xref: /aosp_15_r20/external/perfetto/src/protozero/proto_utils_unittest.cc (revision 6dbdd20afdafa5e3ca9b8809fa73465d530080dc)
1 /*
2  * Copyright (C) 2017 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "perfetto/protozero/proto_utils.h"
18 
19 #include <limits>
20 
21 #include "perfetto/base/logging.h"
22 #include "perfetto/ext/base/utils.h"
23 #include "test/gtest_and_gmock.h"
24 
25 namespace protozero {
26 namespace proto_utils {
27 namespace {
28 
29 using ::perfetto::base::ArraySize;
30 
31 struct VarIntExpectation {
32   const char* encoded;
33   size_t encoded_size;
34   uint64_t int_value;
35 };
36 
37 const VarIntExpectation kVarIntExpectations[] = {
38     {"\x00", 1, 0},
39     {"\x01", 1, 0x1},
40     {"\x7f", 1, 0x7F},
41     {"\xFF\x01", 2, 0xFF},
42     {"\xFF\x7F", 2, 0x3FFF},
43     {"\x80\x80\x01", 3, 0x4000},
44     {"\xFF\xFF\x7F", 3, 0x1FFFFF},
45     {"\x80\x80\x80\x01", 4, 0x200000},
46     {"\xFF\xFF\xFF\x7F", 4, 0xFFFFFFF},
47     {"\x80\x80\x80\x80\x01", 5, 0x10000000},
48     {"\xFF\xFF\xFF\xFF\x0F", 5, 0xFFFFFFFF},
49     {"\x80\x80\x80\x80\x10", 5, 0x100000000},
50     {"\xFF\xFF\xFF\xFF\x7F", 5, 0x7FFFFFFFF},
51     {"\x80\x80\x80\x80\x80\x01", 6, 0x800000000},
52     {"\xFF\xFF\xFF\xFF\xFF\x7F", 6, 0x3FFFFFFFFFF},
53     {"\x80\x80\x80\x80\x80\x80\x01", 7, 0x40000000000},
54     {"\xFF\xFF\xFF\xFF\xFF\xFF\x7F", 7, 0x1FFFFFFFFFFFF},
55     {"\x80\x80\x80\x80\x80\x80\x80\x01", 8, 0x2000000000000},
56     {"\xFF\xFF\xFF\xFF\xFF\xFF\xFF\x7F", 8, 0xFFFFFFFFFFFFFF},
57     {"\x80\x80\x80\x80\x80\x80\x80\x80\x01", 9, 0x100000000000000},
58     {"\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\x7F", 9, 0x7FFFFFFFFFFFFFFF},
59     {"\x80\x80\x80\x80\x80\x80\x80\x80\x80\x01", 10, 0x8000000000000000},
60     {"\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\x01", 10, 0xFFFFFFFFFFFFFFFF},
61 };
62 
TEST(ProtoUtilsTest,FieldPreambleEncoding)63 TEST(ProtoUtilsTest, FieldPreambleEncoding) {
64   // According to C++ standard, right shift of negative value has
65   // implementation-defined resulting value.
66   if ((static_cast<int32_t>(0x80000000u) >> 31) != -1)
67     FAIL() << "Platform has unsupported negative number format or arithmetic";
68 
69   EXPECT_EQ(0x08u, MakeTagVarInt(1));
70   EXPECT_EQ(0x09u, MakeTagFixed<uint64_t>(1));
71   EXPECT_EQ(0x0Au, MakeTagLengthDelimited(1));
72   EXPECT_EQ(0x0Du, MakeTagFixed<uint32_t>(1));
73 
74   EXPECT_EQ(0x03F8u, MakeTagVarInt(0x7F));
75   EXPECT_EQ(0x03F9u, MakeTagFixed<int64_t>(0x7F));
76   EXPECT_EQ(0x03FAu, MakeTagLengthDelimited(0x7F));
77   EXPECT_EQ(0x03FDu, MakeTagFixed<int32_t>(0x7F));
78 
79   EXPECT_EQ(0x0400u, MakeTagVarInt(0x80));
80   EXPECT_EQ(0x0401u, MakeTagFixed<double>(0x80));
81   EXPECT_EQ(0x0402u, MakeTagLengthDelimited(0x80));
82   EXPECT_EQ(0x0405u, MakeTagFixed<float>(0x80));
83 
84   EXPECT_EQ(0x01FFF8u, MakeTagVarInt(0x3fff));
85   EXPECT_EQ(0x01FFF9u, MakeTagFixed<int64_t>(0x3fff));
86   EXPECT_EQ(0x01FFFAu, MakeTagLengthDelimited(0x3fff));
87   EXPECT_EQ(0x01FFFDu, MakeTagFixed<int32_t>(0x3fff));
88 
89   EXPECT_EQ(0x020000u, MakeTagVarInt(0x4000));
90   EXPECT_EQ(0x020001u, MakeTagFixed<int64_t>(0x4000));
91   EXPECT_EQ(0x020002u, MakeTagLengthDelimited(0x4000));
92   EXPECT_EQ(0x020005u, MakeTagFixed<int32_t>(0x4000));
93 }
94 
TEST(ProtoUtilsTest,ZigZagEncoding)95 TEST(ProtoUtilsTest, ZigZagEncoding) {
96   EXPECT_EQ(0u, ZigZagEncode(0));
97   EXPECT_EQ(1u, ZigZagEncode(-1));
98   EXPECT_EQ(2u, ZigZagEncode(1));
99   EXPECT_EQ(3u, ZigZagEncode(-2));
100   EXPECT_EQ(4294967293u, ZigZagEncode(-2147483647));
101   EXPECT_EQ(4294967294u, ZigZagEncode(2147483647));
102   EXPECT_EQ(std::numeric_limits<uint32_t>::max(),
103             ZigZagEncode(std::numeric_limits<int32_t>::min()));
104   EXPECT_EQ(std::numeric_limits<uint64_t>::max(),
105             ZigZagEncode(std::numeric_limits<int64_t>::min()));
106 
107   EXPECT_EQ(0, ZigZagDecode(ZigZagEncode(0)));
108   EXPECT_EQ(-1, ZigZagDecode(ZigZagEncode(-1)));
109   EXPECT_EQ(1, ZigZagDecode(ZigZagEncode(1)));
110   EXPECT_EQ(-127, ZigZagDecode(ZigZagEncode(-127)));
111   EXPECT_EQ(0x7fffffff, ZigZagDecode(ZigZagEncode(0x7fffffff)));
112   EXPECT_EQ(9000000000, ZigZagDecode(ZigZagEncode(9000000000)));
113   EXPECT_EQ(-9000000000, ZigZagDecode(ZigZagEncode(-9000000000)));
114 }
115 
TEST(ProtoUtilsTest,VarIntEncoding)116 TEST(ProtoUtilsTest, VarIntEncoding) {
117   for (size_t i = 0; i < ArraySize(kVarIntExpectations); ++i) {
118     const VarIntExpectation& exp = kVarIntExpectations[i];
119     uint8_t buf[32];
120     uint8_t* res = WriteVarInt<uint64_t>(exp.int_value, buf);
121     ASSERT_EQ(exp.encoded_size, static_cast<size_t>(res - buf));
122     ASSERT_EQ(0, memcmp(buf, exp.encoded, exp.encoded_size));
123 
124     if (exp.int_value <= std::numeric_limits<uint32_t>::max()) {
125       uint8_t* res_32 =
126           WriteVarInt<uint32_t>(static_cast<uint32_t>(exp.int_value), buf);
127       ASSERT_EQ(exp.encoded_size, static_cast<size_t>(res_32 - buf));
128       ASSERT_EQ(0, memcmp(buf, exp.encoded, exp.encoded_size));
129     }
130   }
131 }
132 
TEST(ProtoUtilsTest,VarIntEncodingNegative)133 TEST(ProtoUtilsTest, VarIntEncodingNegative) {
134   uint8_t buf[32];
135   size_t expected_size = 10;
136   uint8_t expected[] = "\x9c\xff\xff\xff\xff\xff\xff\xff\xff\x01";
137 
138   {
139     uint8_t* res = WriteVarInt<int8_t>(-100, buf);
140     ASSERT_EQ(expected_size, static_cast<size_t>(res - buf));
141     ASSERT_EQ(0, memcmp(buf, expected, expected_size));
142   }
143 
144   {
145     uint8_t* res = WriteVarInt<int16_t>(-100, buf);
146     ASSERT_EQ(expected_size, static_cast<size_t>(res - buf));
147     ASSERT_EQ(0, memcmp(buf, expected, expected_size));
148   }
149 
150   {
151     uint8_t* res = WriteVarInt<int32_t>(-100, buf);
152     ASSERT_EQ(expected_size, static_cast<size_t>(res - buf));
153     ASSERT_EQ(0, memcmp(buf, expected, expected_size));
154   }
155 
156   {
157     uint8_t* res = WriteVarInt<int64_t>(-100, buf);
158     ASSERT_EQ(expected_size, static_cast<size_t>(res - buf));
159     ASSERT_EQ(0, memcmp(buf, expected, expected_size));
160   }
161 }
162 
TEST(ProtoUtilsTest,RedundantVarIntEncoding)163 TEST(ProtoUtilsTest, RedundantVarIntEncoding) {
164   uint8_t buf[kMessageLengthFieldSize];
165 
166   WriteRedundantVarInt(0, buf);
167   EXPECT_EQ(0, memcmp("\x80\x80\x80\x00", buf, sizeof(buf)));
168 
169   WriteRedundantVarInt(1, buf);
170   EXPECT_EQ(0, memcmp("\x81\x80\x80\x00", buf, sizeof(buf)));
171 
172   WriteRedundantVarInt(0x80, buf);
173   EXPECT_EQ(0, memcmp("\x80\x81\x80\x00", buf, sizeof(buf)));
174 
175   WriteRedundantVarInt(0x332211, buf);
176   EXPECT_EQ(0, memcmp("\x91\xC4\xCC\x01", buf, sizeof(buf)));
177 
178   // Largest allowed length.
179   WriteRedundantVarInt(0x0FFFFFFF, buf);
180   EXPECT_EQ(0, memcmp("\xFF\xFF\xFF\x7F", buf, sizeof(buf)));
181 }
182 
TEST(ProtoUtilsTest,VarIntDecoding)183 TEST(ProtoUtilsTest, VarIntDecoding) {
184   for (size_t i = 0; i < ArraySize(kVarIntExpectations); ++i) {
185     const VarIntExpectation& exp = kVarIntExpectations[i];
186     uint64_t value = std::numeric_limits<uint64_t>::max();
187     const uint8_t* res = ParseVarInt(
188         reinterpret_cast<const uint8_t*>(exp.encoded),
189         reinterpret_cast<const uint8_t*>(exp.encoded + exp.encoded_size),
190         &value);
191     ASSERT_EQ(reinterpret_cast<const void*>(exp.encoded + exp.encoded_size),
192               reinterpret_cast<const void*>(res));
193     ASSERT_EQ(exp.int_value, value);
194   }
195 }
196 
197 // ParseVarInt() must fail gracefully if we hit the |end| without seeing the
198 // MSB == 0 (i.e. end-of-sequence).
TEST(ProtoUtilsTest,VarIntDecodingOutOfBounds)199 TEST(ProtoUtilsTest, VarIntDecodingOutOfBounds) {
200   uint8_t buf[] = {0xff, 0xff, 0xff, 0xff};
201   for (size_t i = 0; i < 5; i++) {
202     uint64_t value = static_cast<uint64_t>(-1);
203     const uint8_t* res = ParseVarInt(buf, buf + i, &value);
204     EXPECT_EQ(&buf[0], res);
205     EXPECT_EQ(0u, value);
206   }
207 }
208 
209 // Even if we see a valid end-of-sequence, ParseVarInt() must fail if the number
210 // is larger than 10 bytes. That would cause subtl bugs when trying to shift
211 // left by more than 64 bits.
TEST(ProtoUtilsTest,RejectVarIntTooBig)212 TEST(ProtoUtilsTest, RejectVarIntTooBig) {
213   // This is the biggest valid varint we support (2**64 - 1).
214   uint8_t good[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x01};
215 
216   // Parsing this value must succeed.
217   uint64_t value = static_cast<uint64_t>(-1);
218   const uint8_t* res = ParseVarInt(&good[0], &good[sizeof(good)], &value);
219   EXPECT_EQ(&good[sizeof(good)], res);
220   EXPECT_EQ(value, static_cast<uint64_t>(-1));
221 
222   uint8_t bad[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
223                    0xff, 0xff, 0xff, 0xff, 0x01};
224   value = static_cast<uint64_t>(-1);
225   res = ParseVarInt(&bad[0], &bad[sizeof(bad)], &value);
226   EXPECT_EQ(&bad[0], res);
227   EXPECT_EQ(0u, value);
228 }
229 
230 }  // namespace
231 }  // namespace proto_utils
232 }  // namespace protozero
233