoweringPass::handleSharedATOM(Instruction *atom)
1574 {
1575 assert(atom->src(0).getFile() == FILE_MEMORY_SHARED);
1576
1577 BasicBlock *currBB = atom->bb;
1578 BasicBlock *tryLockAndSetBB = atom->bb->splitBefore(atom, false);
1579 BasicBlock *joinBB = atom->bb->splitAfter(atom);
1580
1581 bld.setPosition(currBB, true);
1582 assert(!currBB->joinAt);
1583 currBB->joinAt = bld.mkFlow(OP_JOINAT, joinBB, CC_ALWAYS, NULL);
1584
1585 bld.mkFlow(OP_BRA, tryLockAndSetBB, CC_ALWAYS, NULL);
1586 currBB->cfg.attach(&tryLockAndSetBB->cfg, Graph::Edge::TREE);
1587
1588 bld.setPosition(tryLockAndSetBB, true);
1589
1590 Instruction *ld =
1591 bld.mkLoad(TYPE_U32, atom->getDef(0), atom->getSrc(0)->asSym(),
1592 atom->getIndirect(0, 0));
1593 ld->setDef(1, bld.getSSA(1, FILE_PREDICATE));
1594 ld->subOp = NV50_IR_SUBOP_LOAD_LOCKED;
1595
1596 Value *stVal;
1597 if (atom->subOp == NV50_IR_SUBOP_ATOM_EXCH) {
1598 // Read the old value, and write the new one.
1599 stVal = atom->getSrc(1);
1600 } else if (atom->subOp == NV50_IR_SUBOP_ATOM_CAS) {
1601 CmpInstruction *set =
1602 bld.mkCmp(OP_SET, CC_EQ, TYPE_U32, bld.getSSA(1, FILE_PREDICATE),
1603 TYPE_U32, ld->getDef(0), atom->getSrc(1));
1604 set->setPredicate(CC_P, ld->getDef(1));
1605
1606 Instruction *selp =
1607 bld.mkOp3(OP_SELP, TYPE_U32, bld.getSSA(), ld->getDef(0),
1608 atom->getSrc(2), set->getDef(0));
1609 selp->src(2).mod = Modifier(NV50_IR_MOD_NOT);
1610 selp->setPredicate(CC_P, ld->getDef(1));
1611
1612 stVal = selp->getDef(0);
1613 } else {
1614 operation op;
1615
1616 switch (atom->subOp) {
1617 case NV50_IR_SUBOP_ATOM_ADD:
1618 op = OP_ADD;
1619 break;
1620 case NV50_IR_SUBOP_ATOM_AND:
1621 op = OP_AND;
1622 break;
1623 case NV50_IR_SUBOP_ATOM_OR:
1624 op = OP_OR;
1625 break;
1626 case NV50_IR_SUBOP_ATOM_XOR:
1627 op = OP_XOR;
1628 break;
1629 case NV50_IR_SUBOP_ATOM_MIN:
1630 op = OP_MIN;
1631 break;
1632 case NV50_IR_SUBOP_ATOM_MAX:
1633 op = OP_MAX;
1634 break;
1635 default:
1636 assert(0);
1637 return;
1638 }
1639
1640 Instruction *i =
1641 bld.mkOp2(op, atom->dType, bld.getSSA(), ld->getDef(0),
1642 atom->getSrc(1));
1643 i->setPredicate(CC_P, ld->getDef(1));
1644
1645 stVal = i->getDef(0);
1646 }
1647
1648 Instruction *st =
1649 bld.mkStore(OP_STORE, TYPE_U32, atom->getSrc(0)->asSym(),
1650 atom->getIndirect(0, 0), stVal);
1651 st->setPredicate(CC_P, ld->getDef(1));
1652 st->subOp = NV50_IR_SUBOP_STORE_UNLOCKED;
1653
1654 // Loop until the lock is acquired.
1655 bld.mkFlow(OP_BRA, tryLockAndSetBB, CC_NOT_P, ld->getDef(1));
1656 tryLockAndSetBB->cfg.attach(&tryLockAndSetBB->cfg, Graph::Edge::BACK);
1657 tryLockAndSetBB->cfg.attach(&joinBB->cfg, Graph::Edge::CROSS);
1658 bld.mkFlow(OP_BRA, joinBB, CC_ALWAYS, NULL);
1659
1660 bld.remove(atom);
1661
1662 bld.setPosition(joinBB, false);
1663 bld.mkFlow(OP_JOIN, NULL, CC_ALWAYS, NULL)->fixed = 1;
1664 }
1665
1666 bool
handleATOM(Instruction * atom)1667 NVC0LoweringPass::handleATOM(Instruction *atom)
1668 {
1669 SVSemantic sv;
1670 Value *ptr = atom->getIndirect(0, 0), *ind = atom->getIndirect(0, 1), *base;
1671
1672 switch (atom->src(0).getFile()) {
1673 case FILE_MEMORY_LOCAL:
1674 sv = SV_LBASE;
1675 break;
1676 case FILE_MEMORY_SHARED:
1677 // For Fermi/Kepler, we have to use ld lock/st unlock to perform atomic
1678 // operations on shared memory. For Maxwell, ATOMS is enough.
1679 if (targ->getChipset() < NVISA_GK104_CHIPSET)
1680 handleSharedATOM(atom);
1681 else if (targ->getChipset() < NVISA_GM107_CHIPSET)
1682 handleSharedATOMNVE4(atom);
1683 return true;
1684 case FILE_MEMORY_GLOBAL:
1685 return true;
1686 default:
1687 assert(atom->src(0).getFile() == FILE_MEMORY_BUFFER);
1688 base = loadBufInfo64(ind, atom->getSrc(0)->reg.fileIndex * 16);
1689 assert(base->reg.size == 8);
1690 if (ptr)
1691 base = bld.mkOp2v(OP_ADD, TYPE_U64, base, base, ptr);
1692 assert(base->reg.size == 8);
1693 atom->setIndirect(0, 0, base);
1694 atom->getSrc(0)->reg.file = FILE_MEMORY_GLOBAL;
1695
1696 // Harden against out-of-bounds accesses
1697 Value *offset = bld.loadImm(NULL, atom->getSrc(0)->reg.data.offset + typeSizeof(atom->sType));
1698 Value *length = loadBufLength32(ind, atom->getSrc(0)->reg.fileIndex * 16);
1699 Value *pred = new_LValue(func, FILE_PREDICATE);
1700 if (ptr)
1701 bld.mkOp2(OP_ADD, TYPE_U32, offset, offset, ptr);
1702 bld.mkCmp(OP_SET, CC_GT, TYPE_U32, pred, TYPE_U32, offset, length);
1703 atom->setPredicate(CC_NOT_P, pred);
1704 if (atom->defExists(0)) {
1705 Value *zero, *dst = atom->getDef(0);
1706 atom->setDef(0, bld.getSSA());
1707
1708 bld.setPosition(atom, true);
1709 bld.mkMov((zero = bld.getSSA()), bld.mkImm(0))
1710 ->setPredicate(CC_P, pred);
1711 bld.mkOp2(OP_UNION, TYPE_U32, dst, atom->getDef(0), zero);
1712 }
1713
1714 return true;
1715 }
1716 base =
1717 bld.mkOp1v(OP_RDSV, TYPE_U32, bld.getScratch(), bld.mkSysVal(sv, 0));
1718
1719 atom->setSrc(0, cloneShallow(func, atom->getSrc(0)));
1720 atom->getSrc(0)->reg.file = FILE_MEMORY_GLOBAL;
1721 if (ptr)
1722 base = bld.mkOp2v(OP_ADD, TYPE_U32, base, base, ptr);
1723 atom->setIndirect(0, 1, NULL);
1724 atom->setIndirect(0, 0, base);
1725
1726 return true;
1727 }
1728
1729 bool
handleATOMCctl(Instruction * atom)1730 NVC0LoweringPass::handleATOMCctl(Instruction *atom) {
1731 // Flush L1 cache manually since atomics go directly to L2. This ensures
1732 // that any later CA reads retrieve the updated data.
1733
1734 if (atom->cache != nv50_ir::CACHE_CA)
1735 return false;
1736
1737 bld.setPosition(atom, true);
1738
1739 Instruction *cctl = bld.mkOp1(OP_CCTL, TYPE_NONE, NULL, atom->getSrc(0));
1740 cctl->setIndirect(0, 0, atom->getIndirect(0, 0));
1741 cctl->fixed = 1;
1742 cctl->subOp = NV50_IR_SUBOP_CCTL_IV;
1743 if (atom->isPredicated())
1744 cctl->setPredicate(atom->cc, atom->getPredicate());
1745
1746 return true;
1747 }
1748
1749 bool
handleCasExch(Instruction * cas)1750 NVC0LoweringPass::handleCasExch(Instruction *cas)
1751 {
1752 if (targ->getChipset() < NVISA_GM107_CHIPSET) {
1753 if (cas->src(0).getFile() == FILE_MEMORY_SHARED) {
1754 // ATOM_CAS and ATOM_EXCH are handled in handleSharedATOM().
1755 return false;
1756 }
1757 }
1758
1759 if (cas->subOp != NV50_IR_SUBOP_ATOM_CAS &&
1760 cas->subOp != NV50_IR_SUBOP_ATOM_EXCH)
1761 return false;
1762
1763 if (cas->subOp == NV50_IR_SUBOP_ATOM_CAS &&
1764 targ->getChipset() < NVISA_GV100_CHIPSET) {
1765 // CAS is crazy. It's 2nd source is a double reg, and the 3rd source
1766 // should be set to the high part of the double reg or bad things will
1767 // happen elsewhere in the universe.
1768 // Also, it sometimes returns the new value instead of the old one
1769 // under mysterious circumstances.
1770 DataType ty = typeOfSize(typeSizeof(cas->dType) * 2);
1771 Value *dreg = bld.getSSA(typeSizeof(ty));
1772 bld.setPosition(cas, false);
1773 bld.mkOp2(OP_MERGE, ty, dreg, cas->getSrc(1), cas->getSrc(2));
1774 cas->setSrc(1, dreg);
1775 cas->setSrc(2, dreg);
1776 }
1777
1778 return true;
1779 }
1780
1781 inline Value *
loadResInfo32(Value * ptr,uint32_t off,uint16_t base)1782 NVC0LoweringPass::loadResInfo32(Value *ptr, uint32_t off, uint16_t base)
1783 {
1784 uint8_t b = prog->driver->io.auxCBSlot;
1785 off += base;
1786
1787 return bld.
1788 mkLoadv(TYPE_U32, bld.mkSymbol(FILE_MEMORY_CONST, b, TYPE_U32, off), ptr);
1789 }
1790
1791 inline Value *
loadResInfo64(Value * ptr,uint32_t off,uint16_t base)1792 NVC0LoweringPass::loadResInfo64(Value *ptr, uint32_t off, uint16_t base)
1793 {
1794 uint8_t b = prog->driver->io.auxCBSlot;
1795 off += base;
1796
1797 if (ptr)
1798 ptr = bld.mkOp2v(OP_SHL, TYPE_U32, bld.getScratch(), ptr, bld.mkImm(4));
1799
1800 return bld.
1801 mkLoadv(TYPE_U64, bld.mkSymbol(FILE_MEMORY_CONST, b, TYPE_U64, off), ptr);
1802 }
1803
1804 inline Value *
loadResLength32(Value * ptr,uint32_t off,uint16_t base)1805 NVC0LoweringPass::loadResLength32(Value *ptr, uint32_t off, uint16_t base)
1806 {
1807 uint8_t b = prog->driver->io.auxCBSlot;
1808 off += base;
1809
1810 if (ptr)
1811 ptr = bld.mkOp2v(OP_SHL, TYPE_U32, bld.getScratch(), ptr, bld.mkImm(4));
1812
1813 return bld.
1814 mkLoadv(TYPE_U32, bld.mkSymbol(FILE_MEMORY_CONST, b, TYPE_U64, off + 8), ptr);
1815 }
1816
1817 inline Value *
loadBufInfo64(Value * ptr,uint32_t off)1818 NVC0LoweringPass::loadBufInfo64(Value *ptr, uint32_t off)
1819 {
1820 return loadResInfo64(ptr, off, prog->driver->io.bufInfoBase);
1821 }
1822
1823 inline Value *
loadBufLength32(Value * ptr,uint32_t off)1824 NVC0LoweringPass::loadBufLength32(Value *ptr, uint32_t off)
1825 {
1826 return loadResLength32(ptr, off, prog->driver->io.bufInfoBase);
1827 }
1828
1829 inline Value *
loadUboInfo64(Value * ptr,uint32_t off)1830 NVC0LoweringPass::loadUboInfo64(Value *ptr, uint32_t off)
1831 {
1832 return loadResInfo64(ptr, off, prog->driver->io.uboInfoBase);
1833 }
1834
1835 inline Value *
loadUboLength32(Value * ptr,uint32_t off)1836 NVC0LoweringPass::loadUboLength32(Value *ptr, uint32_t off)
1837 {
1838 return loadResLength32(ptr, off, prog->driver->io.uboInfoBase);
1839 }
1840
1841 inline Value *
loadMsInfo32(Value * ptr,uint32_t off)1842 NVC0LoweringPass::loadMsInfo32(Value *ptr, uint32_t off)
1843 {
1844 uint8_t b = prog->driver->io.msInfoCBSlot;
1845 off += prog->driver->io.msInfoBase;
1846 return bld.
1847 mkLoadv(TYPE_U32, bld.mkSymbol(FILE_MEMORY_CONST, b, TYPE_U32, off), ptr);
1848 }
1849
1850 inline Value *
loadSuInfo32(Value * ptr,int slot,uint32_t off,bool bindless)1851 NVC0LoweringPass::loadSuInfo32(Value *ptr, int slot, uint32_t off, bool bindless)
1852 {
1853 uint32_t base = slot * NVC0_SU_INFO__STRIDE;
1854
1855 // We don't upload surface info for bindless for GM107+
1856 assert(!bindless || targ->getChipset() < NVISA_GM107_CHIPSET);
1857
1858 if (ptr) {
1859 ptr = bld.mkOp2v(OP_ADD, TYPE_U32, bld.getSSA(), ptr, bld.mkImm(slot));
1860 if (bindless)
1861 ptr = bld.mkOp2v(OP_AND, TYPE_U32, bld.getSSA(), ptr, bld.mkImm(511));
1862 else
1863 ptr = bld.mkOp2v(OP_AND, TYPE_U32, bld.getSSA(), ptr, bld.mkImm(7));
1864 ptr = bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(), ptr, bld.mkImm(6));
1865 base = 0;
1866 }
1867 off += base;
1868
1869 return loadResInfo32(ptr, off, bindless ? prog->driver->io.bindlessBase :
1870 prog->driver->io.suInfoBase);
1871 }
1872
1873 Value *
loadMsAdjInfo32(TexInstruction::Target target,uint32_t index,int slot,Value * ind,bool bindless)1874 NVC0LoweringPass::loadMsAdjInfo32(TexInstruction::Target target, uint32_t index, int slot, Value *ind, bool bindless)
1875 {
1876 if (!bindless || targ->getChipset() < NVISA_GM107_CHIPSET)
1877 return loadSuInfo32(ind, slot, NVC0_SU_INFO_MS(index), bindless);
1878
1879 assert(bindless);
1880
1881 Value *samples = bld.getSSA();
1882 // this shouldn't be lowered because it's being inserted before the current instruction
1883 TexInstruction *tex = new_TexInstruction(func, OP_TXQ);
1884 tex->tex.target = target;
1885 tex->tex.query = TXQ_TYPE;
1886 tex->tex.mask = 0x4;
1887 tex->tex.r = 0xff;
1888 tex->tex.s = 0x1f;
1889 tex->tex.rIndirectSrc = 0;
1890 tex->setDef(0, samples);
1891 tex->setSrc(0, ind);
1892 tex->setSrc(1, bld.loadImm(NULL, 0));
1893 bld.insert(tex);
1894
1895 // doesn't work with sample counts other than 1/2/4/8 but they aren't supported
1896 switch (index) {
1897 case 0: {
1898 Value *tmp = bld.mkOp2v(OP_ADD, TYPE_U32, bld.getSSA(), samples, bld.mkImm(2));
1899 return bld.mkOp2v(OP_SHR, TYPE_U32, bld.getSSA(), tmp, bld.mkImm(2));
1900 }
1901 case 1: {
1902 Value *tmp = bld.mkCmp(OP_SET, CC_GT, TYPE_U32, bld.getSSA(), TYPE_U32, samples, bld.mkImm(2))->getDef(0);
1903 return bld.mkOp2v(OP_AND, TYPE_U32, bld.getSSA(), tmp, bld.mkImm(1));
1904 }
1905 default: {
1906 assert(false);
1907 return NULL;
1908 }
1909 }
1910 }
1911
getSuClampSubOp(const TexInstruction * su,int c)1912 static inline uint16_t getSuClampSubOp(const TexInstruction *su, int c)
1913 {
1914 switch (su->tex.target.getEnum()) {
1915 case TEX_TARGET_BUFFER: return NV50_IR_SUBOP_SUCLAMP_PL(0, 1);
1916 case TEX_TARGET_RECT: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1917 case TEX_TARGET_1D: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1918 case TEX_TARGET_1D_ARRAY: return (c == 1) ?
1919 NV50_IR_SUBOP_SUCLAMP_PL(0, 2) :
1920 NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1921 case TEX_TARGET_2D: return NV50_IR_SUBOP_SUCLAMP_BL(0, 2);
1922 case TEX_TARGET_2D_MS: return NV50_IR_SUBOP_SUCLAMP_BL(0, 2);
1923 case TEX_TARGET_2D_ARRAY: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1924 case TEX_TARGET_2D_MS_ARRAY: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1925 case TEX_TARGET_3D: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1926 case TEX_TARGET_CUBE: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1927 case TEX_TARGET_CUBE_ARRAY: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1928 default:
1929 assert(0);
1930 return 0;
1931 }
1932 }
1933
1934 bool
handleSUQ(TexInstruction * suq)1935 NVC0LoweringPass::handleSUQ(TexInstruction *suq)
1936 {
1937 int mask = suq->tex.mask;
1938 int dim = suq->tex.target.getDim();
1939 int arg = dim + (suq->tex.target.isArray() || suq->tex.target.isCube());
1940 Value *ind = suq->getIndirectR();
1941 int slot = suq->tex.r;
1942 int c, d;
1943
1944 for (c = 0, d = 0; c < 3; ++c, mask >>= 1) {
1945 if (c >= arg || !(mask & 1))
1946 continue;
1947
1948 int offset;
1949
1950 if (c == 1 && suq->tex.target == TEX_TARGET_1D_ARRAY) {
1951 offset = NVC0_SU_INFO_SIZE(2);
1952 } else {
1953 offset = NVC0_SU_INFO_SIZE(c);
1954 }
1955 bld.mkMov(suq->getDef(d++), loadSuInfo32(ind, slot, offset, suq->tex.bindless));
1956 if (c == 2 && suq->tex.target.isCube())
1957 bld.mkOp2(OP_DIV, TYPE_U32, suq->getDef(d - 1), suq->getDef(d - 1),
1958 bld.loadImm(NULL, 6));
1959 }
1960
1961 if (mask & 1) {
1962 if (suq->tex.target.isMS()) {
1963 Value *ms_x = loadSuInfo32(ind, slot, NVC0_SU_INFO_MS(0), suq->tex.bindless);
1964 Value *ms_y = loadSuInfo32(ind, slot, NVC0_SU_INFO_MS(1), suq->tex.bindless);
1965 Value *ms = bld.mkOp2v(OP_ADD, TYPE_U32, bld.getScratch(), ms_x, ms_y);
1966 bld.mkOp2(OP_SHL, TYPE_U32, suq->getDef(d++), bld.loadImm(NULL, 1), ms);
1967 } else {
1968 bld.mkMov(suq->getDef(d++), bld.loadImm(NULL, 1));
1969 }
1970 }
1971
1972 bld.remove(suq);
1973 return true;
1974 }
1975
1976 void
adjustCoordinatesMS(TexInstruction * tex)1977 NVC0LoweringPass::adjustCoordinatesMS(TexInstruction *tex)
1978 {
1979 const int arg = tex->tex.target.getArgCount();
1980 int slot = tex->tex.r;
1981
1982 if (tex->tex.target == TEX_TARGET_2D_MS)
1983 tex->tex.target = TEX_TARGET_2D;
1984 else
1985 if (tex->tex.target == TEX_TARGET_2D_MS_ARRAY)
1986 tex->tex.target = TEX_TARGET_2D_ARRAY;
1987 else
1988 return;
1989
1990 Value *x = tex->getSrc(0);
1991 Value *y = tex->getSrc(1);
1992 Value *s = tex->getSrc(arg - 1);
1993
1994 Value *tx = bld.getSSA(), *ty = bld.getSSA(), *ts = bld.getSSA();
1995 Value *ind = tex->getIndirectR();
1996
1997 Value *ms_x = loadMsAdjInfo32(tex->tex.target, 0, slot, ind, tex->tex.bindless);
1998 Value *ms_y = loadMsAdjInfo32(tex->tex.target, 1, slot, ind, tex->tex.bindless);
1999
2000 bld.mkOp2(OP_SHL, TYPE_U32, tx, x, ms_x);
2001 bld.mkOp2(OP_SHL, TYPE_U32, ty, y, ms_y);
2002
2003 s = bld.mkOp2v(OP_AND, TYPE_U32, ts, s, bld.loadImm(NULL, 0x7));
2004 s = bld.mkOp2v(OP_SHL, TYPE_U32, ts, ts, bld.mkImm(3));
2005
2006 Value *dx = loadMsInfo32(ts, 0x0);
2007 Value *dy = loadMsInfo32(ts, 0x4);
2008
2009 bld.mkOp2(OP_ADD, TYPE_U32, tx, tx, dx);
2010 bld.mkOp2(OP_ADD, TYPE_U32, ty, ty, dy);
2011
2012 tex->setSrc(0, tx);
2013 tex->setSrc(1, ty);
2014 tex->moveSources(arg, -1);
2015 }
2016
2017 // Sets 64-bit "generic address", predicate and format sources for SULD/SUST.
2018 // They're computed from the coordinates using the surface info in c[] space.
2019 void
processSurfaceCoordsNVE4(TexInstruction * su)2020 NVC0LoweringPass::processSurfaceCoordsNVE4(TexInstruction *su)
2021 {
2022 Instruction *insn;
2023 const bool atom = su->op == OP_SUREDB || su->op == OP_SUREDP;
2024 const bool raw =
2025 su->op == OP_SULDB || su->op == OP_SUSTB || su->op == OP_SUREDB;
2026 const int slot = su->tex.r;
2027 const int dim = su->tex.target.getDim();
2028 const bool array = su->tex.target.isArray() || su->tex.target.isCube();
2029 const int arg = dim + array;
2030 int c;
2031 Value *zero = bld.mkImm(0);
2032 Value *p1 = NULL;
2033 Value *v;
2034 Value *src[3];
2035 Value *bf, *eau, *off;
2036 Value *addr, *pred;
2037 Value *ind = su->getIndirectR();
2038 Value *y, *z;
2039
2040 off = bld.getScratch(4);
2041 bf = bld.getScratch(4);
2042 addr = bld.getSSA(8);
2043 pred = bld.getScratch(1, FILE_PREDICATE);
2044
2045 bld.setPosition(su, false);
2046
2047 adjustCoordinatesMS(su);
2048
2049 // calculate clamped coordinates
2050 for (c = 0; c < arg; ++c) {
2051 int dimc = c;
2052
2053 if (c == 1 && su->tex.target == TEX_TARGET_1D_ARRAY) {
2054 // The array index is stored in the Z component for 1D arrays.
2055 dimc = 2;
2056 }
2057
2058 src[c] = bld.getScratch();
2059 if (c == 0 && raw)
2060 v = loadSuInfo32(ind, slot, NVC0_SU_INFO_RAW_X, su->tex.bindless);
2061 else
2062 v = loadSuInfo32(ind, slot, NVC0_SU_INFO_DIM(dimc), su->tex.bindless);
2063 bld.mkOp3(OP_SUCLAMP, TYPE_S32, src[c], su->getSrc(c), v, zero)
2064 ->subOp = getSuClampSubOp(su, dimc);
2065 }
2066 for (; c < 3; ++c)
2067 src[c] = zero;
2068
2069 if (dim == 2 && !array) {
2070 v = loadSuInfo32(ind, slot, NVC0_SU_INFO_UNK1C, su->tex.bindless);
2071 src[2] = bld.mkOp2v(OP_SHR, TYPE_U32, bld.getSSA(),
2072 v, bld.loadImm(NULL, 16));
2073
2074 v = loadSuInfo32(ind, slot, NVC0_SU_INFO_DIM(2), su->tex.bindless);
2075 bld.mkOp3(OP_SUCLAMP, TYPE_S32, src[2], src[2], v, zero)
2076 ->subOp = NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
2077 }
2078
2079 // set predicate output
2080 if (su->tex.target == TEX_TARGET_BUFFER) {
2081 src[0]->getInsn()->setFlagsDef(1, pred);
2082 } else
2083 if (array) {
2084 p1 = bld.getSSA(1, FILE_PREDICATE);
2085 src[dim]->getInsn()->setFlagsDef(1, p1);
2086 }
2087
2088 // calculate pixel offset
2089 if (dim == 1) {
2090 y = z = zero;
2091 if (su->tex.target != TEX_TARGET_BUFFER)
2092 bld.mkOp2(OP_AND, TYPE_U32, off, src[0], bld.loadImm(NULL, 0xffff));
2093 } else {
2094 y = src[1];
2095 z = src[2];
2096
2097 v = loadSuInfo32(ind, slot, NVC0_SU_INFO_UNK1C, su->tex.bindless);
2098 bld.mkOp3(OP_MADSP, TYPE_U32, off, src[2], v, src[1])
2099 ->subOp = NV50_IR_SUBOP_MADSP(4,4,8); // u16l u16l u16l
2100
2101 v = loadSuInfo32(ind, slot, NVC0_SU_INFO_PITCH, su->tex.bindless);
2102 bld.mkOp3(OP_MADSP, TYPE_U32, off, off, v, src[0])
2103 ->subOp = array ?
2104 NV50_IR_SUBOP_MADSP_SD : NV50_IR_SUBOP_MADSP(0,2,8); // u32 u16l u16l
2105 }
2106
2107 // calculate effective address part 1
2108 if (su->tex.target == TEX_TARGET_BUFFER) {
2109 if (raw) {
2110 bf = src[0];
2111 } else {
2112 v = loadSuInfo32(ind, slot, NVC0_SU_INFO_FMT, su->tex.bindless);
2113 bld.mkOp3(OP_VSHL, TYPE_U32, bf, src[0], v, zero)
2114 ->subOp = NV50_IR_SUBOP_V1(7,6,8|2);
2115 }
2116 } else {
2117 uint16_t subOp = 0;
2118
2119 switch (dim) {
2120 case 1:
2121 break;
2122 case 2:
2123 if (array) {
2124 z = off;
2125 } else {
2126 subOp = NV50_IR_SUBOP_SUBFM_3D;
2127 }
2128 break;
2129 default:
2130 subOp = NV50_IR_SUBOP_SUBFM_3D;
2131 assert(dim == 3);
2132 break;
2133 }
2134 insn = bld.mkOp3(OP_SUBFM, TYPE_U32, bf, src[0], y, z);
2135 insn->subOp = subOp;
2136 insn->setFlagsDef(1, pred);
2137 }
2138
2139 // part 2
2140 v = loadSuInfo32(ind, slot, NVC0_SU_INFO_ADDR, su->tex.bindless);
2141
2142 if (su->tex.target == TEX_TARGET_BUFFER) {
2143 eau = v;
2144 } else {
2145 eau = bld.mkOp3v(OP_SUEAU, TYPE_U32, bld.getScratch(4), off, bf, v);
2146 }
2147 // add array layer offset
2148 if (array) {
2149 v = loadSuInfo32(ind, slot, NVC0_SU_INFO_ARRAY, su->tex.bindless);
2150 if (dim == 1)
2151 bld.mkOp3(OP_MADSP, TYPE_U32, eau, src[1], v, eau)
2152 ->subOp = NV50_IR_SUBOP_MADSP(4,0,0); // u16 u24 u32
2153 else
2154 bld.mkOp3(OP_MADSP, TYPE_U32, eau, v, src[2], eau)
2155 ->subOp = NV50_IR_SUBOP_MADSP(0,0,0); // u32 u24 u32
2156 // combine predicates
2157 assert(p1);
2158 bld.mkOp2(OP_OR, TYPE_U8, pred, pred, p1);
2159 }
2160
2161 if (atom) {
2162 Value *lo = bf;
2163 if (su->tex.target == TEX_TARGET_BUFFER) {
2164 lo = zero;
2165 bld.mkMov(off, bf);
2166 }
2167 // bf == g[] address & 0xff
2168 // eau == g[] address >> 8
2169 bld.mkOp3(OP_PERMT, TYPE_U32, bf, lo, bld.loadImm(NULL, 0x6540), eau);
2170 bld.mkOp3(OP_PERMT, TYPE_U32, eau, zero, bld.loadImm(NULL, 0x0007), eau);
2171 } else
2172 if (su->op == OP_SULDP && su->tex.target == TEX_TARGET_BUFFER) {
2173 // Convert from u32 to u8 address format, which is what the library code
2174 // doing SULDP currently uses.
2175 // XXX: can SUEAU do this ?
2176 // XXX: does it matter that we don't mask high bytes in bf ?
2177 // Grrr.
2178 bld.mkOp2(OP_SHR, TYPE_U32, off, bf, bld.mkImm(8));
2179 bld.mkOp2(OP_ADD, TYPE_U32, eau, eau, off);
2180 }
2181
2182 bld.mkOp2(OP_MERGE, TYPE_U64, addr, bf, eau);
2183
2184 if (atom && su->tex.target == TEX_TARGET_BUFFER)
2185 bld.mkOp2(OP_ADD, TYPE_U64, addr, addr, off);
2186
2187 // let's just set it 0 for raw access and hope it works
2188 v = raw ?
2189 bld.mkImm(0) : loadSuInfo32(ind, slot, NVC0_SU_INFO_FMT, su->tex.bindless);
2190
2191 // get rid of old coordinate sources, make space for fmt info and predicate
2192 su->moveSources(arg, 3 - arg);
2193 // set 64 bit address and 32-bit format sources
2194 su->setSrc(0, addr);
2195 su->setSrc(1, v);
2196 su->setSrc(2, pred);
2197 su->setIndirectR(NULL);
2198
2199 // prevent read fault when the image is not actually bound
2200 CmpInstruction *pred1 =
2201 bld.mkCmp(OP_SET, CC_EQ, TYPE_U32, bld.getSSA(1, FILE_PREDICATE),
2202 TYPE_U32, bld.mkImm(0),
2203 loadSuInfo32(ind, slot, NVC0_SU_INFO_ADDR, su->tex.bindless));
2204
2205 if (su->op != OP_SUSTP && su->tex.format) {
2206 const TexInstruction::ImgFormatDesc *format = su->tex.format;
2207 int blockwidth = format->bits[0] + format->bits[1] +
2208 format->bits[2] + format->bits[3];
2209
2210 // make sure that the format doesn't mismatch
2211 assert(format->components != 0);
2212 bld.mkCmp(OP_SET_OR, CC_NE, TYPE_U32, pred1->getDef(0),
2213 TYPE_U32, bld.loadImm(NULL, blockwidth / 8),
2214 loadSuInfo32(ind, slot, NVC0_SU_INFO_BSIZE, su->tex.bindless),
2215 pred1->getDef(0));
2216 }
2217 su->setPredicate(CC_NOT_P, pred1->getDef(0));
2218
2219 // TODO: initialize def values to 0 when the surface operation is not
2220 // performed (not needed for stores). Also, fix the "address bounds test"
2221 // subtests from arb_shader_image_load_store-invalid for buffers, because it
2222 // seems like that the predicate is not correctly set by suclamp.
2223 }
2224
2225 static DataType
getSrcType(const TexInstruction::ImgFormatDesc * t,int c)2226 getSrcType(const TexInstruction::ImgFormatDesc *t, int c)
2227 {
2228 switch (t->type) {
2229 case FLOAT: return t->bits[c] == 16 ? TYPE_F16 : TYPE_F32;
2230 case UNORM: return t->bits[c] == 8 ? TYPE_U8 : TYPE_U16;
2231 case SNORM: return t->bits[c] == 8 ? TYPE_S8 : TYPE_S16;
2232 case UINT:
2233 return (t->bits[c] == 8 ? TYPE_U8 :
2234 (t->bits[c] == 16 ? TYPE_U16 : TYPE_U32));
2235 case SINT:
2236 return (t->bits[c] == 8 ? TYPE_S8 :
2237 (t->bits[c] == 16 ? TYPE_S16 : TYPE_S32));
2238 }
2239 return TYPE_NONE;
2240 }
2241
2242 static DataType
getDestType(const ImgType type)2243 getDestType(const ImgType type) {
2244 switch (type) {
2245 case FLOAT:
2246 case UNORM:
2247 case SNORM:
2248 return TYPE_F32;
2249 case UINT:
2250 return TYPE_U32;
2251 case SINT:
2252 return TYPE_S32;
2253 default:
2254 assert(!"Impossible type");
2255 return TYPE_NONE;
2256 }
2257 }
2258
2259 void
convertSurfaceFormat(TexInstruction * su,Instruction ** loaded)2260 NVC0LoweringPass::convertSurfaceFormat(TexInstruction *su, Instruction **loaded)
2261 {
2262 const TexInstruction::ImgFormatDesc *format = su->tex.format;
2263 int width = format->bits[0] + format->bits[1] +
2264 format->bits[2] + format->bits[3];
2265 Value *untypedDst[4] = {};
2266 Value *typedDst[4] = {};
2267
2268 // We must convert this to a generic load.
2269 su->op = OP_SULDB;
2270
2271 su->dType = typeOfSize(width / 8);
2272 su->sType = TYPE_U8;
2273
2274 for (int i = 0; i < width / 32; i++)
2275 untypedDst[i] = bld.getSSA();
2276 if (width < 32)
2277 untypedDst[0] = bld.getSSA();
2278
2279 if (loaded && loaded[0]) {
2280 for (int i = 0; i < 4; i++) {
2281 if (loaded[i])
2282 typedDst[i] = loaded[i]->getDef(0);
2283 }
2284 } else {
2285 for (int i = 0; i < 4; i++) {
2286 typedDst[i] = su->getDef(i);
2287 }
2288 }
2289
2290 // Set the untyped dsts as the su's destinations
2291 if (loaded && loaded[0]) {
2292 for (int i = 0; i < 4; i++)
2293 if (loaded[i])
2294 loaded[i]->setDef(0, untypedDst[i]);
2295 } else {
2296 for (int i = 0; i < 4; i++)
2297 su->setDef(i, untypedDst[i]);
2298
2299 bld.setPosition(su, true);
2300 }
2301
2302 // Unpack each component into the typed dsts
2303 int bits = 0;
2304 for (int i = 0; i < 4; bits += format->bits[i], i++) {
2305 if (!typedDst[i])
2306 continue;
2307
2308 if (loaded && loaded[0])
2309 bld.setPosition(loaded[i], true);
2310
2311 if (i >= format->components) {
2312 if (format->type == FLOAT ||
2313 format->type == UNORM ||
2314 format->type == SNORM)
2315 bld.loadImm(typedDst[i], i == 3 ? 1.0f : 0.0f);
2316 else
2317 bld.loadImm(typedDst[i], i == 3 ? 1 : 0);
2318 continue;
2319 }
2320
2321 // Get just that component's data into the relevant place
2322 if (format->bits[i] == 32)
2323 bld.mkMov(typedDst[i], untypedDst[i]);
2324 else if (format->bits[i] == 16)
2325 bld.mkCvt(OP_CVT, getDestType(format->type), typedDst[i],
2326 getSrcType(format, i), untypedDst[i / 2])
2327 ->subOp = (i & 1) << (format->type == FLOAT ? 0 : 1);
2328 else if (format->bits[i] == 8)
2329 bld.mkCvt(OP_CVT, getDestType(format->type), typedDst[i],
2330 getSrcType(format, i), untypedDst[0])->subOp = i;
2331 else {
2332 bld.mkOp2(OP_EXTBF, TYPE_U32, typedDst[i], untypedDst[bits / 32],
2333 bld.mkImm((bits % 32) | (format->bits[i] << 8)));
2334 if (format->type == UNORM || format->type == SNORM)
2335 bld.mkCvt(OP_CVT, TYPE_F32, typedDst[i], getSrcType(format, i), typedDst[i]);
2336 }
2337
2338 // Normalize / convert as necessary
2339 if (format->type == UNORM)
2340 bld.mkOp2(OP_MUL, TYPE_F32, typedDst[i], typedDst[i], bld.loadImm(NULL, 1.0f / ((1 << format->bits[i]) - 1)));
2341 else if (format->type == SNORM)
2342 bld.mkOp2(OP_MUL, TYPE_F32, typedDst[i], typedDst[i], bld.loadImm(NULL, 1.0f / ((1 << (format->bits[i] - 1)) - 1)));
2343 else if (format->type == FLOAT && format->bits[i] < 16) {
2344 bld.mkOp2(OP_SHL, TYPE_U32, typedDst[i], typedDst[i], bld.loadImm(NULL, 15 - format->bits[i]));
2345 bld.mkCvt(OP_CVT, TYPE_F32, typedDst[i], TYPE_F16, typedDst[i]);
2346 }
2347 }
2348
2349 if (format->bgra) {
2350 std::swap(typedDst[0], typedDst[2]);
2351 }
2352 }
2353
2354 void
insertOOBSurfaceOpResult(TexInstruction * su)2355 NVC0LoweringPass::insertOOBSurfaceOpResult(TexInstruction *su)
2356 {
2357 if (!su->getPredicate())
2358 return;
2359
2360 bld.setPosition(su, true);
2361
2362 for (unsigned i = 0; su->defExists(i); ++i) {
2363 Value *def = su->getDef(i);
2364 Value *newDef = bld.getSSA();
2365 su->setDef(i, newDef);
2366
2367 Instruction *mov = bld.mkMov(bld.getSSA(), bld.loadImm(NULL, 0));
2368 assert(su->cc == CC_NOT_P);
2369 mov->setPredicate(CC_P, su->getPredicate());
2370 Instruction *uni = bld.mkOp2(OP_UNION, TYPE_U32, bld.getSSA(), newDef, mov->getDef(0));
2371 bld.mkMov(def, uni->getDef(0));
2372 }
2373 }
2374
2375 void
handleSurfaceOpNVE4(TexInstruction * su)2376 NVC0LoweringPass::handleSurfaceOpNVE4(TexInstruction *su)
2377 {
2378 processSurfaceCoordsNVE4(su);
2379
2380 if (su->op == OP_SULDP && su->tex.format) {
2381 convertSurfaceFormat(su, NULL);
2382 insertOOBSurfaceOpResult(su);
2383 }
2384
2385 if (su->op == OP_SUREDB || su->op == OP_SUREDP) {
2386 assert(su->getPredicate());
2387 Value *pred =
2388 bld.mkOp2v(OP_OR, TYPE_U8, bld.getScratch(1, FILE_PREDICATE),
2389 su->getPredicate(), su->getSrc(2));
2390
2391 Instruction *red = bld.mkOp(OP_ATOM, su->dType, bld.getSSA());
2392 red->subOp = su->subOp;
2393 red->setSrc(0, bld.mkSymbol(FILE_MEMORY_GLOBAL, 0, TYPE_U32, 0));
2394 red->setSrc(1, su->getSrc(3));
2395 if (su->subOp == NV50_IR_SUBOP_ATOM_CAS)
2396 red->setSrc(2, su->getSrc(4));
2397 red->setIndirect(0, 0, su->getSrc(0));
2398
2399 // make sure to initialize dst value when the atomic operation is not
2400 // performed
2401 Instruction *mov = bld.mkMov(bld.getSSA(), bld.loadImm(NULL, 0));
2402
2403 assert(su->cc == CC_NOT_P);
2404 red->setPredicate(su->cc, pred);
2405 mov->setPredicate(CC_P, pred);
2406
2407 bld.mkOp2(OP_UNION, TYPE_U32, su->getDef(0),
2408 red->getDef(0), mov->getDef(0));
2409
2410 delete_Instruction(bld.getProgram(), su);
2411
2412 handleATOMCctl(red);
2413 handleCasExch(red);
2414 }
2415
2416 if (su->op == OP_SUSTB || su->op == OP_SUSTP)
2417 su->sType = (su->tex.target == TEX_TARGET_BUFFER) ? TYPE_U32 : TYPE_U8;
2418 }
2419
2420 void
processSurfaceCoordsNVC0(TexInstruction * su)2421 NVC0LoweringPass::processSurfaceCoordsNVC0(TexInstruction *su)
2422 {
2423 const int slot = su->tex.r;
2424 const int dim = su->tex.target.getDim();
2425 const int arg = dim + (su->tex.target.isArray() || su->tex.target.isCube());
2426 int c;
2427 Value *zero = bld.mkImm(0);
2428 Value *src[3];
2429 Value *v;
2430 Value *ind = su->getIndirectR();
2431
2432 bld.setPosition(su, false);
2433
2434 adjustCoordinatesMS(su);
2435
2436 if (ind) {
2437 Value *ptr;
2438 ptr = bld.mkOp2v(OP_ADD, TYPE_U32, bld.getSSA(), ind, bld.mkImm(su->tex.r));
2439 ptr = bld.mkOp2v(OP_AND, TYPE_U32, bld.getSSA(), ptr, bld.mkImm(7));
2440 su->setIndirectR(ptr);
2441 }
2442
2443 // get surface coordinates
2444 for (c = 0; c < arg; ++c)
2445 src[c] = su->getSrc(c);
2446 for (; c < 3; ++c)
2447 src[c] = zero;
2448
2449 // calculate pixel offset
2450 if (su->op == OP_SULDP || su->op == OP_SUREDP) {
2451 v = loadSuInfo32(ind, slot, NVC0_SU_INFO_BSIZE, su->tex.bindless);
2452 su->setSrc(0, (src[0] = bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(), src[0], v)));
2453 }
2454
2455 // add array layer offset
2456 if (su->tex.target.isArray() || su->tex.target.isCube()) {
2457 v = loadSuInfo32(ind, slot, NVC0_SU_INFO_ARRAY, su->tex.bindless);
2458 assert(dim > 1);
2459 su->setSrc(2, (src[2] = bld.mkOp2v(OP_MUL, TYPE_U32, bld.getSSA(), src[2], v)));
2460 }
2461
2462 // 3d is special-cased. Note that a single "slice" of a 3d image may
2463 // also be attached as 2d, so we have to do the same 3d processing for
2464 // 2d as well, just in case. In order to remap a 3d image onto a 2d
2465 // image, we have to retile it "by hand".
2466 if (su->tex.target == TEX_TARGET_3D || su->tex.target == TEX_TARGET_2D) {
2467 Value *z = loadSuInfo32(ind, slot, NVC0_SU_INFO_UNK1C, su->tex.bindless);
2468 Value *y_size_aligned =
2469 bld.mkOp2v(OP_AND, TYPE_U32, bld.getSSA(),
2470 loadSuInfo32(ind, slot, NVC0_SU_INFO_DIM_Y, su->tex.bindless),
2471 bld.loadImm(NULL, 0x0000ffff));
2472 // Add the z coordinate for actual 3d-images
2473 if (dim > 2)
2474 src[2] = bld.mkOp2v(OP_ADD, TYPE_U32, bld.getSSA(), z, src[2]);
2475 else
2476 src[2] = z;
2477
2478 // Compute the surface parameters from tile shifts
2479 Value *tile_shift[3];
2480 Value *tile_extbf[3];
2481 // Fetch the "real" tiling parameters of the underlying surface
2482 for (int i = 0; i < 3; i++) {
2483 tile_extbf[i] =
2484 bld.mkOp2v(OP_SHR, TYPE_U32, bld.getSSA(),
2485 loadSuInfo32(ind, slot, NVC0_SU_INFO_DIM(i), su->tex.bindless),
2486 bld.loadImm(NULL, 16));
2487 tile_shift[i] =
2488 bld.mkOp2v(OP_SHR, TYPE_U32, bld.getSSA(),
2489 loadSuInfo32(ind, slot, NVC0_SU_INFO_DIM(i), su->tex.bindless),
2490 bld.loadImm(NULL, 24));
2491 }
2492
2493 // However for load/atomics, we use byte-indexing. And for byte
2494 // indexing, the X tile size is always the same. This leads to slightly
2495 // better code.
2496 if (su->op == OP_SULDP || su->op == OP_SUREDP) {
2497 tile_extbf[0] = bld.loadImm(NULL, 0x600);
2498 tile_shift[0] = bld.loadImm(NULL, 6);
2499 }
2500
2501 // Compute the location of given coordinate, both inside the tile as
2502 // well as which (linearly-laid out) tile it's in.
2503 Value *coord_in_tile[3];
2504 Value *tile[3];
2505 for (int i = 0; i < 3; i++) {
2506 coord_in_tile[i] = bld.mkOp2v(OP_EXTBF, TYPE_U32, bld.getSSA(), src[i], tile_extbf[i]);
2507 tile[i] = bld.mkOp2v(OP_SHR, TYPE_U32, bld.getSSA(), src[i], tile_shift[i]);
2508 }
2509
2510 // Based on the "real" tiling parameters, compute x/y coordinates in the
2511 // larger surface with 2d tiling that was supplied to the hardware. This
2512 // was determined and verified with the help of the tiling pseudocode in
2513 // the envytools docs.
2514 //
2515 // adj_x = x_coord_in_tile + x_tile * x_tile_size * z_tile_size +
2516 // z_coord_in_tile * x_tile_size
2517 // adj_y = y_coord_in_tile + y_tile * y_tile_size +
2518 // z_tile * y_tile_size * y_tiles
2519 //
2520 // Note: STRIDE_Y = y_tile_size * y_tiles
2521
2522 su->setSrc(0, bld.mkOp2v(
2523 OP_ADD, TYPE_U32, bld.getSSA(),
2524 bld.mkOp2v(OP_ADD, TYPE_U32, bld.getSSA(),
2525 coord_in_tile[0],
2526 bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(),
2527 tile[0],
2528 bld.mkOp2v(OP_ADD, TYPE_U32, bld.getSSA(),
2529 tile_shift[2], tile_shift[0]))),
2530 bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(),
2531 coord_in_tile[2], tile_shift[0])));
2532
2533 su->setSrc(1, bld.mkOp2v(
2534 OP_ADD, TYPE_U32, bld.getSSA(),
2535 bld.mkOp2v(OP_MUL, TYPE_U32, bld.getSSA(),
2536 tile[2], y_size_aligned),
2537 bld.mkOp2v(OP_ADD, TYPE_U32, bld.getSSA(),
2538 coord_in_tile[1],
2539 bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(),
2540 tile[1], tile_shift[1]))));
2541
2542 if (su->tex.target == TEX_TARGET_3D) {
2543 su->moveSources(3, -1);
2544 su->tex.target = TEX_TARGET_2D;
2545 }
2546 }
2547
2548 // prevent read fault when the image is not actually bound
2549 CmpInstruction *pred =
2550 bld.mkCmp(OP_SET, CC_EQ, TYPE_U32, bld.getSSA(1, FILE_PREDICATE),
2551 TYPE_U32, bld.mkImm(0),
2552 loadSuInfo32(ind, slot, NVC0_SU_INFO_ADDR, su->tex.bindless));
2553 if (su->op != OP_SUSTP && su->tex.format) {
2554 const TexInstruction::ImgFormatDesc *format = su->tex.format;
2555 int blockwidth = format->bits[0] + format->bits[1] +
2556 format->bits[2] + format->bits[3];
2557
2558 assert(format->components != 0);
2559 // make sure that the format doesn't mismatch when it's not FMT_NONE
2560 bld.mkCmp(OP_SET_OR, CC_NE, TYPE_U32, pred->getDef(0),
2561 TYPE_U32, bld.loadImm(NULL, ffs(blockwidth / 8) - 1),
2562 loadSuInfo32(ind, slot, NVC0_SU_INFO_BSIZE, su->tex.bindless),
2563 pred->getDef(0));
2564 }
2565 su->setPredicate(CC_NOT_P, pred->getDef(0));
2566 }
2567
2568 void
handleSurfaceOpNVC0(TexInstruction * su)2569 NVC0LoweringPass::handleSurfaceOpNVC0(TexInstruction *su)
2570 {
2571 if (su->tex.target == TEX_TARGET_1D_ARRAY) {
2572 /* As 1d arrays also need 3 coordinates, switching to TEX_TARGET_2D_ARRAY
2573 * will simplify the lowering pass and the texture constraints. */
2574 su->moveSources(1, 1);
2575 su->setSrc(1, bld.loadImm(NULL, 0));
2576 su->tex.target = TEX_TARGET_2D_ARRAY;
2577 }
2578
2579 processSurfaceCoordsNVC0(su);
2580
2581 if (su->op == OP_SULDP && su->tex.format) {
2582 convertSurfaceFormat(su, NULL);
2583 insertOOBSurfaceOpResult(su);
2584 }
2585
2586 if (su->op == OP_SUREDB || su->op == OP_SUREDP) {
2587 const int dim = su->tex.target.getDim();
2588 const int arg = dim + (su->tex.target.isArray() || su->tex.target.isCube());
2589 LValue *addr = bld.getSSA(8);
2590 Value *def = su->getDef(0);
2591
2592 su->op = OP_SULEA;
2593
2594 // Set the destination to the address
2595 su->dType = TYPE_U64;
2596 su->setDef(0, addr);
2597 su->setDef(1, su->getPredicate());
2598
2599 bld.setPosition(su, true);
2600
2601 // Perform the atomic op
2602 Instruction *red = bld.mkOp(OP_ATOM, su->sType, bld.getSSA());
2603 red->subOp = su->subOp;
2604 red->setSrc(0, bld.mkSymbol(FILE_MEMORY_GLOBAL, 0, su->sType, 0));
2605 red->setSrc(1, su->getSrc(arg));
2606 if (red->subOp == NV50_IR_SUBOP_ATOM_CAS)
2607 red->setSrc(2, su->getSrc(arg + 1));
2608 red->setIndirect(0, 0, addr);
2609
2610 // make sure to initialize dst value when the atomic operation is not
2611 // performed
2612 Instruction *mov = bld.mkMov(bld.getSSA(), bld.loadImm(NULL, 0));
2613
2614 assert(su->cc == CC_NOT_P);
2615 red->setPredicate(su->cc, su->getPredicate());
2616 mov->setPredicate(CC_P, su->getPredicate());
2617
2618 bld.mkOp2(OP_UNION, TYPE_U32, def, red->getDef(0), mov->getDef(0));
2619
2620 handleCasExch(red);
2621 }
2622 }
2623
2624 TexInstruction *
processSurfaceCoordsGM107(TexInstruction * su,Instruction * ret[4])2625 NVC0LoweringPass::processSurfaceCoordsGM107(TexInstruction *su, Instruction *ret[4])
2626 {
2627 const int slot = su->tex.r;
2628 const int dim = su->tex.target.getDim();
2629 const bool array = su->tex.target.isArray() || su->tex.target.isCube();
2630 const int arg = dim + array;
2631 Value *ind = su->getIndirectR();
2632 Value *handle;
2633 Instruction *pred = NULL, *pred2d = NULL;
2634 int pos = 0;
2635
2636 bld.setPosition(su, false);
2637
2638 adjustCoordinatesMS(su);
2639
2640 // add texture handle
2641 switch (su->op) {
2642 case OP_SUSTP:
2643 pos = 4;
2644 break;
2645 case OP_SUREDP:
2646 pos = (su->subOp == NV50_IR_SUBOP_ATOM_CAS) ? 2 : 1;
2647 break;
2648 default:
2649 assert(pos == 0);
2650 break;
2651 }
2652
2653 if (dim == 2 && !array) {
2654 // This might be a 2d slice of a 3d texture, try to load the z
2655 // coordinate in.
2656 Value *v;
2657 if (!su->tex.bindless)
2658 v = loadSuInfo32(ind, slot, NVC0_SU_INFO_UNK1C, su->tex.bindless);
2659 else
2660 v = bld.mkOp2v(OP_SHR, TYPE_U32, bld.getSSA(), ind, bld.mkImm(11));
2661 Value *is_3d = bld.mkOp2v(OP_AND, TYPE_U32, bld.getSSA(), v, bld.mkImm(1));
2662 pred2d = bld.mkCmp(OP_SET, CC_EQ, TYPE_U32, bld.getSSA(1, FILE_PREDICATE),
2663 TYPE_U32, bld.mkImm(0), is_3d);
2664
2665 bld.mkOp2(OP_SHR, TYPE_U32, v, v, bld.loadImm(NULL, 16));
2666 su->moveSources(dim, 1);
2667 su->setSrc(dim, v);
2668 su->tex.target = nv50_ir::TEX_TARGET_3D;
2669 pos++;
2670 }
2671
2672 if (su->tex.bindless)
2673 handle = bld.mkOp2v(OP_AND, TYPE_U32, bld.getSSA(), ind, bld.mkImm(2047));
2674 else
2675 handle = loadTexHandle(ind, slot + 32);
2676
2677 su->setSrc(arg + pos, handle);
2678
2679 // The address check doesn't make sense here. The format check could make
2680 // sense but it's a bit of a pain.
2681 if (!su->tex.bindless) {
2682 // prevent read fault when the image is not actually bound
2683 pred =
2684 bld.mkCmp(OP_SET, CC_EQ, TYPE_U32, bld.getSSA(1, FILE_PREDICATE),
2685 TYPE_U32, bld.mkImm(0),
2686 loadSuInfo32(ind, slot, NVC0_SU_INFO_ADDR, su->tex.bindless));
2687 if (su->op != OP_SUSTP && su->tex.format) {
2688 const TexInstruction::ImgFormatDesc *format = su->tex.format;
2689 int blockwidth = format->bits[0] + format->bits[1] +
2690 format->bits[2] + format->bits[3];
2691
2692 assert(format->components != 0);
2693 // make sure that the format doesn't mismatch when it's not FMT_NONE
2694 bld.mkCmp(OP_SET_OR, CC_NE, TYPE_U32, pred->getDef(0),
2695 TYPE_U32, bld.loadImm(NULL, blockwidth / 8),
2696 loadSuInfo32(ind, slot, NVC0_SU_INFO_BSIZE, su->tex.bindless),
2697 pred->getDef(0));
2698 }
2699 }
2700
2701 // Now we have "pred" which (optionally) contains whether to do the surface
2702 // op at all, and a "pred2d" which indicates that, in case of doing the
2703 // surface op, we have to create a 2d and 3d version, conditioned on pred2d.
2704 TexInstruction *su2d = NULL;
2705 if (pred2d) {
2706 su2d = cloneForward(func, su)->asTex();
2707 for (unsigned i = 0; su->defExists(i); ++i)
2708 su2d->setDef(i, bld.getSSA());
2709 su2d->moveSources(dim + 1, -1);
2710 su2d->tex.target = nv50_ir::TEX_TARGET_2D;
2711 }
2712 if (pred2d && pred) {
2713 Instruction *pred3d = bld.mkOp2(OP_AND, TYPE_U8,
2714 bld.getSSA(1, FILE_PREDICATE),
2715 pred->getDef(0), pred2d->getDef(0));
2716 pred3d->src(0).mod = Modifier(NV50_IR_MOD_NOT);
2717 pred3d->src(1).mod = Modifier(NV50_IR_MOD_NOT);
2718 su->setPredicate(CC_P, pred3d->getDef(0));
2719 pred2d = bld.mkOp2(OP_AND, TYPE_U8, bld.getSSA(1, FILE_PREDICATE),
2720 pred->getDef(0), pred2d->getDef(0));
2721 pred2d->src(0).mod = Modifier(NV50_IR_MOD_NOT);
2722 } else if (pred) {
2723 su->setPredicate(CC_NOT_P, pred->getDef(0));
2724 } else if (pred2d) {
2725 su->setPredicate(CC_NOT_P, pred2d->getDef(0));
2726 }
2727 if (su2d) {
2728 su2d->setPredicate(CC_P, pred2d->getDef(0));
2729 bld.insert(su2d);
2730
2731 // Create a UNION so that RA assigns the same registers
2732 bld.setPosition(su, true);
2733 for (unsigned i = 0; su->defExists(i); ++i) {
2734 assert(i < 4);
2735
2736 Value *def = su->getDef(i);
2737 Value *newDef = bld.getSSA();
2738 ValueDef &def2 = su2d->def(i);
2739 Instruction *mov = NULL;
2740
2741 su->setDef(i, newDef);
2742 if (pred) {
2743 mov = bld.mkMov(bld.getSSA(), bld.loadImm(NULL, 0));
2744 mov->setPredicate(CC_P, pred->getDef(0));
2745 }
2746
2747 Instruction *uni = ret[i] = bld.mkOp2(OP_UNION, TYPE_U32,
2748 bld.getSSA(),
2749 newDef, def2.get());
2750 if (mov)
2751 uni->setSrc(2, mov->getDef(0));
2752 bld.mkMov(def, uni->getDef(0));
2753 }
2754 } else if (pred) {
2755 // Create a UNION so that RA assigns the same registers
2756 bld.setPosition(su, true);
2757 for (unsigned i = 0; su->defExists(i); ++i) {
2758 assert(i < 4);
2759
2760 Value *def = su->getDef(i);
2761 Value *newDef = bld.getSSA();
2762 su->setDef(i, newDef);
2763
2764 Instruction *mov = bld.mkMov(bld.getSSA(), bld.loadImm(NULL, 0));
2765 mov->setPredicate(CC_P, pred->getDef(0));
2766
2767 Instruction *uni = ret[i] = bld.mkOp2(OP_UNION, TYPE_U32,
2768 bld.getSSA(),
2769 newDef, mov->getDef(0));
2770 bld.mkMov(def, uni->getDef(0));
2771 }
2772 }
2773
2774 return su2d;
2775 }
2776
2777 void
handleSurfaceOpGM107(TexInstruction * su)2778 NVC0LoweringPass::handleSurfaceOpGM107(TexInstruction *su)
2779 {
2780 // processSurfaceCoords also takes care of fixing up the outputs and
2781 // union'ing them with 0 as necessary. Additionally it may create a second
2782 // surface which needs some of the similar fixups.
2783
2784 Instruction *loaded[4] = {};
2785 TexInstruction *su2 = processSurfaceCoordsGM107(su, loaded);
2786
2787 if (su->op == OP_SULDP && su->tex.format) {
2788 convertSurfaceFormat(su, loaded);
2789 }
2790
2791 if (su->op == OP_SUREDP) {
2792 su->op = OP_SUREDB;
2793 }
2794
2795 // If we fixed up the type of the regular surface load instruction, we also
2796 // have to fix up the copy.
2797 if (su2) {
2798 su2->op = su->op;
2799 su2->dType = su->dType;
2800 su2->sType = su->sType;
2801 }
2802 }
2803
2804 void
handleLDST(Instruction * i)2805 NVC0LoweringPass::handleLDST(Instruction *i)
2806 {
2807 if (i->src(0).getFile() == FILE_SHADER_INPUT) {
2808 if (prog->getType() == Program::TYPE_COMPUTE) {
2809 i->getSrc(0)->reg.file = FILE_MEMORY_CONST;
2810 i->getSrc(0)->reg.fileIndex = 0;
2811 } else
2812 if (prog->getType() == Program::TYPE_GEOMETRY &&
2813 i->src(0).isIndirect(0)) {
2814 // XXX: this assumes vec4 units
2815 Value *ptr = bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(),
2816 i->getIndirect(0, 0), bld.mkImm(4));
2817 i->setIndirect(0, 0, ptr);
2818 i->op = OP_VFETCH;
2819 } else {
2820 i->op = OP_VFETCH;
2821 assert(prog->getType() != Program::TYPE_FRAGMENT); // INTERP
2822 }
2823 } else if (i->src(0).getFile() == FILE_MEMORY_CONST) {
2824 int8_t fileIndex = i->getSrc(0)->reg.fileIndex - 1;
2825 Value *ind = i->getIndirect(0, 1);
2826
2827 if (targ->getChipset() >= NVISA_GK104_CHIPSET &&
2828 prog->getType() == Program::TYPE_COMPUTE &&
2829 (fileIndex >= 6 || ind)) {
2830 // The launch descriptor only allows to set up 8 CBs, but OpenGL
2831 // requires at least 12 UBOs. To bypass this limitation, for constant
2832 // buffers 7+, we store the addrs into the driver constbuf and we
2833 // directly load from the global memory.
2834 if (ind) {
2835 // Clamp the UBO index when an indirect access is used to avoid
2836 // loading information from the wrong place in the driver cb.
2837 // TODO - synchronize the max with the driver.
2838 ind = bld.mkOp2v(OP_MIN, TYPE_U32, bld.getSSA(),
2839 bld.mkOp2v(OP_ADD, TYPE_U32, bld.getSSA(),
2840 ind, bld.loadImm(NULL, fileIndex)),
2841 bld.loadImm(NULL, 13));
2842 fileIndex = 0;
2843 }
2844
2845 Value *offset = bld.loadImm(NULL, i->getSrc(0)->reg.data.offset + typeSizeof(i->sType));
2846 Value *ptr = loadUboInfo64(ind, fileIndex * 16);
2847 Value *length = loadUboLength32(ind, fileIndex * 16);
2848 Value *pred = new_LValue(func, FILE_PREDICATE);
2849 if (i->src(0).isIndirect(0)) {
2850 bld.mkOp2(OP_ADD, TYPE_U64, ptr, ptr, i->getIndirect(0, 0));
2851 bld.mkOp2(OP_ADD, TYPE_U32, offset, offset, i->getIndirect(0, 0));
2852 }
2853 i->getSrc(0)->reg.file = FILE_MEMORY_GLOBAL;
2854 i->setIndirect(0, 1, NULL);
2855 i->setIndirect(0, 0, ptr);
2856 bld.mkCmp(OP_SET, CC_GT, TYPE_U32, pred, TYPE_U32, offset, length);
2857 i->setPredicate(CC_NOT_P, pred);
2858 Value *zero, *dst = i->getDef(0);
2859 i->setDef(0, bld.getSSA());
2860
2861 bld.setPosition(i, true);
2862 bld.mkMov((zero = bld.getSSA()), bld.mkImm(0))
2863 ->setPredicate(CC_P, pred);
2864 bld.mkOp2(OP_UNION, TYPE_U32, dst, i->getDef(0), zero);
2865 } else if (i->src(0).isIndirect(1)) {
2866 Value *ptr;
2867 if (i->src(0).isIndirect(0))
2868 ptr = bld.mkOp3v(OP_INSBF, TYPE_U32, bld.getSSA(),
2869 i->getIndirect(0, 1), bld.mkImm(0x1010),
2870 i->getIndirect(0, 0));
2871 else
2872 ptr = bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(),
2873 i->getIndirect(0, 1), bld.mkImm(16));
2874 i->setIndirect(0, 1, NULL);
2875 i->setIndirect(0, 0, ptr);
2876 i->subOp = NV50_IR_SUBOP_LDC_IS;
2877 }
2878 } else if (i->src(0).getFile() == FILE_SHADER_OUTPUT) {
2879 assert(prog->getType() == Program::TYPE_TESSELLATION_CONTROL);
2880 i->op = OP_VFETCH;
2881 } else if (i->src(0).getFile() == FILE_MEMORY_BUFFER) {
2882 Value *ind = i->getIndirect(0, 1);
2883 Value *ptr = loadBufInfo64(ind, i->getSrc(0)->reg.fileIndex * 16);
2884 // XXX come up with a way not to do this for EVERY little access but
2885 // rather to batch these up somehow. Unfortunately we've lost the
2886 // information about the field width by the time we get here.
2887 Value *offset = bld.loadImm(NULL, i->getSrc(0)->reg.data.offset + typeSizeof(i->sType));
2888 Value *length = loadBufLength32(ind, i->getSrc(0)->reg.fileIndex * 16);
2889 Value *pred = new_LValue(func, FILE_PREDICATE);
2890 if (i->src(0).isIndirect(0)) {
2891 bld.mkOp2(OP_ADD, TYPE_U64, ptr, ptr, i->getIndirect(0, 0));
2892 bld.mkOp2(OP_ADD, TYPE_U32, offset, offset, i->getIndirect(0, 0));
2893 }
2894 i->setIndirect(0, 1, NULL);
2895 i->setIndirect(0, 0, ptr);
2896 i->getSrc(0)->reg.file = FILE_MEMORY_GLOBAL;
2897 bld.mkCmp(OP_SET, CC_GT, TYPE_U32, pred, TYPE_U32, offset, length);
2898 i->setPredicate(CC_NOT_P, pred);
2899 if (i->defExists(0)) {
2900 Value *zero, *dst = i->getDef(0);
2901 uint8_t size = dst->reg.size;
2902 i->setDef(0, bld.getSSA(size));
2903
2904 bld.setPosition(i, true);
2905 bld.mkMov((zero = bld.getSSA(size)), bld.mkImm(0), i->dType)
2906 ->setPredicate(CC_P, pred);
2907 bld.mkOp2(OP_UNION, i->dType, dst, i->getDef(0), zero);
2908 }
2909 }
2910 }
2911
2912 void
readTessCoord(LValue * dst,int c)2913 NVC0LoweringPass::readTessCoord(LValue *dst, int c)
2914 {
2915 // In case of SPIRV the domain can be specified in the tesc shader,
2916 // but this should be passed to tese shader by merge_tess_info.
2917 const uint8_t domain = prog->driver_out->prop.tp.domain;
2918 assert(
2919 domain == MESA_PRIM_LINES ||
2920 domain == MESA_PRIM_TRIANGLES ||
2921 domain == MESA_PRIM_QUADS);
2922
2923 Value *laneid = bld.getSSA();
2924 Value *x, *y;
2925
2926 bld.mkOp1(OP_RDSV, TYPE_U32, laneid, bld.mkSysVal(SV_LANEID, 0));
2927
2928 if (c == 0) {
2929 x = dst;
2930 y = NULL;
2931 } else
2932 if (c == 1) {
2933 x = NULL;
2934 y = dst;
2935 } else {
2936 assert(c == 2);
2937 if (domain != MESA_PRIM_TRIANGLES) {
2938 // optimize out tesscoord.z
2939 bld.mkMov(dst, bld.loadImm(NULL, 0));
2940 return;
2941 }
2942 x = bld.getSSA();
2943 y = bld.getSSA();
2944 }
2945 if (x)
2946 bld.mkFetch(x, TYPE_F32, FILE_SHADER_OUTPUT, 0x2f0, NULL, laneid);
2947 if (y)
2948 bld.mkFetch(y, TYPE_F32, FILE_SHADER_OUTPUT, 0x2f4, NULL, laneid);
2949
2950 if (c == 2) {
2951 // compute tesscoord.z from x, y
2952 bld.mkOp2(OP_ADD, TYPE_F32, dst, x, y);
2953 bld.mkOp2(OP_SUB, TYPE_F32, dst, bld.loadImm(NULL, 1.0f), dst);
2954 }
2955 }
2956
2957 bool
handleRDSV(Instruction * i)2958 NVC0LoweringPass::handleRDSV(Instruction *i)
2959 {
2960 Symbol *sym = i->getSrc(0)->asSym();
2961 const SVSemantic sv = sym->reg.data.sv.sv;
2962 Value *vtx = NULL;
2963 Instruction *ld;
2964 uint32_t addr = targ->getSVAddress(FILE_SHADER_INPUT, sym);
2965
2966 if (addr >= 0x400) {
2967 // mov $sreg
2968 if (sym->reg.data.sv.index == 3) {
2969 // TGSI backend may use 4th component of TID,NTID,CTAID,NCTAID
2970 i->op = OP_MOV;
2971 i->setSrc(0, bld.mkImm((sv == SV_NTID || sv == SV_NCTAID) ? 1 : 0));
2972 } else
2973 if (sv == SV_TID) {
2974 // Help CSE combine TID fetches
2975 Value *tid = bld.mkOp1v(OP_RDSV, TYPE_U32, bld.getScratch(),
2976 bld.mkSysVal(SV_COMBINED_TID, 0));
2977 i->op = OP_EXTBF;
2978 i->setSrc(0, tid);
2979 switch (sym->reg.data.sv.index) {
2980 case 0: i->setSrc(1, bld.mkImm(0x1000)); break;
2981 case 1: i->setSrc(1, bld.mkImm(0x0a10)); break;
2982 case 2: i->setSrc(1, bld.mkImm(0x061a)); break;
2983 }
2984 }
2985 if (sv == SV_VERTEX_COUNT) {
2986 bld.setPosition(i, true);
2987 bld.mkOp2(OP_EXTBF, TYPE_U32, i->getDef(0), i->getDef(0), bld.mkImm(0x808));
2988 }
2989 return true;
2990 }
2991
2992 switch (sv) {
2993 case SV_POSITION:
2994 assert(prog->getType() == Program::TYPE_FRAGMENT);
2995 if (i->srcExists(1)) {
2996 // Pass offset through to the interpolation logic
2997 ld = bld.mkInterp(NV50_IR_INTERP_LINEAR | NV50_IR_INTERP_OFFSET,
2998 i->getDef(0), addr, NULL);
2999 ld->setSrc(1, i->getSrc(1));
3000 } else {
3001 bld.mkInterp(NV50_IR_INTERP_LINEAR, i->getDef(0), addr, NULL);
3002 }
3003 break;
3004 case SV_FACE:
3005 {
3006 Value *face = i->getDef(0);
3007 bld.mkInterp(NV50_IR_INTERP_FLAT, face, addr, NULL);
3008 if (i->dType == TYPE_F32) {
3009 bld.mkOp2(OP_OR, TYPE_U32, face, face, bld.mkImm(0x00000001));
3010 bld.mkOp1(OP_NEG, TYPE_S32, face, face);
3011 bld.mkCvt(OP_CVT, TYPE_F32, face, TYPE_S32, face);
3012 }
3013 }
3014 break;
3015 case SV_TESS_COORD:
3016 assert(prog->getType() == Program::TYPE_TESSELLATION_EVAL);
3017 readTessCoord(i->getDef(0)->asLValue(), i->getSrc(0)->reg.data.sv.index);
3018 break;
3019 case SV_NTID:
3020 case SV_NCTAID:
3021 case SV_GRIDID:
3022 assert(targ->getChipset() >= NVISA_GK104_CHIPSET); // mov $sreg otherwise
3023 if (sym->reg.data.sv.index == 3) {
3024 i->op = OP_MOV;
3025 i->setSrc(0, bld.mkImm(sv == SV_GRIDID ? 0 : 1));
3026 return true;
3027 }
3028 FALLTHROUGH;
3029 case SV_WORK_DIM:
3030 addr += prog->driver->prop.cp.gridInfoBase;
3031 bld.mkLoad(TYPE_U32, i->getDef(0),
3032 bld.mkSymbol(FILE_MEMORY_CONST, prog->driver->io.auxCBSlot,
3033 TYPE_U32, addr), NULL);
3034 break;
3035 case SV_SAMPLE_INDEX:
3036 // TODO: Properly pass source as an address in the PIX address space
3037 // (which can be of the form [r0+offset]). But this is currently
3038 // unnecessary.
3039 ld = bld.mkOp1(OP_PIXLD, TYPE_U32, i->getDef(0), bld.mkImm(0));
3040 ld->subOp = NV50_IR_SUBOP_PIXLD_SAMPLEID;
3041 break;
3042 case SV_SAMPLE_POS: {
3043 Value *sampleID = bld.getScratch();
3044 ld = bld.mkOp1(OP_PIXLD, TYPE_U32, sampleID, bld.mkImm(0));
3045 ld->subOp = NV50_IR_SUBOP_PIXLD_SAMPLEID;
3046 Value *offset = calculateSampleOffset(sampleID);
3047
3048 assert(prog->driver_out->prop.fp.readsSampleLocations);
3049
3050 if (targ->getChipset() >= NVISA_GM200_CHIPSET) {
3051 bld.mkLoad(TYPE_F32,
3052 i->getDef(0),
3053 bld.mkSymbol(
3054 FILE_MEMORY_CONST, prog->driver->io.auxCBSlot,
3055 TYPE_U32, prog->driver->io.sampleInfoBase),
3056 offset);
3057 bld.mkOp2(OP_EXTBF, TYPE_U32, i->getDef(0), i->getDef(0),
3058 bld.mkImm(0x040c + sym->reg.data.sv.index * 16));
3059 bld.mkCvt(OP_CVT, TYPE_F32, i->getDef(0), TYPE_U32, i->getDef(0));
3060 bld.mkOp2(OP_MUL, TYPE_F32, i->getDef(0), i->getDef(0), bld.mkImm(1.0f / 16.0f));
3061 } else {
3062 bld.mkLoad(TYPE_F32,
3063 i->getDef(0),
3064 bld.mkSymbol(
3065 FILE_MEMORY_CONST, prog->driver->io.auxCBSlot,
3066 TYPE_U32, prog->driver->io.sampleInfoBase +
3067 4 * sym->reg.data.sv.index),
3068 offset);
3069 }
3070 break;
3071 }
3072 case SV_SAMPLE_MASK: {
3073 ld = bld.mkOp1(OP_PIXLD, TYPE_U32, i->getDef(0), bld.mkImm(0));
3074 ld->subOp = NV50_IR_SUBOP_PIXLD_COVMASK;
3075 Instruction *sampleid =
3076 bld.mkOp1(OP_PIXLD, TYPE_U32, bld.getSSA(), bld.mkImm(0));
3077 sampleid->subOp = NV50_IR_SUBOP_PIXLD_SAMPLEID;
3078 Value *masked =
3079 bld.mkOp2v(OP_AND, TYPE_U32, bld.getSSA(), ld->getDef(0),
3080 bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(),
3081 bld.loadImm(NULL, 1), sampleid->getDef(0)));
3082 if (prog->persampleInvocation) {
3083 bld.mkMov(i->getDef(0), masked);
3084 } else {
3085 bld.mkOp3(OP_SELP, TYPE_U32, i->getDef(0), ld->getDef(0), masked,
3086 bld.mkImm(0))
3087 ->subOp = 1;
3088 }
3089 break;
3090 }
3091 case SV_BASEVERTEX:
3092 case SV_BASEINSTANCE:
3093 case SV_DRAWID:
3094 ld = bld.mkLoad(TYPE_U32, i->getDef(0),
3095 bld.mkSymbol(FILE_MEMORY_CONST,
3096 prog->driver->io.auxCBSlot,
3097 TYPE_U32,
3098 prog->driver->io.drawInfoBase +
3099 4 * (sv - SV_BASEVERTEX)),
3100 NULL);
3101 break;
3102 default:
3103 if (prog->getType() == Program::TYPE_TESSELLATION_EVAL && !i->perPatch)
3104 vtx = bld.mkOp1v(OP_PFETCH, TYPE_U32, bld.getSSA(), bld.mkImm(0));
3105 if (prog->getType() == Program::TYPE_FRAGMENT) {
3106 bld.mkInterp(NV50_IR_INTERP_FLAT, i->getDef(0), addr, NULL);
3107 } else {
3108 ld = bld.mkFetch(i->getDef(0), i->dType,
3109 FILE_SHADER_INPUT, addr, i->getIndirect(0, 0), vtx);
3110 ld->perPatch = i->perPatch;
3111 }
3112 break;
3113 }
3114 bld.getBB()->remove(i);
3115 return true;
3116 }
3117
3118 bool
handleDIV(Instruction * i)3119 NVC0LoweringPass::handleDIV(Instruction *i)
3120 {
3121 if (!isFloatType(i->dType))
3122 return true;
3123 bld.setPosition(i, false);
3124 Instruction *rcp = bld.mkOp1(OP_RCP, i->dType, bld.getSSA(typeSizeof(i->dType)), i->getSrc(1));
3125 i->op = OP_MUL;
3126 i->setSrc(1, rcp->getDef(0));
3127 return true;
3128 }
3129
3130 bool
handleMOD(Instruction * i)3131 NVC0LoweringPass::handleMOD(Instruction *i)
3132 {
3133 if (!isFloatType(i->dType))
3134 return true;
3135 LValue *value = bld.getScratch(typeSizeof(i->dType));
3136 bld.mkOp1(OP_RCP, i->dType, value, i->getSrc(1));
3137 bld.mkOp2(OP_MUL, i->dType, value, i->getSrc(0), value);
3138 bld.mkOp1(OP_TRUNC, i->dType, value, value);
3139 bld.mkOp2(OP_MUL, i->dType, value, i->getSrc(1), value);
3140 i->op = OP_SUB;
3141 i->setSrc(1, value);
3142 return true;
3143 }
3144
3145 bool
handleSQRT(Instruction * i)3146 NVC0LoweringPass::handleSQRT(Instruction *i)
3147 {
3148 if (targ->isOpSupported(OP_SQRT, i->dType))
3149 return true;
3150
3151 if (i->dType == TYPE_F64) {
3152 Value *pred = bld.getSSA(1, FILE_PREDICATE);
3153 Value *zero = bld.loadImm(NULL, 0.0);
3154 Value *dst = bld.getSSA(8);
3155 bld.mkOp1(OP_RSQ, i->dType, dst, i->getSrc(0));
3156 bld.mkCmp(OP_SET, CC_LE, i->dType, pred, i->dType, i->getSrc(0), zero);
3157 bld.mkOp3(OP_SELP, TYPE_U64, dst, zero, dst, pred);
3158 i->op = OP_MUL;
3159 i->setSrc(1, dst);
3160 // TODO: Handle this properly with a library function
3161 } else {
3162 bld.setPosition(i, true);
3163 i->op = OP_RSQ;
3164 bld.mkOp1(OP_RCP, i->dType, i->getDef(0), i->getDef(0));
3165 }
3166
3167 return true;
3168 }
3169
3170 bool
handleEXPORT(Instruction * i)3171 NVC0LoweringPass::handleEXPORT(Instruction *i)
3172 {
3173 if (prog->getType() == Program::TYPE_FRAGMENT) {
3174 int id = i->getSrc(0)->reg.data.offset / 4;
3175
3176 if (i->src(0).isIndirect(0)) // TODO, ugly
3177 return false;
3178 i->op = OP_MOV;
3179 i->subOp = NV50_IR_SUBOP_MOV_FINAL;
3180 i->src(0).set(i->src(1));
3181 i->setSrc(1, NULL);
3182 i->setDef(0, new_LValue(func, FILE_GPR));
3183 i->getDef(0)->reg.data.id = id;
3184
3185 prog->maxGPR = MAX2(prog->maxGPR, id);
3186 } else
3187 if (prog->getType() == Program::TYPE_GEOMETRY) {
3188 i->setIndirect(0, 1, gpEmitAddress);
3189 }
3190 return true;
3191 }
3192
3193 bool
handleOUT(Instruction * i)3194 NVC0LoweringPass::handleOUT(Instruction *i)
3195 {
3196 Instruction *prev = i->prev;
3197 ImmediateValue stream, prevStream;
3198
3199 // Only merge if the stream ids match. Also, note that the previous
3200 // instruction would have already been lowered, so we take arg1 from it.
3201 if (i->op == OP_RESTART && prev && prev->op == OP_EMIT &&
3202 i->src(0).getImmediate(stream) &&
3203 prev->src(1).getImmediate(prevStream) &&
3204 stream.reg.data.u32 == prevStream.reg.data.u32) {
3205 i->prev->subOp = NV50_IR_SUBOP_EMIT_RESTART;
3206 delete_Instruction(prog, i);
3207 } else {
3208 assert(gpEmitAddress);
3209 i->setDef(0, gpEmitAddress);
3210 i->setSrc(1, i->getSrc(0));
3211 i->setSrc(0, gpEmitAddress);
3212 }
3213 return true;
3214 }
3215
3216 Value *
calculateSampleOffset(Value * sampleID)3217 NVC0LoweringPass::calculateSampleOffset(Value *sampleID)
3218 {
3219 Value *offset = bld.getScratch();
3220 if (targ->getChipset() >= NVISA_GM200_CHIPSET) {
3221 // Sample location offsets (in bytes) are calculated like so:
3222 // offset = (SV_POSITION.y % 4 * 2) + (SV_POSITION.x % 2)
3223 // offset = offset * 32 + sampleID % 8 * 4;
3224 // which is equivalent to:
3225 // offset = (SV_POSITION.y & 0x3) << 6 + (SV_POSITION.x & 0x1) << 5;
3226 // offset += sampleID << 2
3227
3228 // The second operand (src1) of the INSBF instructions are like so:
3229 // 0xssll where ss is the size and ll is the offset.
3230 // so: dest = src2 | (src0 & (1 << ss - 1)) << ll
3231
3232 // Add sample ID (offset = (sampleID & 0x7) << 2)
3233 bld.mkOp3(OP_INSBF, TYPE_U32, offset, sampleID, bld.mkImm(0x0302), bld.mkImm(0x0));
3234
3235 Symbol *xSym = bld.mkSysVal(SV_POSITION, 0);
3236 Symbol *ySym = bld.mkSysVal(SV_POSITION, 1);
3237 Value *coord = bld.getScratch();
3238
3239 // Add X coordinate (offset |= (SV_POSITION.x & 0x1) << 5)
3240 bld.mkInterp(NV50_IR_INTERP_LINEAR, coord,
3241 targ->getSVAddress(FILE_SHADER_INPUT, xSym), NULL);
3242 bld.mkCvt(OP_CVT, TYPE_U32, coord, TYPE_F32, coord)
3243 ->rnd = ROUND_ZI;
3244 bld.mkOp3(OP_INSBF, TYPE_U32, offset, coord, bld.mkImm(0x0105), offset);
3245
3246 // Add Y coordinate (offset |= (SV_POSITION.y & 0x3) << 6)
3247 bld.mkInterp(NV50_IR_INTERP_LINEAR, coord,
3248 targ->getSVAddress(FILE_SHADER_INPUT, ySym), NULL);
3249 bld.mkCvt(OP_CVT, TYPE_U32, coord, TYPE_F32, coord)
3250 ->rnd = ROUND_ZI;
3251 bld.mkOp3(OP_INSBF, TYPE_U32, offset, coord, bld.mkImm(0x0206), offset);
3252 } else {
3253 bld.mkOp2(OP_SHL, TYPE_U32, offset, sampleID, bld.mkImm(3));
3254 }
3255 return offset;
3256 }
3257
3258 // Handle programmable sample locations for GM20x+
3259 void
handlePIXLD(Instruction * i)3260 NVC0LoweringPass::handlePIXLD(Instruction *i)
3261 {
3262 if (i->subOp != NV50_IR_SUBOP_PIXLD_OFFSET)
3263 return;
3264 if (targ->getChipset() < NVISA_GM200_CHIPSET)
3265 return;
3266
3267 assert(prog->driver_out->prop.fp.readsSampleLocations);
3268
3269 bld.mkLoad(TYPE_F32,
3270 i->getDef(0),
3271 bld.mkSymbol(
3272 FILE_MEMORY_CONST, prog->driver->io.auxCBSlot,
3273 TYPE_U32, prog->driver->io.sampleInfoBase),
3274 calculateSampleOffset(i->getSrc(0)));
3275
3276 bld.getBB()->remove(i);
3277 }
3278
3279 // Generate a binary predicate if an instruction is predicated by
3280 // e.g. an f32 value.
3281 void
checkPredicate(Instruction * insn)3282 NVC0LoweringPass::checkPredicate(Instruction *insn)
3283 {
3284 Value *pred = insn->getPredicate();
3285 Value *pdst;
3286
3287 if (!pred || pred->reg.file == FILE_PREDICATE)
3288 return;
3289 pdst = new_LValue(func, FILE_PREDICATE);
3290
3291 // CAUTION: don't use pdst->getInsn, the definition might not be unique,
3292 // delay turning PSET(FSET(x,y),0) into PSET(x,y) to a later pass
3293
3294 bld.mkCmp(OP_SET, CC_NEU, insn->dType, pdst, insn->dType, bld.mkImm(0), pred);
3295
3296 insn->setPredicate(insn->cc, pdst);
3297 }
3298
3299 //
3300 // - add quadop dance for texturing
3301 // - put FP outputs in GPRs
3302 // - convert instruction sequences
3303 //
3304 bool
visit(Instruction * i)3305 NVC0LoweringPass::visit(Instruction *i)
3306 {
3307 bool ret = true;
3308 bld.setPosition(i, false);
3309
3310 if (i->cc != CC_ALWAYS)
3311 checkPredicate(i);
3312
3313 switch (i->op) {
3314 case OP_TEX:
3315 case OP_TXB:
3316 case OP_TXL:
3317 case OP_TXF:
3318 case OP_TXG:
3319 return handleTEX(i->asTex());
3320 case OP_TXD:
3321 return handleTXD(i->asTex());
3322 case OP_TXLQ:
3323 return handleTXLQ(i->asTex());
3324 case OP_TXQ:
3325 return handleTXQ(i->asTex());
3326 case OP_EX2:
3327 bld.mkOp1(OP_PREEX2, TYPE_F32, i->getDef(0), i->getSrc(0));
3328 i->setSrc(0, i->getDef(0));
3329 break;
3330 case OP_DIV:
3331 return handleDIV(i);
3332 case OP_MOD:
3333 return handleMOD(i);
3334 case OP_SQRT:
3335 return handleSQRT(i);
3336 case OP_EXPORT:
3337 ret = handleEXPORT(i);
3338 break;
3339 case OP_EMIT:
3340 case OP_RESTART:
3341 return handleOUT(i);
3342 case OP_RDSV:
3343 return handleRDSV(i);
3344 case OP_STORE:
3345 case OP_LOAD:
3346 handleLDST(i);
3347 break;
3348 case OP_ATOM:
3349 {
3350 const bool cctl = i->src(0).getFile() == FILE_MEMORY_BUFFER;
3351 handleATOM(i);
3352 if (cctl)
3353 handleATOMCctl(i);
3354 handleCasExch(i);
3355 }
3356 break;
3357 case OP_SULDB:
3358 case OP_SULDP:
3359 case OP_SUSTB:
3360 case OP_SUSTP:
3361 case OP_SUREDB:
3362 case OP_SUREDP:
3363 if (targ->getChipset() >= NVISA_GM107_CHIPSET)
3364 handleSurfaceOpGM107(i->asTex());
3365 else if (targ->getChipset() >= NVISA_GK104_CHIPSET)
3366 handleSurfaceOpNVE4(i->asTex());
3367 else
3368 handleSurfaceOpNVC0(i->asTex());
3369 break;
3370 case OP_SUQ:
3371 handleSUQ(i->asTex());
3372 break;
3373 case OP_BUFQ:
3374 handleBUFQ(i);
3375 break;
3376 case OP_PIXLD:
3377 handlePIXLD(i);
3378 break;
3379 default:
3380 break;
3381 }
3382
3383 /* Kepler+ has a special opcode to compute a new base address to be used
3384 * for indirect loads.
3385 *
3386 * Maxwell+ has an additional similar requirement for indirect
3387 * interpolation ops in frag shaders.
3388 */
3389 bool doAfetch = false;
3390 if (targ->getChipset() >= NVISA_GK104_CHIPSET &&
3391 !i->perPatch &&
3392 (i->op == OP_VFETCH || i->op == OP_EXPORT) &&
3393 i->src(0).isIndirect(0)) {
3394 doAfetch = true;
3395 }
3396 if (targ->getChipset() >= NVISA_GM107_CHIPSET &&
3397 (i->op == OP_LINTERP || i->op == OP_PINTERP) &&
3398 i->src(0).isIndirect(0)) {
3399 doAfetch = true;
3400 }
3401
3402 if (doAfetch) {
3403 Value *addr = cloneShallow(func, i->getSrc(0));
3404 Instruction *afetch = bld.mkOp1(OP_AFETCH, TYPE_U32, bld.getSSA(),
3405 i->getSrc(0));
3406 afetch->setIndirect(0, 0, i->getIndirect(0, 0));
3407 addr->reg.data.offset = 0;
3408 i->setSrc(0, addr);
3409 i->setIndirect(0, 0, afetch->getDef(0));
3410 i->subOp = NV50_IR_SUBOP_VFETCH_PHYS;
3411 }
3412
3413 return ret;
3414 }
3415
3416 bool
runLegalizePass(Program * prog,CGStage stage) const3417 TargetNVC0::runLegalizePass(Program *prog, CGStage stage) const
3418 {
3419 if (stage == CG_STAGE_PRE_SSA) {
3420 NVC0LoweringPass pass(prog);
3421 return pass.run(prog, false, true);
3422 } else
3423 if (stage == CG_STAGE_POST_RA) {
3424 NVC0LegalizePostRA pass(prog);
3425 return pass.run(prog, false, true);
3426 } else
3427 if (stage == CG_STAGE_SSA) {
3428 NVC0LegalizeSSA pass;
3429 return pass.run(prog, false, true);
3430 }
3431 return false;
3432 }
3433
3434 } // namespace nv50_ir
3435