xref: /aosp_15_r20/external/mesa3d/src/vulkan/util/vk_util.h (revision 6104692788411f58d303aa86923a9ff6ecaded22)
1 /*
2  * Copyright © 2017 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23 #ifndef VK_UTIL_H
24 #define VK_UTIL_H
25 
26 #include "util/bitscan.h"
27 #include "util/macros.h"
28 #include "compiler/shader_enums.h"
29 #include <stdlib.h>
30 #include <string.h>
31 
32 #include "vk_struct_type_cast.h"
33 
34 #ifdef __cplusplus
35 extern "C" {
36 #endif
37 
38 /* common inlines and macros for vulkan drivers */
39 
40 #include <vulkan/vulkan_core.h>
41 
42 struct vk_pnext_iterator {
43    VkBaseOutStructure *pos;
44 #ifndef NDEBUG
45    VkBaseOutStructure *half_pos;
46    unsigned idx;
47 #endif
48    bool done;
49 };
50 
51 static inline struct vk_pnext_iterator
vk_pnext_iterator_init(void * start)52 vk_pnext_iterator_init(void *start)
53 {
54    struct vk_pnext_iterator iter;
55 
56    iter.pos = (VkBaseOutStructure *)start;
57 #ifndef NDEBUG
58    iter.half_pos = (VkBaseOutStructure *)start;
59    iter.idx = 0;
60 #endif
61    iter.done = false;
62 
63    return iter;
64 }
65 
66 static inline struct vk_pnext_iterator
vk_pnext_iterator_init_const(const void * start)67 vk_pnext_iterator_init_const(const void *start)
68 {
69    return vk_pnext_iterator_init((void *)start);
70 }
71 
72 static inline VkBaseOutStructure *
vk_pnext_iterator_next(struct vk_pnext_iterator * iter)73 vk_pnext_iterator_next(struct vk_pnext_iterator *iter)
74 {
75    iter->pos = iter->pos->pNext;
76 
77 #ifndef NDEBUG
78    if (iter->idx++ & 1) {
79       /** This the "tortoise and the hare" algorithm.  We increment
80        * chaser->pNext every other time *iter gets incremented.  Because *iter
81        * is incrementing twice as fast as chaser->pNext, the distance between
82        * them in the list increases by one for each time we get here.  If we
83        * have a loop, eventually, both iterators will be inside the loop and
84        * this distance will be an integer multiple of the loop length, at
85        * which point the two pointers will be equal.
86        */
87       iter->half_pos = iter->half_pos->pNext;
88       if (iter->half_pos == iter->pos)
89          assert(!"Vulkan input pNext chain has a loop!");
90    }
91 #endif
92 
93    return iter->pos;
94 }
95 
96 /* Because the outer loop only executes once, independently of what happens in
97  * the inner loop, breaks and continues should work exactly the same as if
98  * there were only one for loop.
99  */
100 #define vk_foreach_struct(__e, __start) \
101    for (struct vk_pnext_iterator __iter = vk_pnext_iterator_init(__start); \
102         !__iter.done; __iter.done = true) \
103       for (VkBaseOutStructure *__e = __iter.pos; \
104            __e; __e = vk_pnext_iterator_next(&__iter))
105 
106 #define vk_foreach_struct_const(__e, __start) \
107    for (struct vk_pnext_iterator __iter = \
108             vk_pnext_iterator_init_const(__start); \
109         !__iter.done; __iter.done = true) \
110       for (const VkBaseInStructure *__e = (VkBaseInStructure *)__iter.pos; \
111            __e; __e = (VkBaseInStructure *)vk_pnext_iterator_next(&__iter))
112 
113 /**
114  * A wrapper for a Vulkan output array. A Vulkan output array is one that
115  * follows the convention of the parameters to
116  * vkGetPhysicalDeviceQueueFamilyProperties().
117  *
118  * Example Usage:
119  *
120  *    VkResult
121  *    vkGetPhysicalDeviceQueueFamilyProperties(
122  *       VkPhysicalDevice           physicalDevice,
123  *       uint32_t*                  pQueueFamilyPropertyCount,
124  *       VkQueueFamilyProperties*   pQueueFamilyProperties)
125  *    {
126  *       VK_OUTARRAY_MAKE_TYPED(VkQueueFamilyProperties, props,
127  *                              pQueueFamilyProperties,
128  *                              pQueueFamilyPropertyCount);
129  *
130  *       vk_outarray_append_typed(VkQueueFamilyProperties, &props, p) {
131  *          p->queueFlags = ...;
132  *          p->queueCount = ...;
133  *       }
134  *
135  *       vk_outarray_append_typed(VkQueueFamilyProperties, &props, p) {
136  *          p->queueFlags = ...;
137  *          p->queueCount = ...;
138  *       }
139  *
140  *       return vk_outarray_status(&props);
141  *    }
142  */
143 struct __vk_outarray {
144    /** May be null. */
145    void *data;
146 
147    /**
148     * Capacity, in number of elements. Capacity is unlimited (UINT32_MAX) if
149     * data is null.
150     */
151    uint32_t cap;
152 
153    /**
154     * Count of elements successfully written to the array. Every write is
155     * considered successful if data is null.
156     */
157    uint32_t *filled_len;
158 
159    /**
160     * Count of elements that would have been written to the array if its
161     * capacity were sufficient. Vulkan functions often return VK_INCOMPLETE
162     * when `*filled_len < wanted_len`.
163     */
164    uint32_t wanted_len;
165 };
166 
167 static inline void
__vk_outarray_init(struct __vk_outarray * a,void * data,uint32_t * restrict len)168 __vk_outarray_init(struct __vk_outarray *a,
169                    void *data, uint32_t *restrict len)
170 {
171    a->data = data;
172    a->cap = *len;
173    a->filled_len = len;
174    *a->filled_len = 0;
175    a->wanted_len = 0;
176 
177    if (a->data == NULL)
178       a->cap = UINT32_MAX;
179 }
180 
181 static inline VkResult
__vk_outarray_status(const struct __vk_outarray * a)182 __vk_outarray_status(const struct __vk_outarray *a)
183 {
184    if (*a->filled_len < a->wanted_len)
185       return VK_INCOMPLETE;
186    else
187       return VK_SUCCESS;
188 }
189 
190 static inline void *
__vk_outarray_next(struct __vk_outarray * a,size_t elem_size)191 __vk_outarray_next(struct __vk_outarray *a, size_t elem_size)
192 {
193    void *p = NULL;
194 
195    a->wanted_len += 1;
196 
197    if (*a->filled_len >= a->cap)
198       return NULL;
199 
200    if (a->data != NULL)
201       p = (uint8_t *)a->data + (*a->filled_len) * elem_size;
202 
203    *a->filled_len += 1;
204 
205    return p;
206 }
207 
208 #define vk_outarray(elem_t) \
209    struct { \
210       struct __vk_outarray base; \
211       elem_t meta[]; \
212    }
213 
214 #define vk_outarray_typeof_elem(a) __typeof__((a)->meta[0])
215 #define vk_outarray_sizeof_elem(a) sizeof((a)->meta[0])
216 
217 #define vk_outarray_init(a, data, len) \
218    __vk_outarray_init(&(a)->base, (data), (len))
219 
220 #define VK_OUTARRAY_MAKE_TYPED(type, name, data, len) \
221    vk_outarray(type) name; \
222    vk_outarray_init(&name, (data), (len))
223 
224 #define vk_outarray_status(a) \
225    __vk_outarray_status(&(a)->base)
226 
227 #define vk_outarray_next(a) \
228    vk_outarray_next_typed(vk_outarray_typeof_elem(a), a)
229 #define vk_outarray_next_typed(type, a) \
230    ((type *) \
231       __vk_outarray_next(&(a)->base, vk_outarray_sizeof_elem(a)))
232 
233 /**
234  * Append to a Vulkan output array.
235  *
236  * This is a block-based macro. For example:
237  *
238  *    vk_outarray_append_typed(T, &a, elem) {
239  *       elem->foo = ...;
240  *       elem->bar = ...;
241  *    }
242  *
243  * The array `a` has type `vk_outarray(elem_t) *`. It is usually declared with
244  * VK_OUTARRAY_MAKE_TYPED(). The variable `elem` is block-scoped and has type
245  * `elem_t *`.
246  *
247  * The macro unconditionally increments the array's `wanted_len`. If the array
248  * is not full, then the macro also increment its `filled_len` and then
249  * executes the block. When the block is executed, `elem` is non-null and
250  * points to the newly appended element.
251  */
252 #define vk_outarray_append_typed(type, a, elem) \
253    for (type *elem = vk_outarray_next_typed(type, a); \
254         elem != NULL; elem = NULL)
255 
256 static inline void *
__vk_find_struct(void * start,VkStructureType sType)257 __vk_find_struct(void *start, VkStructureType sType)
258 {
259    vk_foreach_struct(s, start) {
260       if (s->sType == sType)
261          return s;
262    }
263 
264    return NULL;
265 }
266 
267 #define vk_find_struct(__start, __sType)                                       \
268   (VK_STRUCTURE_TYPE_##__sType##_cast *)__vk_find_struct(                      \
269       (__start), VK_STRUCTURE_TYPE_##__sType)
270 
271 #define vk_find_struct_const(__start, __sType)                                 \
272   (const VK_STRUCTURE_TYPE_##__sType##_cast *)__vk_find_struct(                \
273       (void *)(__start), VK_STRUCTURE_TYPE_##__sType)
274 
275 static inline void
__vk_append_struct(void * start,void * element)276 __vk_append_struct(void *start, void *element)
277 {
278    vk_foreach_struct(s, start) {
279       if (s->pNext)
280          continue;
281 
282       s->pNext = (struct VkBaseOutStructure *) element;
283       break;
284    }
285 }
286 
287 uint32_t vk_get_driver_version(void);
288 
289 uint32_t vk_get_version_override(void);
290 
291 void vk_warn_non_conformant_implementation(const char *driver_name);
292 
293 struct vk_pipeline_cache_header {
294    uint32_t header_size;
295    uint32_t header_version;
296    uint32_t vendor_id;
297    uint32_t device_id;
298    uint8_t  uuid[VK_UUID_SIZE];
299 };
300 
301 #define VK_EXT_OFFSET (1000000000UL)
302 #define VK_ENUM_EXTENSION(__enum) \
303    ((__enum) >= VK_EXT_OFFSET ? ((((__enum) - VK_EXT_OFFSET) / 1000UL) + 1) : 0)
304 #define VK_ENUM_OFFSET(__enum) \
305    ((__enum) >= VK_EXT_OFFSET ? ((__enum) % 1000) : (__enum))
306 
307 #define typed_memcpy(dest, src, count) do { \
308    STATIC_ASSERT(sizeof(*(src)) == sizeof(*(dest))); \
309    memcpy((dest), (src), (count) * sizeof(*(src))); \
310 } while (0)
311 
312 static inline gl_shader_stage
vk_to_mesa_shader_stage(VkShaderStageFlagBits vk_stage)313 vk_to_mesa_shader_stage(VkShaderStageFlagBits vk_stage)
314 {
315    assert(util_bitcount((uint32_t) vk_stage) == 1);
316    return (gl_shader_stage) (ffs((uint32_t) vk_stage) - 1);
317 }
318 
319 static inline VkShaderStageFlagBits
mesa_to_vk_shader_stage(gl_shader_stage mesa_stage)320 mesa_to_vk_shader_stage(gl_shader_stage mesa_stage)
321 {
322    return (VkShaderStageFlagBits) (1 << ((uint32_t) mesa_stage));
323 }
324 
325 /* iterate over a sequence of indexed multidraws for VK_EXT_multi_draw extension */
326 /* 'i' must be explicitly declared */
327 #define vk_foreach_multi_draw_indexed(_draw, _i, _pDrawInfo, _num_draws, _stride) \
328    for (const VkMultiDrawIndexedInfoEXT *_draw = (const VkMultiDrawIndexedInfoEXT*)(_pDrawInfo); \
329         (_i) < (_num_draws); \
330         (_i)++, (_draw) = (const VkMultiDrawIndexedInfoEXT*)((const uint8_t*)(_draw) + (_stride)))
331 
332 /* iterate over a sequence of multidraws for VK_EXT_multi_draw extension */
333 /* 'i' must be explicitly declared */
334 #define vk_foreach_multi_draw(_draw, _i, _pDrawInfo, _num_draws, _stride) \
335    for (const VkMultiDrawInfoEXT *_draw = (const VkMultiDrawInfoEXT*)(_pDrawInfo); \
336         (_i) < (_num_draws); \
337         (_i)++, (_draw) = (const VkMultiDrawInfoEXT*)((const uint8_t*)(_draw) + (_stride)))
338 
339 
340 struct nir_spirv_specialization;
341 
342 struct nir_spirv_specialization*
343 vk_spec_info_to_nir_spirv(const VkSpecializationInfo *spec_info,
344                           uint32_t *out_num_spec_entries);
345 
346 #define STACK_ARRAY_SIZE 8
347 
348 /* Sometimes gcc may claim -Wmaybe-uninitialized for the stack array in some
349  * places it can't verify that when size is 0 nobody down the call chain reads
350  * the array. Please don't try to fix it by zero-initializing the array here
351  * since it's used in a lot of different places. An "if (size == 0) return;"
352  * may work for you.
353  */
354 #define STACK_ARRAY(type, name, size) \
355    type _stack_##name[STACK_ARRAY_SIZE]; \
356    type *const name = \
357      ((size) <= STACK_ARRAY_SIZE ? _stack_##name : (type *)malloc((size) * sizeof(type)))
358 
359 #define STACK_ARRAY_FINISH(name) \
360    if (name != _stack_##name) free(name)
361 
362 static inline uint8_t
vk_index_type_to_bytes(enum VkIndexType type)363 vk_index_type_to_bytes(enum VkIndexType type)
364 {
365    switch (type) {
366    case VK_INDEX_TYPE_NONE_KHR:  return 0;
367    case VK_INDEX_TYPE_UINT8_KHR: return 1;
368    case VK_INDEX_TYPE_UINT16:    return 2;
369    case VK_INDEX_TYPE_UINT32:    return 4;
370    default:                      unreachable("Invalid index type");
371    }
372 }
373 
374 static inline uint32_t
vk_index_to_restart(enum VkIndexType type)375 vk_index_to_restart(enum VkIndexType type)
376 {
377    switch (type) {
378    case VK_INDEX_TYPE_UINT8_KHR: return 0xff;
379    case VK_INDEX_TYPE_UINT16:    return 0xffff;
380    case VK_INDEX_TYPE_UINT32:    return 0xffffffff;
381    default:                      unreachable("unexpected index type");
382    }
383 }
384 
385 #ifdef __cplusplus
386 }
387 #endif
388 
389 #endif /* VK_UTIL_H */
390