xref: /aosp_15_r20/external/mesa3d/src/util/blake3/blake3_neon.c (revision 6104692788411f58d303aa86923a9ff6ecaded22)
1 #include "blake3_impl.h"
2 
3 #include <arm_neon.h>
4 
5 #ifdef __ARM_BIG_ENDIAN
6 #error "This implementation only supports little-endian ARM."
7 // It might be that all we need for big-endian support here is to get the loads
8 // and stores right, but step zero would be finding a way to test it in CI.
9 #endif
10 
loadu_128(const uint8_t src[16])11 INLINE uint32x4_t loadu_128(const uint8_t src[16]) {
12   // vld1q_u32 has alignment requirements. Don't use it.
13   return vreinterpretq_u32_u8(vld1q_u8(src));
14 }
15 
storeu_128(uint32x4_t src,uint8_t dest[16])16 INLINE void storeu_128(uint32x4_t src, uint8_t dest[16]) {
17   // vst1q_u32 has alignment requirements. Don't use it.
18   vst1q_u8(dest, vreinterpretq_u8_u32(src));
19 }
20 
add_128(uint32x4_t a,uint32x4_t b)21 INLINE uint32x4_t add_128(uint32x4_t a, uint32x4_t b) {
22   return vaddq_u32(a, b);
23 }
24 
xor_128(uint32x4_t a,uint32x4_t b)25 INLINE uint32x4_t xor_128(uint32x4_t a, uint32x4_t b) {
26   return veorq_u32(a, b);
27 }
28 
set1_128(uint32_t x)29 INLINE uint32x4_t set1_128(uint32_t x) { return vld1q_dup_u32(&x); }
30 
set4(uint32_t a,uint32_t b,uint32_t c,uint32_t d)31 INLINE uint32x4_t set4(uint32_t a, uint32_t b, uint32_t c, uint32_t d) {
32   uint32_t array[4] = {a, b, c, d};
33   return vld1q_u32(array);
34 }
35 
rot16_128(uint32x4_t x)36 INLINE uint32x4_t rot16_128(uint32x4_t x) {
37   // The straightfoward implementation would be two shifts and an or, but that's
38   // slower on microarchitectures we've tested. See
39   // https://github.com/BLAKE3-team/BLAKE3/pull/319.
40   // return vorrq_u32(vshrq_n_u32(x, 16), vshlq_n_u32(x, 32 - 16));
41   return vreinterpretq_u32_u16(vrev32q_u16(vreinterpretq_u16_u32(x)));
42 }
43 
rot12_128(uint32x4_t x)44 INLINE uint32x4_t rot12_128(uint32x4_t x) {
45   // See comment in rot16_128.
46   // return vorrq_u32(vshrq_n_u32(x, 12), vshlq_n_u32(x, 32 - 12));
47   return vsriq_n_u32(vshlq_n_u32(x, 32-12), x, 12);
48 }
49 
rot8_128(uint32x4_t x)50 INLINE uint32x4_t rot8_128(uint32x4_t x) {
51   // See comment in rot16_128.
52   // return vorrq_u32(vshrq_n_u32(x, 8), vshlq_n_u32(x, 32 - 8));
53 #if defined(__clang__)
54   return vreinterpretq_u32_u8(__builtin_shufflevector(vreinterpretq_u8_u32(x), vreinterpretq_u8_u32(x), 1,2,3,0,5,6,7,4,9,10,11,8,13,14,15,12));
55 #elif __GNUC__ * 10000 + __GNUC_MINOR__ * 100 >=40700
56   static const uint8x16_t r8 = {1,2,3,0,5,6,7,4,9,10,11,8,13,14,15,12};
57   return vreinterpretq_u32_u8(__builtin_shuffle(vreinterpretq_u8_u32(x), vreinterpretq_u8_u32(x), r8));
58 #else
59   return vsriq_n_u32(vshlq_n_u32(x, 32-8), x, 8);
60 #endif
61 }
62 
rot7_128(uint32x4_t x)63 INLINE uint32x4_t rot7_128(uint32x4_t x) {
64   // See comment in rot16_128.
65   // return vorrq_u32(vshrq_n_u32(x, 7), vshlq_n_u32(x, 32 - 7));
66   return vsriq_n_u32(vshlq_n_u32(x, 32-7), x, 7);
67 }
68 
69 // TODO: compress_neon
70 
71 // TODO: hash2_neon
72 
73 /*
74  * ----------------------------------------------------------------------------
75  * hash4_neon
76  * ----------------------------------------------------------------------------
77  */
78 
round_fn4(uint32x4_t v[16],uint32x4_t m[16],size_t r)79 INLINE void round_fn4(uint32x4_t v[16], uint32x4_t m[16], size_t r) {
80   v[0] = add_128(v[0], m[(size_t)MSG_SCHEDULE[r][0]]);
81   v[1] = add_128(v[1], m[(size_t)MSG_SCHEDULE[r][2]]);
82   v[2] = add_128(v[2], m[(size_t)MSG_SCHEDULE[r][4]]);
83   v[3] = add_128(v[3], m[(size_t)MSG_SCHEDULE[r][6]]);
84   v[0] = add_128(v[0], v[4]);
85   v[1] = add_128(v[1], v[5]);
86   v[2] = add_128(v[2], v[6]);
87   v[3] = add_128(v[3], v[7]);
88   v[12] = xor_128(v[12], v[0]);
89   v[13] = xor_128(v[13], v[1]);
90   v[14] = xor_128(v[14], v[2]);
91   v[15] = xor_128(v[15], v[3]);
92   v[12] = rot16_128(v[12]);
93   v[13] = rot16_128(v[13]);
94   v[14] = rot16_128(v[14]);
95   v[15] = rot16_128(v[15]);
96   v[8] = add_128(v[8], v[12]);
97   v[9] = add_128(v[9], v[13]);
98   v[10] = add_128(v[10], v[14]);
99   v[11] = add_128(v[11], v[15]);
100   v[4] = xor_128(v[4], v[8]);
101   v[5] = xor_128(v[5], v[9]);
102   v[6] = xor_128(v[6], v[10]);
103   v[7] = xor_128(v[7], v[11]);
104   v[4] = rot12_128(v[4]);
105   v[5] = rot12_128(v[5]);
106   v[6] = rot12_128(v[6]);
107   v[7] = rot12_128(v[7]);
108   v[0] = add_128(v[0], m[(size_t)MSG_SCHEDULE[r][1]]);
109   v[1] = add_128(v[1], m[(size_t)MSG_SCHEDULE[r][3]]);
110   v[2] = add_128(v[2], m[(size_t)MSG_SCHEDULE[r][5]]);
111   v[3] = add_128(v[3], m[(size_t)MSG_SCHEDULE[r][7]]);
112   v[0] = add_128(v[0], v[4]);
113   v[1] = add_128(v[1], v[5]);
114   v[2] = add_128(v[2], v[6]);
115   v[3] = add_128(v[3], v[7]);
116   v[12] = xor_128(v[12], v[0]);
117   v[13] = xor_128(v[13], v[1]);
118   v[14] = xor_128(v[14], v[2]);
119   v[15] = xor_128(v[15], v[3]);
120   v[12] = rot8_128(v[12]);
121   v[13] = rot8_128(v[13]);
122   v[14] = rot8_128(v[14]);
123   v[15] = rot8_128(v[15]);
124   v[8] = add_128(v[8], v[12]);
125   v[9] = add_128(v[9], v[13]);
126   v[10] = add_128(v[10], v[14]);
127   v[11] = add_128(v[11], v[15]);
128   v[4] = xor_128(v[4], v[8]);
129   v[5] = xor_128(v[5], v[9]);
130   v[6] = xor_128(v[6], v[10]);
131   v[7] = xor_128(v[7], v[11]);
132   v[4] = rot7_128(v[4]);
133   v[5] = rot7_128(v[5]);
134   v[6] = rot7_128(v[6]);
135   v[7] = rot7_128(v[7]);
136 
137   v[0] = add_128(v[0], m[(size_t)MSG_SCHEDULE[r][8]]);
138   v[1] = add_128(v[1], m[(size_t)MSG_SCHEDULE[r][10]]);
139   v[2] = add_128(v[2], m[(size_t)MSG_SCHEDULE[r][12]]);
140   v[3] = add_128(v[3], m[(size_t)MSG_SCHEDULE[r][14]]);
141   v[0] = add_128(v[0], v[5]);
142   v[1] = add_128(v[1], v[6]);
143   v[2] = add_128(v[2], v[7]);
144   v[3] = add_128(v[3], v[4]);
145   v[15] = xor_128(v[15], v[0]);
146   v[12] = xor_128(v[12], v[1]);
147   v[13] = xor_128(v[13], v[2]);
148   v[14] = xor_128(v[14], v[3]);
149   v[15] = rot16_128(v[15]);
150   v[12] = rot16_128(v[12]);
151   v[13] = rot16_128(v[13]);
152   v[14] = rot16_128(v[14]);
153   v[10] = add_128(v[10], v[15]);
154   v[11] = add_128(v[11], v[12]);
155   v[8] = add_128(v[8], v[13]);
156   v[9] = add_128(v[9], v[14]);
157   v[5] = xor_128(v[5], v[10]);
158   v[6] = xor_128(v[6], v[11]);
159   v[7] = xor_128(v[7], v[8]);
160   v[4] = xor_128(v[4], v[9]);
161   v[5] = rot12_128(v[5]);
162   v[6] = rot12_128(v[6]);
163   v[7] = rot12_128(v[7]);
164   v[4] = rot12_128(v[4]);
165   v[0] = add_128(v[0], m[(size_t)MSG_SCHEDULE[r][9]]);
166   v[1] = add_128(v[1], m[(size_t)MSG_SCHEDULE[r][11]]);
167   v[2] = add_128(v[2], m[(size_t)MSG_SCHEDULE[r][13]]);
168   v[3] = add_128(v[3], m[(size_t)MSG_SCHEDULE[r][15]]);
169   v[0] = add_128(v[0], v[5]);
170   v[1] = add_128(v[1], v[6]);
171   v[2] = add_128(v[2], v[7]);
172   v[3] = add_128(v[3], v[4]);
173   v[15] = xor_128(v[15], v[0]);
174   v[12] = xor_128(v[12], v[1]);
175   v[13] = xor_128(v[13], v[2]);
176   v[14] = xor_128(v[14], v[3]);
177   v[15] = rot8_128(v[15]);
178   v[12] = rot8_128(v[12]);
179   v[13] = rot8_128(v[13]);
180   v[14] = rot8_128(v[14]);
181   v[10] = add_128(v[10], v[15]);
182   v[11] = add_128(v[11], v[12]);
183   v[8] = add_128(v[8], v[13]);
184   v[9] = add_128(v[9], v[14]);
185   v[5] = xor_128(v[5], v[10]);
186   v[6] = xor_128(v[6], v[11]);
187   v[7] = xor_128(v[7], v[8]);
188   v[4] = xor_128(v[4], v[9]);
189   v[5] = rot7_128(v[5]);
190   v[6] = rot7_128(v[6]);
191   v[7] = rot7_128(v[7]);
192   v[4] = rot7_128(v[4]);
193 }
194 
transpose_vecs_128(uint32x4_t vecs[4])195 INLINE void transpose_vecs_128(uint32x4_t vecs[4]) {
196   // Individually transpose the four 2x2 sub-matrices in each corner.
197   uint32x4x2_t rows01 = vtrnq_u32(vecs[0], vecs[1]);
198   uint32x4x2_t rows23 = vtrnq_u32(vecs[2], vecs[3]);
199 
200   // Swap the top-right and bottom-left 2x2s (which just got transposed).
201   vecs[0] =
202       vcombine_u32(vget_low_u32(rows01.val[0]), vget_low_u32(rows23.val[0]));
203   vecs[1] =
204       vcombine_u32(vget_low_u32(rows01.val[1]), vget_low_u32(rows23.val[1]));
205   vecs[2] =
206       vcombine_u32(vget_high_u32(rows01.val[0]), vget_high_u32(rows23.val[0]));
207   vecs[3] =
208       vcombine_u32(vget_high_u32(rows01.val[1]), vget_high_u32(rows23.val[1]));
209 }
210 
transpose_msg_vecs4(const uint8_t * const * inputs,size_t block_offset,uint32x4_t out[16])211 INLINE void transpose_msg_vecs4(const uint8_t *const *inputs,
212                                 size_t block_offset, uint32x4_t out[16]) {
213   out[0] = loadu_128(&inputs[0][block_offset + 0 * sizeof(uint32x4_t)]);
214   out[1] = loadu_128(&inputs[1][block_offset + 0 * sizeof(uint32x4_t)]);
215   out[2] = loadu_128(&inputs[2][block_offset + 0 * sizeof(uint32x4_t)]);
216   out[3] = loadu_128(&inputs[3][block_offset + 0 * sizeof(uint32x4_t)]);
217   out[4] = loadu_128(&inputs[0][block_offset + 1 * sizeof(uint32x4_t)]);
218   out[5] = loadu_128(&inputs[1][block_offset + 1 * sizeof(uint32x4_t)]);
219   out[6] = loadu_128(&inputs[2][block_offset + 1 * sizeof(uint32x4_t)]);
220   out[7] = loadu_128(&inputs[3][block_offset + 1 * sizeof(uint32x4_t)]);
221   out[8] = loadu_128(&inputs[0][block_offset + 2 * sizeof(uint32x4_t)]);
222   out[9] = loadu_128(&inputs[1][block_offset + 2 * sizeof(uint32x4_t)]);
223   out[10] = loadu_128(&inputs[2][block_offset + 2 * sizeof(uint32x4_t)]);
224   out[11] = loadu_128(&inputs[3][block_offset + 2 * sizeof(uint32x4_t)]);
225   out[12] = loadu_128(&inputs[0][block_offset + 3 * sizeof(uint32x4_t)]);
226   out[13] = loadu_128(&inputs[1][block_offset + 3 * sizeof(uint32x4_t)]);
227   out[14] = loadu_128(&inputs[2][block_offset + 3 * sizeof(uint32x4_t)]);
228   out[15] = loadu_128(&inputs[3][block_offset + 3 * sizeof(uint32x4_t)]);
229   transpose_vecs_128(&out[0]);
230   transpose_vecs_128(&out[4]);
231   transpose_vecs_128(&out[8]);
232   transpose_vecs_128(&out[12]);
233 }
234 
load_counters4(uint64_t counter,bool increment_counter,uint32x4_t * out_low,uint32x4_t * out_high)235 INLINE void load_counters4(uint64_t counter, bool increment_counter,
236                            uint32x4_t *out_low, uint32x4_t *out_high) {
237   uint64_t mask = (increment_counter ? ~0 : 0);
238   *out_low = set4(
239       counter_low(counter + (mask & 0)), counter_low(counter + (mask & 1)),
240       counter_low(counter + (mask & 2)), counter_low(counter + (mask & 3)));
241   *out_high = set4(
242       counter_high(counter + (mask & 0)), counter_high(counter + (mask & 1)),
243       counter_high(counter + (mask & 2)), counter_high(counter + (mask & 3)));
244 }
245 
blake3_hash4_neon(const uint8_t * const * inputs,size_t blocks,const uint32_t key[8],uint64_t counter,bool increment_counter,uint8_t flags,uint8_t flags_start,uint8_t flags_end,uint8_t * out)246 static void blake3_hash4_neon(const uint8_t *const *inputs, size_t blocks,
247                        const uint32_t key[8], uint64_t counter,
248                        bool increment_counter, uint8_t flags,
249                        uint8_t flags_start, uint8_t flags_end, uint8_t *out) {
250   uint32x4_t h_vecs[8] = {
251       set1_128(key[0]), set1_128(key[1]), set1_128(key[2]), set1_128(key[3]),
252       set1_128(key[4]), set1_128(key[5]), set1_128(key[6]), set1_128(key[7]),
253   };
254   uint32x4_t counter_low_vec, counter_high_vec;
255   load_counters4(counter, increment_counter, &counter_low_vec,
256                  &counter_high_vec);
257   uint8_t block_flags = flags | flags_start;
258 
259   for (size_t block = 0; block < blocks; block++) {
260     if (block + 1 == blocks) {
261       block_flags |= flags_end;
262     }
263     uint32x4_t block_len_vec = set1_128(BLAKE3_BLOCK_LEN);
264     uint32x4_t block_flags_vec = set1_128(block_flags);
265     uint32x4_t msg_vecs[16];
266     transpose_msg_vecs4(inputs, block * BLAKE3_BLOCK_LEN, msg_vecs);
267 
268     uint32x4_t v[16] = {
269         h_vecs[0],       h_vecs[1],        h_vecs[2],       h_vecs[3],
270         h_vecs[4],       h_vecs[5],        h_vecs[6],       h_vecs[7],
271         set1_128(IV[0]), set1_128(IV[1]),  set1_128(IV[2]), set1_128(IV[3]),
272         counter_low_vec, counter_high_vec, block_len_vec,   block_flags_vec,
273     };
274     round_fn4(v, msg_vecs, 0);
275     round_fn4(v, msg_vecs, 1);
276     round_fn4(v, msg_vecs, 2);
277     round_fn4(v, msg_vecs, 3);
278     round_fn4(v, msg_vecs, 4);
279     round_fn4(v, msg_vecs, 5);
280     round_fn4(v, msg_vecs, 6);
281     h_vecs[0] = xor_128(v[0], v[8]);
282     h_vecs[1] = xor_128(v[1], v[9]);
283     h_vecs[2] = xor_128(v[2], v[10]);
284     h_vecs[3] = xor_128(v[3], v[11]);
285     h_vecs[4] = xor_128(v[4], v[12]);
286     h_vecs[5] = xor_128(v[5], v[13]);
287     h_vecs[6] = xor_128(v[6], v[14]);
288     h_vecs[7] = xor_128(v[7], v[15]);
289 
290     block_flags = flags;
291   }
292 
293   transpose_vecs_128(&h_vecs[0]);
294   transpose_vecs_128(&h_vecs[4]);
295   // The first four vecs now contain the first half of each output, and the
296   // second four vecs contain the second half of each output.
297   storeu_128(h_vecs[0], &out[0 * sizeof(uint32x4_t)]);
298   storeu_128(h_vecs[4], &out[1 * sizeof(uint32x4_t)]);
299   storeu_128(h_vecs[1], &out[2 * sizeof(uint32x4_t)]);
300   storeu_128(h_vecs[5], &out[3 * sizeof(uint32x4_t)]);
301   storeu_128(h_vecs[2], &out[4 * sizeof(uint32x4_t)]);
302   storeu_128(h_vecs[6], &out[5 * sizeof(uint32x4_t)]);
303   storeu_128(h_vecs[3], &out[6 * sizeof(uint32x4_t)]);
304   storeu_128(h_vecs[7], &out[7 * sizeof(uint32x4_t)]);
305 }
306 
307 /*
308  * ----------------------------------------------------------------------------
309  * hash_many_neon
310  * ----------------------------------------------------------------------------
311  */
312 
313 void blake3_compress_in_place_portable(uint32_t cv[8],
314                                        const uint8_t block[BLAKE3_BLOCK_LEN],
315                                        uint8_t block_len, uint64_t counter,
316                                        uint8_t flags);
317 
hash_one_neon(const uint8_t * input,size_t blocks,const uint32_t key[8],uint64_t counter,uint8_t flags,uint8_t flags_start,uint8_t flags_end,uint8_t out[BLAKE3_OUT_LEN])318 INLINE void hash_one_neon(const uint8_t *input, size_t blocks,
319                           const uint32_t key[8], uint64_t counter,
320                           uint8_t flags, uint8_t flags_start, uint8_t flags_end,
321                           uint8_t out[BLAKE3_OUT_LEN]) {
322   uint32_t cv[8];
323   memcpy(cv, key, BLAKE3_KEY_LEN);
324   uint8_t block_flags = flags | flags_start;
325   while (blocks > 0) {
326     if (blocks == 1) {
327       block_flags |= flags_end;
328     }
329     // TODO: Implement compress_neon. However note that according to
330     // https://github.com/BLAKE2/BLAKE2/commit/7965d3e6e1b4193438b8d3a656787587d2579227,
331     // compress_neon might not be any faster than compress_portable.
332     blake3_compress_in_place_portable(cv, input, BLAKE3_BLOCK_LEN, counter,
333                                       block_flags);
334     input = &input[BLAKE3_BLOCK_LEN];
335     blocks -= 1;
336     block_flags = flags;
337   }
338   memcpy(out, cv, BLAKE3_OUT_LEN);
339 }
340 
blake3_hash_many_neon(const uint8_t * const * inputs,size_t num_inputs,size_t blocks,const uint32_t key[8],uint64_t counter,bool increment_counter,uint8_t flags,uint8_t flags_start,uint8_t flags_end,uint8_t * out)341 void blake3_hash_many_neon(const uint8_t *const *inputs, size_t num_inputs,
342                            size_t blocks, const uint32_t key[8],
343                            uint64_t counter, bool increment_counter,
344                            uint8_t flags, uint8_t flags_start,
345                            uint8_t flags_end, uint8_t *out) {
346   while (num_inputs >= 4) {
347     blake3_hash4_neon(inputs, blocks, key, counter, increment_counter, flags,
348                       flags_start, flags_end, out);
349     if (increment_counter) {
350       counter += 4;
351     }
352     inputs += 4;
353     num_inputs -= 4;
354     out = &out[4 * BLAKE3_OUT_LEN];
355   }
356   while (num_inputs > 0) {
357     hash_one_neon(inputs[0], blocks, key, counter, flags, flags_start,
358                   flags_end, out);
359     if (increment_counter) {
360       counter += 1;
361     }
362     inputs += 1;
363     num_inputs -= 1;
364     out = &out[BLAKE3_OUT_LEN];
365   }
366 }
367