1 // Copyright 2018 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 // A btree implementation of the STL set and map interfaces. A btree is smaller
16 // and generally also faster than STL set/map (refer to the benchmarks below).
17 // The red-black tree implementation of STL set/map has an overhead of 3
18 // pointers (left, right and parent) plus the node color information for each
19 // stored value. So a set<int32_t> consumes 40 bytes for each value stored in
20 // 64-bit mode. This btree implementation stores multiple values on fixed
21 // size nodes (usually 256 bytes) and doesn't store child pointers for leaf
22 // nodes. The result is that a btree_set<int32_t> may use much less memory per
23 // stored value. For the random insertion benchmark in btree_bench.cc, a
24 // btree_set<int32_t> with node-size of 256 uses 5.1 bytes per stored value.
25 //
26 // The packing of multiple values on to each node of a btree has another effect
27 // besides better space utilization: better cache locality due to fewer cache
28 // lines being accessed. Better cache locality translates into faster
29 // operations.
30 //
31 // CAVEATS
32 //
33 // Insertions and deletions on a btree can cause splitting, merging or
34 // rebalancing of btree nodes. And even without these operations, insertions
35 // and deletions on a btree will move values around within a node. In both
36 // cases, the result is that insertions and deletions can invalidate iterators
37 // pointing to values other than the one being inserted/deleted. Therefore, this
38 // container does not provide pointer stability. This is notably different from
39 // STL set/map which takes care to not invalidate iterators on insert/erase
40 // except, of course, for iterators pointing to the value being erased.  A
41 // partial workaround when erasing is available: erase() returns an iterator
42 // pointing to the item just after the one that was erased (or end() if none
43 // exists).
44 
45 #ifndef ABSL_CONTAINER_INTERNAL_BTREE_H_
46 #define ABSL_CONTAINER_INTERNAL_BTREE_H_
47 
48 #include <algorithm>
49 #include <cassert>
50 #include <cstddef>
51 #include <cstdint>
52 #include <cstring>
53 #include <functional>
54 #include <iterator>
55 #include <limits>
56 #include <new>
57 #include <string>
58 #include <type_traits>
59 #include <utility>
60 
61 #include "absl/base/internal/raw_logging.h"
62 #include "absl/base/macros.h"
63 #include "absl/container/internal/common.h"
64 #include "absl/container/internal/common_policy_traits.h"
65 #include "absl/container/internal/compressed_tuple.h"
66 #include "absl/container/internal/container_memory.h"
67 #include "absl/container/internal/layout.h"
68 #include "absl/memory/memory.h"
69 #include "absl/meta/type_traits.h"
70 #include "absl/strings/cord.h"
71 #include "absl/strings/string_view.h"
72 #include "absl/types/compare.h"
73 #include "absl/utility/utility.h"
74 
75 namespace absl {
76 ABSL_NAMESPACE_BEGIN
77 namespace container_internal {
78 
79 #ifdef ABSL_BTREE_ENABLE_GENERATIONS
80 #error ABSL_BTREE_ENABLE_GENERATIONS cannot be directly set
81 #elif defined(ABSL_HAVE_ADDRESS_SANITIZER) || \
82     defined(ABSL_HAVE_MEMORY_SANITIZER)
83 // When compiled in sanitizer mode, we add generation integers to the nodes and
84 // iterators. When iterators are used, we validate that the container has not
85 // been mutated since the iterator was constructed.
86 #define ABSL_BTREE_ENABLE_GENERATIONS
87 #endif
88 
89 template <typename Compare, typename T, typename U>
90 using compare_result_t = absl::result_of_t<const Compare(const T &, const U &)>;
91 
92 // A helper class that indicates if the Compare parameter is a key-compare-to
93 // comparator.
94 template <typename Compare, typename T>
95 using btree_is_key_compare_to =
96     std::is_convertible<compare_result_t<Compare, T, T>, absl::weak_ordering>;
97 
98 struct StringBtreeDefaultLess {
99   using is_transparent = void;
100 
101   StringBtreeDefaultLess() = default;
102 
103   // Compatibility constructor.
StringBtreeDefaultLessStringBtreeDefaultLess104   StringBtreeDefaultLess(std::less<std::string>) {}        // NOLINT
StringBtreeDefaultLessStringBtreeDefaultLess105   StringBtreeDefaultLess(std::less<absl::string_view>) {}  // NOLINT
106 
107   // Allow converting to std::less for use in key_comp()/value_comp().
108   explicit operator std::less<std::string>() const { return {}; }
109   explicit operator std::less<absl::string_view>() const { return {}; }
110   explicit operator std::less<absl::Cord>() const { return {}; }
111 
operatorStringBtreeDefaultLess112   absl::weak_ordering operator()(absl::string_view lhs,
113                                  absl::string_view rhs) const {
114     return compare_internal::compare_result_as_ordering(lhs.compare(rhs));
115   }
StringBtreeDefaultLessStringBtreeDefaultLess116   StringBtreeDefaultLess(std::less<absl::Cord>) {}  // NOLINT
operatorStringBtreeDefaultLess117   absl::weak_ordering operator()(const absl::Cord &lhs,
118                                  const absl::Cord &rhs) const {
119     return compare_internal::compare_result_as_ordering(lhs.Compare(rhs));
120   }
operatorStringBtreeDefaultLess121   absl::weak_ordering operator()(const absl::Cord &lhs,
122                                  absl::string_view rhs) const {
123     return compare_internal::compare_result_as_ordering(lhs.Compare(rhs));
124   }
operatorStringBtreeDefaultLess125   absl::weak_ordering operator()(absl::string_view lhs,
126                                  const absl::Cord &rhs) const {
127     return compare_internal::compare_result_as_ordering(-rhs.Compare(lhs));
128   }
129 };
130 
131 struct StringBtreeDefaultGreater {
132   using is_transparent = void;
133 
134   StringBtreeDefaultGreater() = default;
135 
StringBtreeDefaultGreaterStringBtreeDefaultGreater136   StringBtreeDefaultGreater(std::greater<std::string>) {}        // NOLINT
StringBtreeDefaultGreaterStringBtreeDefaultGreater137   StringBtreeDefaultGreater(std::greater<absl::string_view>) {}  // NOLINT
138 
139   // Allow converting to std::greater for use in key_comp()/value_comp().
140   explicit operator std::greater<std::string>() const { return {}; }
141   explicit operator std::greater<absl::string_view>() const { return {}; }
142   explicit operator std::greater<absl::Cord>() const { return {}; }
143 
operatorStringBtreeDefaultGreater144   absl::weak_ordering operator()(absl::string_view lhs,
145                                  absl::string_view rhs) const {
146     return compare_internal::compare_result_as_ordering(rhs.compare(lhs));
147   }
StringBtreeDefaultGreaterStringBtreeDefaultGreater148   StringBtreeDefaultGreater(std::greater<absl::Cord>) {}  // NOLINT
operatorStringBtreeDefaultGreater149   absl::weak_ordering operator()(const absl::Cord &lhs,
150                                  const absl::Cord &rhs) const {
151     return compare_internal::compare_result_as_ordering(rhs.Compare(lhs));
152   }
operatorStringBtreeDefaultGreater153   absl::weak_ordering operator()(const absl::Cord &lhs,
154                                  absl::string_view rhs) const {
155     return compare_internal::compare_result_as_ordering(-lhs.Compare(rhs));
156   }
operatorStringBtreeDefaultGreater157   absl::weak_ordering operator()(absl::string_view lhs,
158                                  const absl::Cord &rhs) const {
159     return compare_internal::compare_result_as_ordering(rhs.Compare(lhs));
160   }
161 };
162 
163 // See below comments for checked_compare.
164 template <typename Compare, bool is_class = std::is_class<Compare>::value>
165 struct checked_compare_base : Compare {
166   using Compare::Compare;
checked_compare_basechecked_compare_base167   explicit checked_compare_base(Compare c) : Compare(std::move(c)) {}
compchecked_compare_base168   const Compare &comp() const { return *this; }
169 };
170 template <typename Compare>
171 struct checked_compare_base<Compare, false> {
172   explicit checked_compare_base(Compare c) : compare(std::move(c)) {}
173   const Compare &comp() const { return compare; }
174   Compare compare;
175 };
176 
177 // A mechanism for opting out of checked_compare for use only in btree_test.cc.
178 struct BtreeTestOnlyCheckedCompareOptOutBase {};
179 
180 // A helper class to adapt the specified comparator for two use cases:
181 // (1) When using common Abseil string types with common comparison functors,
182 // convert a boolean comparison into a three-way comparison that returns an
183 // `absl::weak_ordering`. This helper class is specialized for
184 // less<std::string>, greater<std::string>, less<string_view>,
185 // greater<string_view>, less<absl::Cord>, and greater<absl::Cord>.
186 // (2) Adapt the comparator to diagnose cases of non-strict-weak-ordering (see
187 // https://en.cppreference.com/w/cpp/named_req/Compare) in debug mode. Whenever
188 // a comparison is made, we will make assertions to verify that the comparator
189 // is valid.
190 template <typename Compare, typename Key>
191 struct key_compare_adapter {
192   // Inherit from checked_compare_base to support function pointers and also
193   // keep empty-base-optimization (EBO) support for classes.
194   // Note: we can't use CompressedTuple here because that would interfere
195   // with the EBO for `btree::rightmost_`. `btree::rightmost_` is itself a
196   // CompressedTuple and nested `CompressedTuple`s don't support EBO.
197   // TODO(b/214288561): use CompressedTuple instead once it supports EBO for
198   // nested `CompressedTuple`s.
199   struct checked_compare : checked_compare_base<Compare> {
200    private:
201     using Base = typename checked_compare::checked_compare_base;
202     using Base::comp;
203 
204     // If possible, returns whether `t` is equivalent to itself. We can only do
205     // this for `Key`s because we can't be sure that it's safe to call
206     // `comp()(k, k)` otherwise. Even if SFINAE allows it, there could be a
207     // compilation failure inside the implementation of the comparison operator.
208     bool is_self_equivalent(const Key &k) const {
209       // Note: this works for both boolean and three-way comparators.
210       return comp()(k, k) == 0;
211     }
212     // If we can't compare `t` with itself, returns true unconditionally.
213     template <typename T>
214     bool is_self_equivalent(const T &) const {
215       return true;
216     }
217 
218    public:
219     using Base::Base;
220     checked_compare(Compare comp) : Base(std::move(comp)) {}  // NOLINT
221 
222     // Allow converting to Compare for use in key_comp()/value_comp().
223     explicit operator Compare() const { return comp(); }
224 
225     template <typename T, typename U,
226               absl::enable_if_t<
227                   std::is_same<bool, compare_result_t<Compare, T, U>>::value,
228                   int> = 0>
229     bool operator()(const T &lhs, const U &rhs) const {
230       // NOTE: if any of these assertions fail, then the comparator does not
231       // establish a strict-weak-ordering (see
232       // https://en.cppreference.com/w/cpp/named_req/Compare).
233       assert(is_self_equivalent(lhs));
234       assert(is_self_equivalent(rhs));
235       const bool lhs_comp_rhs = comp()(lhs, rhs);
236       assert(!lhs_comp_rhs || !comp()(rhs, lhs));
237       return lhs_comp_rhs;
238     }
239 
240     template <
241         typename T, typename U,
242         absl::enable_if_t<std::is_convertible<compare_result_t<Compare, T, U>,
243                                               absl::weak_ordering>::value,
244                           int> = 0>
245     absl::weak_ordering operator()(const T &lhs, const U &rhs) const {
246       // NOTE: if any of these assertions fail, then the comparator does not
247       // establish a strict-weak-ordering (see
248       // https://en.cppreference.com/w/cpp/named_req/Compare).
249       assert(is_self_equivalent(lhs));
250       assert(is_self_equivalent(rhs));
251       const absl::weak_ordering lhs_comp_rhs = comp()(lhs, rhs);
252 #ifndef NDEBUG
253       const absl::weak_ordering rhs_comp_lhs = comp()(rhs, lhs);
254       if (lhs_comp_rhs > 0) {
255         assert(rhs_comp_lhs < 0 && "lhs_comp_rhs > 0 -> rhs_comp_lhs < 0");
256       } else if (lhs_comp_rhs == 0) {
257         assert(rhs_comp_lhs == 0 && "lhs_comp_rhs == 0 -> rhs_comp_lhs == 0");
258       } else {
259         assert(rhs_comp_lhs > 0 && "lhs_comp_rhs < 0 -> rhs_comp_lhs > 0");
260       }
261 #endif
262       return lhs_comp_rhs;
263     }
264   };
265   using type = absl::conditional_t<
266       std::is_base_of<BtreeTestOnlyCheckedCompareOptOutBase, Compare>::value,
267       Compare, checked_compare>;
268 };
269 
270 template <>
271 struct key_compare_adapter<std::less<std::string>, std::string> {
272   using type = StringBtreeDefaultLess;
273 };
274 
275 template <>
276 struct key_compare_adapter<std::greater<std::string>, std::string> {
277   using type = StringBtreeDefaultGreater;
278 };
279 
280 template <>
281 struct key_compare_adapter<std::less<absl::string_view>, absl::string_view> {
282   using type = StringBtreeDefaultLess;
283 };
284 
285 template <>
286 struct key_compare_adapter<std::greater<absl::string_view>, absl::string_view> {
287   using type = StringBtreeDefaultGreater;
288 };
289 
290 template <>
291 struct key_compare_adapter<std::less<absl::Cord>, absl::Cord> {
292   using type = StringBtreeDefaultLess;
293 };
294 
295 template <>
296 struct key_compare_adapter<std::greater<absl::Cord>, absl::Cord> {
297   using type = StringBtreeDefaultGreater;
298 };
299 
300 // Detects an 'absl_btree_prefer_linear_node_search' member. This is
301 // a protocol used as an opt-in or opt-out of linear search.
302 //
303 //  For example, this would be useful for key types that wrap an integer
304 //  and define their own cheap operator<(). For example:
305 //
306 //   class K {
307 //    public:
308 //     using absl_btree_prefer_linear_node_search = std::true_type;
309 //     ...
310 //    private:
311 //     friend bool operator<(K a, K b) { return a.k_ < b.k_; }
312 //     int k_;
313 //   };
314 //
315 //   btree_map<K, V> m;  // Uses linear search
316 //
317 // If T has the preference tag, then it has a preference.
318 // Btree will use the tag's truth value.
319 template <typename T, typename = void>
320 struct has_linear_node_search_preference : std::false_type {};
321 template <typename T, typename = void>
322 struct prefers_linear_node_search : std::false_type {};
323 template <typename T>
324 struct has_linear_node_search_preference<
325     T, absl::void_t<typename T::absl_btree_prefer_linear_node_search>>
326     : std::true_type {};
327 template <typename T>
328 struct prefers_linear_node_search<
329     T, absl::void_t<typename T::absl_btree_prefer_linear_node_search>>
330     : T::absl_btree_prefer_linear_node_search {};
331 
332 template <typename Compare, typename Key>
333 constexpr bool compare_has_valid_result_type() {
334   using compare_result_type = compare_result_t<Compare, Key, Key>;
335   return std::is_same<compare_result_type, bool>::value ||
336          std::is_convertible<compare_result_type, absl::weak_ordering>::value;
337 }
338 
339 template <typename original_key_compare, typename value_type>
340 class map_value_compare {
341   template <typename Params>
342   friend class btree;
343 
344   // Note: this `protected` is part of the API of std::map::value_compare. See
345   // https://en.cppreference.com/w/cpp/container/map/value_compare.
346  protected:
347   explicit map_value_compare(original_key_compare c) : comp(std::move(c)) {}
348 
349   original_key_compare comp;  // NOLINT
350 
351  public:
352   auto operator()(const value_type &lhs, const value_type &rhs) const
353       -> decltype(comp(lhs.first, rhs.first)) {
354     return comp(lhs.first, rhs.first);
355   }
356 };
357 
358 template <typename Key, typename Compare, typename Alloc, int TargetNodeSize,
359           bool IsMulti, bool IsMap, typename SlotPolicy>
360 struct common_params : common_policy_traits<SlotPolicy> {
361   using original_key_compare = Compare;
362 
363   // If Compare is a common comparator for a string-like type, then we adapt it
364   // to use heterogeneous lookup and to be a key-compare-to comparator.
365   // We also adapt the comparator to diagnose invalid comparators in debug mode.
366   // We disable this when `Compare` is invalid in a way that will cause
367   // adaptation to fail (having invalid return type) so that we can give a
368   // better compilation failure in static_assert_validation. If we don't do
369   // this, then there will be cascading compilation failures that are confusing
370   // for users.
371   using key_compare =
372       absl::conditional_t<!compare_has_valid_result_type<Compare, Key>(),
373                           Compare,
374                           typename key_compare_adapter<Compare, Key>::type>;
375 
376   static constexpr bool kIsKeyCompareStringAdapted =
377       std::is_same<key_compare, StringBtreeDefaultLess>::value ||
378       std::is_same<key_compare, StringBtreeDefaultGreater>::value;
379   static constexpr bool kIsKeyCompareTransparent =
380       IsTransparent<original_key_compare>::value || kIsKeyCompareStringAdapted;
381   static constexpr bool kEnableGenerations =
382 #ifdef ABSL_BTREE_ENABLE_GENERATIONS
383       true;
384 #else
385       false;
386 #endif
387 
388   // A type which indicates if we have a key-compare-to functor or a plain old
389   // key-compare functor.
390   using is_key_compare_to = btree_is_key_compare_to<key_compare, Key>;
391 
392   using allocator_type = Alloc;
393   using key_type = Key;
394   using size_type = size_t;
395   using difference_type = ptrdiff_t;
396 
397   using slot_policy = SlotPolicy;
398   using slot_type = typename slot_policy::slot_type;
399   using value_type = typename slot_policy::value_type;
400   using init_type = typename slot_policy::mutable_value_type;
401   using pointer = value_type *;
402   using const_pointer = const value_type *;
403   using reference = value_type &;
404   using const_reference = const value_type &;
405 
406   using value_compare =
407       absl::conditional_t<IsMap,
408                           map_value_compare<original_key_compare, value_type>,
409                           original_key_compare>;
410   using is_map_container = std::integral_constant<bool, IsMap>;
411 
412   // For the given lookup key type, returns whether we can have multiple
413   // equivalent keys in the btree. If this is a multi-container, then we can.
414   // Otherwise, we can have multiple equivalent keys only if all of the
415   // following conditions are met:
416   // - The comparator is transparent.
417   // - The lookup key type is not the same as key_type.
418   // - The comparator is not a StringBtreeDefault{Less,Greater} comparator
419   //   that we know has the same equivalence classes for all lookup types.
420   template <typename LookupKey>
421   constexpr static bool can_have_multiple_equivalent_keys() {
422     return IsMulti || (IsTransparent<key_compare>::value &&
423                        !std::is_same<LookupKey, Key>::value &&
424                        !kIsKeyCompareStringAdapted);
425   }
426 
427   enum {
428     kTargetNodeSize = TargetNodeSize,
429 
430     // Upper bound for the available space for slots. This is largest for leaf
431     // nodes, which have overhead of at least a pointer + 4 bytes (for storing
432     // 3 field_types and an enum).
433     kNodeSlotSpace = TargetNodeSize - /*minimum overhead=*/(sizeof(void *) + 4),
434   };
435 
436   // This is an integral type large enough to hold as many slots as will fit a
437   // node of TargetNodeSize bytes.
438   using node_count_type =
439       absl::conditional_t<(kNodeSlotSpace / sizeof(slot_type) >
440                            (std::numeric_limits<uint8_t>::max)()),
441                           uint16_t, uint8_t>;  // NOLINT
442 };
443 
444 // An adapter class that converts a lower-bound compare into an upper-bound
445 // compare. Note: there is no need to make a version of this adapter specialized
446 // for key-compare-to functors because the upper-bound (the first value greater
447 // than the input) is never an exact match.
448 template <typename Compare>
449 struct upper_bound_adapter {
450   explicit upper_bound_adapter(const Compare &c) : comp(c) {}
451   template <typename K1, typename K2>
452   bool operator()(const K1 &a, const K2 &b) const {
453     // Returns true when a is not greater than b.
454     return !compare_internal::compare_result_as_less_than(comp(b, a));
455   }
456 
457  private:
458   Compare comp;
459 };
460 
461 enum class MatchKind : uint8_t { kEq, kNe };
462 
463 template <typename V, bool IsCompareTo>
464 struct SearchResult {
465   V value;
466   MatchKind match;
467 
468   static constexpr bool HasMatch() { return true; }
469   bool IsEq() const { return match == MatchKind::kEq; }
470 };
471 
472 // When we don't use CompareTo, `match` is not present.
473 // This ensures that callers can't use it accidentally when it provides no
474 // useful information.
475 template <typename V>
476 struct SearchResult<V, false> {
477   SearchResult() {}
478   explicit SearchResult(V v) : value(v) {}
479   SearchResult(V v, MatchKind /*match*/) : value(v) {}
480 
481   V value;
482 
483   static constexpr bool HasMatch() { return false; }
484   static constexpr bool IsEq() { return false; }
485 };
486 
487 // A node in the btree holding. The same node type is used for both internal
488 // and leaf nodes in the btree, though the nodes are allocated in such a way
489 // that the children array is only valid in internal nodes.
490 template <typename Params>
491 class btree_node {
492   using is_key_compare_to = typename Params::is_key_compare_to;
493   using field_type = typename Params::node_count_type;
494   using allocator_type = typename Params::allocator_type;
495   using slot_type = typename Params::slot_type;
496   using original_key_compare = typename Params::original_key_compare;
497 
498  public:
499   using params_type = Params;
500   using key_type = typename Params::key_type;
501   using value_type = typename Params::value_type;
502   using pointer = typename Params::pointer;
503   using const_pointer = typename Params::const_pointer;
504   using reference = typename Params::reference;
505   using const_reference = typename Params::const_reference;
506   using key_compare = typename Params::key_compare;
507   using size_type = typename Params::size_type;
508   using difference_type = typename Params::difference_type;
509 
510   // Btree decides whether to use linear node search as follows:
511   //   - If the comparator expresses a preference, use that.
512   //   - If the key expresses a preference, use that.
513   //   - If the key is arithmetic and the comparator is std::less or
514   //     std::greater, choose linear.
515   //   - Otherwise, choose binary.
516   // TODO(ezb): Might make sense to add condition(s) based on node-size.
517   using use_linear_search = std::integral_constant<
518       bool, has_linear_node_search_preference<original_key_compare>::value
519                 ? prefers_linear_node_search<original_key_compare>::value
520             : has_linear_node_search_preference<key_type>::value
521                 ? prefers_linear_node_search<key_type>::value
522                 : std::is_arithmetic<key_type>::value &&
523                       (std::is_same<std::less<key_type>,
524                                     original_key_compare>::value ||
525                        std::is_same<std::greater<key_type>,
526                                     original_key_compare>::value)>;
527 
528   // This class is organized by absl::container_internal::Layout as if it had
529   // the following structure:
530   //   // A pointer to the node's parent.
531   //   btree_node *parent;
532   //
533   //   // When ABSL_BTREE_ENABLE_GENERATIONS is defined, we also have a
534   //   // generation integer in order to check that when iterators are
535   //   // used, they haven't been invalidated already. Only the generation on
536   //   // the root is used, but we have one on each node because whether a node
537   //   // is root or not can change.
538   //   uint32_t generation;
539   //
540   //   // The position of the node in the node's parent.
541   //   field_type position;
542   //   // The index of the first populated value in `values`.
543   //   // TODO(ezb): right now, `start` is always 0. Update insertion/merge
544   //   // logic to allow for floating storage within nodes.
545   //   field_type start;
546   //   // The index after the last populated value in `values`. Currently, this
547   //   // is the same as the count of values.
548   //   field_type finish;
549   //   // The maximum number of values the node can hold. This is an integer in
550   //   // [1, kNodeSlots] for root leaf nodes, kNodeSlots for non-root leaf
551   //   // nodes, and kInternalNodeMaxCount (as a sentinel value) for internal
552   //   // nodes (even though there are still kNodeSlots values in the node).
553   //   // TODO(ezb): make max_count use only 4 bits and record log2(capacity)
554   //   // to free extra bits for is_root, etc.
555   //   field_type max_count;
556   //
557   //   // The array of values. The capacity is `max_count` for leaf nodes and
558   //   // kNodeSlots for internal nodes. Only the values in
559   //   // [start, finish) have been initialized and are valid.
560   //   slot_type values[max_count];
561   //
562   //   // The array of child pointers. The keys in children[i] are all less
563   //   // than key(i). The keys in children[i + 1] are all greater than key(i).
564   //   // There are 0 children for leaf nodes and kNodeSlots + 1 children for
565   //   // internal nodes.
566   //   btree_node *children[kNodeSlots + 1];
567   //
568   // This class is only constructed by EmptyNodeType. Normally, pointers to the
569   // layout above are allocated, cast to btree_node*, and de-allocated within
570   // the btree implementation.
571   ~btree_node() = default;
572   btree_node(btree_node const &) = delete;
573   btree_node &operator=(btree_node const &) = delete;
574 
575   // Public for EmptyNodeType.
576   constexpr static size_type Alignment() {
577     static_assert(LeafLayout(1).Alignment() == InternalLayout().Alignment(),
578                   "Alignment of all nodes must be equal.");
579     return InternalLayout().Alignment();
580   }
581 
582  protected:
583   btree_node() = default;
584 
585  private:
586   using layout_type =
587       absl::container_internal::Layout<btree_node *, uint32_t, field_type,
588                                        slot_type, btree_node *>;
589   constexpr static size_type SizeWithNSlots(size_type n) {
590     return layout_type(
591                /*parent*/ 1,
592                /*generation*/ params_type::kEnableGenerations ? 1 : 0,
593                /*position, start, finish, max_count*/ 4,
594                /*slots*/ n,
595                /*children*/ 0)
596         .AllocSize();
597   }
598   // A lower bound for the overhead of fields other than slots in a leaf node.
599   constexpr static size_type MinimumOverhead() {
600     return SizeWithNSlots(1) - sizeof(slot_type);
601   }
602 
603   // Compute how many values we can fit onto a leaf node taking into account
604   // padding.
605   constexpr static size_type NodeTargetSlots(const size_type begin,
606                                              const size_type end) {
607     return begin == end ? begin
608            : SizeWithNSlots((begin + end) / 2 + 1) >
609                    params_type::kTargetNodeSize
610                ? NodeTargetSlots(begin, (begin + end) / 2)
611                : NodeTargetSlots((begin + end) / 2 + 1, end);
612   }
613 
614   constexpr static size_type kTargetNodeSize = params_type::kTargetNodeSize;
615   constexpr static size_type kNodeTargetSlots =
616       NodeTargetSlots(0, kTargetNodeSize);
617 
618   // We need a minimum of 3 slots per internal node in order to perform
619   // splitting (1 value for the two nodes involved in the split and 1 value
620   // propagated to the parent as the delimiter for the split). For performance
621   // reasons, we don't allow 3 slots-per-node due to bad worst case occupancy of
622   // 1/3 (for a node, not a b-tree).
623   constexpr static size_type kMinNodeSlots = 4;
624 
625   constexpr static size_type kNodeSlots =
626       kNodeTargetSlots >= kMinNodeSlots ? kNodeTargetSlots : kMinNodeSlots;
627 
628   // The node is internal (i.e. is not a leaf node) if and only if `max_count`
629   // has this value.
630   constexpr static field_type kInternalNodeMaxCount = 0;
631 
632   // Leaves can have less than kNodeSlots values.
633   constexpr static layout_type LeafLayout(
634       const size_type slot_count = kNodeSlots) {
635     return layout_type(
636         /*parent*/ 1,
637         /*generation*/ params_type::kEnableGenerations ? 1 : 0,
638         /*position, start, finish, max_count*/ 4,
639         /*slots*/ slot_count,
640         /*children*/ 0);
641   }
642   constexpr static layout_type InternalLayout() {
643     return layout_type(
644         /*parent*/ 1,
645         /*generation*/ params_type::kEnableGenerations ? 1 : 0,
646         /*position, start, finish, max_count*/ 4,
647         /*slots*/ kNodeSlots,
648         /*children*/ kNodeSlots + 1);
649   }
650   constexpr static size_type LeafSize(const size_type slot_count = kNodeSlots) {
651     return LeafLayout(slot_count).AllocSize();
652   }
653   constexpr static size_type InternalSize() {
654     return InternalLayout().AllocSize();
655   }
656 
657   // N is the index of the type in the Layout definition.
658   // ElementType<N> is the Nth type in the Layout definition.
659   template <size_type N>
660   inline typename layout_type::template ElementType<N> *GetField() {
661     // We assert that we don't read from values that aren't there.
662     assert(N < 4 || is_internal());
663     return InternalLayout().template Pointer<N>(reinterpret_cast<char *>(this));
664   }
665   template <size_type N>
666   inline const typename layout_type::template ElementType<N> *GetField() const {
667     assert(N < 4 || is_internal());
668     return InternalLayout().template Pointer<N>(
669         reinterpret_cast<const char *>(this));
670   }
671   void set_parent(btree_node *p) { *GetField<0>() = p; }
672   field_type &mutable_finish() { return GetField<2>()[2]; }
673   slot_type *slot(size_type i) { return &GetField<3>()[i]; }
674   slot_type *start_slot() { return slot(start()); }
675   slot_type *finish_slot() { return slot(finish()); }
676   const slot_type *slot(size_type i) const { return &GetField<3>()[i]; }
677   void set_position(field_type v) { GetField<2>()[0] = v; }
678   void set_start(field_type v) { GetField<2>()[1] = v; }
679   void set_finish(field_type v) { GetField<2>()[2] = v; }
680   // This method is only called by the node init methods.
681   void set_max_count(field_type v) { GetField<2>()[3] = v; }
682 
683  public:
684   // Whether this is a leaf node or not. This value doesn't change after the
685   // node is created.
686   bool is_leaf() const { return GetField<2>()[3] != kInternalNodeMaxCount; }
687   // Whether this is an internal node or not. This value doesn't change after
688   // the node is created.
689   bool is_internal() const { return !is_leaf(); }
690 
691   // Getter for the position of this node in its parent.
692   field_type position() const { return GetField<2>()[0]; }
693 
694   // Getter for the offset of the first value in the `values` array.
695   field_type start() const {
696     // TODO(ezb): when floating storage is implemented, return GetField<2>()[1];
697     assert(GetField<2>()[1] == 0);
698     return 0;
699   }
700 
701   // Getter for the offset after the last value in the `values` array.
702   field_type finish() const { return GetField<2>()[2]; }
703 
704   // Getters for the number of values stored in this node.
705   field_type count() const {
706     assert(finish() >= start());
707     return finish() - start();
708   }
709   field_type max_count() const {
710     // Internal nodes have max_count==kInternalNodeMaxCount.
711     // Leaf nodes have max_count in [1, kNodeSlots].
712     const field_type max_count = GetField<2>()[3];
713     return max_count == field_type{kInternalNodeMaxCount}
714                ? field_type{kNodeSlots}
715                : max_count;
716   }
717 
718   // Getter for the parent of this node.
719   btree_node *parent() const { return *GetField<0>(); }
720   // Getter for whether the node is the root of the tree. The parent of the
721   // root of the tree is the leftmost node in the tree which is guaranteed to
722   // be a leaf.
723   bool is_root() const { return parent()->is_leaf(); }
724   void make_root() {
725     assert(parent()->is_root());
726     set_generation(parent()->generation());
727     set_parent(parent()->parent());
728   }
729 
730   // Gets the root node's generation integer, which is the one used by the tree.
731   uint32_t *get_root_generation() const {
732     assert(params_type::kEnableGenerations);
733     const btree_node *curr = this;
734     for (; !curr->is_root(); curr = curr->parent()) continue;
735     return const_cast<uint32_t *>(&curr->GetField<1>()[0]);
736   }
737 
738   // Returns the generation for iterator validation.
739   uint32_t generation() const {
740     return params_type::kEnableGenerations ? *get_root_generation() : 0;
741   }
742   // Updates generation. Should only be called on a root node or during node
743   // initialization.
744   void set_generation(uint32_t generation) {
745     if (params_type::kEnableGenerations) GetField<1>()[0] = generation;
746   }
747   // Updates the generation. We do this whenever the node is mutated.
748   void next_generation() {
749     if (params_type::kEnableGenerations) ++*get_root_generation();
750   }
751 
752   // Getters for the key/value at position i in the node.
753   const key_type &key(size_type i) const { return params_type::key(slot(i)); }
754   reference value(size_type i) { return params_type::element(slot(i)); }
755   const_reference value(size_type i) const {
756     return params_type::element(slot(i));
757   }
758 
759   // Getters/setter for the child at position i in the node.
760   btree_node *child(field_type i) const { return GetField<4>()[i]; }
761   btree_node *start_child() const { return child(start()); }
762   btree_node *&mutable_child(field_type i) { return GetField<4>()[i]; }
763   void clear_child(field_type i) {
764     absl::container_internal::SanitizerPoisonObject(&mutable_child(i));
765   }
766   void set_child(field_type i, btree_node *c) {
767     absl::container_internal::SanitizerUnpoisonObject(&mutable_child(i));
768     mutable_child(i) = c;
769     c->set_position(i);
770   }
771   void init_child(field_type i, btree_node *c) {
772     set_child(i, c);
773     c->set_parent(this);
774   }
775 
776   // Returns the position of the first value whose key is not less than k.
777   template <typename K>
778   SearchResult<size_type, is_key_compare_to::value> lower_bound(
779       const K &k, const key_compare &comp) const {
780     return use_linear_search::value ? linear_search(k, comp)
781                                     : binary_search(k, comp);
782   }
783   // Returns the position of the first value whose key is greater than k.
784   template <typename K>
785   size_type upper_bound(const K &k, const key_compare &comp) const {
786     auto upper_compare = upper_bound_adapter<key_compare>(comp);
787     return use_linear_search::value ? linear_search(k, upper_compare).value
788                                     : binary_search(k, upper_compare).value;
789   }
790 
791   template <typename K, typename Compare>
792   SearchResult<size_type, btree_is_key_compare_to<Compare, key_type>::value>
793   linear_search(const K &k, const Compare &comp) const {
794     return linear_search_impl(k, start(), finish(), comp,
795                               btree_is_key_compare_to<Compare, key_type>());
796   }
797 
798   template <typename K, typename Compare>
799   SearchResult<size_type, btree_is_key_compare_to<Compare, key_type>::value>
800   binary_search(const K &k, const Compare &comp) const {
801     return binary_search_impl(k, start(), finish(), comp,
802                               btree_is_key_compare_to<Compare, key_type>());
803   }
804 
805   // Returns the position of the first value whose key is not less than k using
806   // linear search performed using plain compare.
807   template <typename K, typename Compare>
808   SearchResult<size_type, false> linear_search_impl(
809       const K &k, size_type s, const size_type e, const Compare &comp,
810       std::false_type /* IsCompareTo */) const {
811     while (s < e) {
812       if (!comp(key(s), k)) {
813         break;
814       }
815       ++s;
816     }
817     return SearchResult<size_type, false>{s};
818   }
819 
820   // Returns the position of the first value whose key is not less than k using
821   // linear search performed using compare-to.
822   template <typename K, typename Compare>
823   SearchResult<size_type, true> linear_search_impl(
824       const K &k, size_type s, const size_type e, const Compare &comp,
825       std::true_type /* IsCompareTo */) const {
826     while (s < e) {
827       const absl::weak_ordering c = comp(key(s), k);
828       if (c == 0) {
829         return {s, MatchKind::kEq};
830       } else if (c > 0) {
831         break;
832       }
833       ++s;
834     }
835     return {s, MatchKind::kNe};
836   }
837 
838   // Returns the position of the first value whose key is not less than k using
839   // binary search performed using plain compare.
840   template <typename K, typename Compare>
841   SearchResult<size_type, false> binary_search_impl(
842       const K &k, size_type s, size_type e, const Compare &comp,
843       std::false_type /* IsCompareTo */) const {
844     while (s != e) {
845       const size_type mid = (s + e) >> 1;
846       if (comp(key(mid), k)) {
847         s = mid + 1;
848       } else {
849         e = mid;
850       }
851     }
852     return SearchResult<size_type, false>{s};
853   }
854 
855   // Returns the position of the first value whose key is not less than k using
856   // binary search performed using compare-to.
857   template <typename K, typename CompareTo>
858   SearchResult<size_type, true> binary_search_impl(
859       const K &k, size_type s, size_type e, const CompareTo &comp,
860       std::true_type /* IsCompareTo */) const {
861     if (params_type::template can_have_multiple_equivalent_keys<K>()) {
862       MatchKind exact_match = MatchKind::kNe;
863       while (s != e) {
864         const size_type mid = (s + e) >> 1;
865         const absl::weak_ordering c = comp(key(mid), k);
866         if (c < 0) {
867           s = mid + 1;
868         } else {
869           e = mid;
870           if (c == 0) {
871             // Need to return the first value whose key is not less than k,
872             // which requires continuing the binary search if there could be
873             // multiple equivalent keys.
874             exact_match = MatchKind::kEq;
875           }
876         }
877       }
878       return {s, exact_match};
879     } else {  // Can't have multiple equivalent keys.
880       while (s != e) {
881         const size_type mid = (s + e) >> 1;
882         const absl::weak_ordering c = comp(key(mid), k);
883         if (c < 0) {
884           s = mid + 1;
885         } else if (c > 0) {
886           e = mid;
887         } else {
888           return {mid, MatchKind::kEq};
889         }
890       }
891       return {s, MatchKind::kNe};
892     }
893   }
894 
895   // Emplaces a value at position i, shifting all existing values and
896   // children at positions >= i to the right by 1.
897   template <typename... Args>
898   void emplace_value(field_type i, allocator_type *alloc, Args &&...args);
899 
900   // Removes the values at positions [i, i + to_erase), shifting all existing
901   // values and children after that range to the left by to_erase. Clears all
902   // children between [i, i + to_erase).
903   void remove_values(field_type i, field_type to_erase, allocator_type *alloc);
904 
905   // Rebalances a node with its right sibling.
906   void rebalance_right_to_left(field_type to_move, btree_node *right,
907                                allocator_type *alloc);
908   void rebalance_left_to_right(field_type to_move, btree_node *right,
909                                allocator_type *alloc);
910 
911   // Splits a node, moving a portion of the node's values to its right sibling.
912   void split(int insert_position, btree_node *dest, allocator_type *alloc);
913 
914   // Merges a node with its right sibling, moving all of the values and the
915   // delimiting key in the parent node onto itself, and deleting the src node.
916   void merge(btree_node *src, allocator_type *alloc);
917 
918   // Node allocation/deletion routines.
919   void init_leaf(field_type max_count, btree_node *parent) {
920     set_generation(0);
921     set_parent(parent);
922     set_position(0);
923     set_start(0);
924     set_finish(0);
925     set_max_count(max_count);
926     absl::container_internal::SanitizerPoisonMemoryRegion(
927         start_slot(), max_count * sizeof(slot_type));
928   }
929   void init_internal(btree_node *parent) {
930     init_leaf(kNodeSlots, parent);
931     // Set `max_count` to a sentinel value to indicate that this node is
932     // internal.
933     set_max_count(kInternalNodeMaxCount);
934     absl::container_internal::SanitizerPoisonMemoryRegion(
935         &mutable_child(start()), (kNodeSlots + 1) * sizeof(btree_node *));
936   }
937 
938   static void deallocate(const size_type size, btree_node *node,
939                          allocator_type *alloc) {
940     absl::container_internal::SanitizerUnpoisonMemoryRegion(node, size);
941     absl::container_internal::Deallocate<Alignment()>(alloc, node, size);
942   }
943 
944   // Deletes a node and all of its children.
945   static void clear_and_delete(btree_node *node, allocator_type *alloc);
946 
947  private:
948   template <typename... Args>
949   void value_init(const field_type i, allocator_type *alloc, Args &&...args) {
950     next_generation();
951     absl::container_internal::SanitizerUnpoisonObject(slot(i));
952     params_type::construct(alloc, slot(i), std::forward<Args>(args)...);
953   }
954   void value_destroy(const field_type i, allocator_type *alloc) {
955     next_generation();
956     params_type::destroy(alloc, slot(i));
957     absl::container_internal::SanitizerPoisonObject(slot(i));
958   }
959   void value_destroy_n(const field_type i, const field_type n,
960                        allocator_type *alloc) {
961     next_generation();
962     for (slot_type *s = slot(i), *end = slot(i + n); s != end; ++s) {
963       params_type::destroy(alloc, s);
964       absl::container_internal::SanitizerPoisonObject(s);
965     }
966   }
967 
968   static void transfer(slot_type *dest, slot_type *src, allocator_type *alloc) {
969     absl::container_internal::SanitizerUnpoisonObject(dest);
970     params_type::transfer(alloc, dest, src);
971     absl::container_internal::SanitizerPoisonObject(src);
972   }
973 
974   // Transfers value from slot `src_i` in `src_node` to slot `dest_i` in `this`.
975   void transfer(const size_type dest_i, const size_type src_i,
976                 btree_node *src_node, allocator_type *alloc) {
977     next_generation();
978     transfer(slot(dest_i), src_node->slot(src_i), alloc);
979   }
980 
981   // Transfers `n` values starting at value `src_i` in `src_node` into the
982   // values starting at value `dest_i` in `this`.
983   void transfer_n(const size_type n, const size_type dest_i,
984                   const size_type src_i, btree_node *src_node,
985                   allocator_type *alloc) {
986     next_generation();
987     for (slot_type *src = src_node->slot(src_i), *end = src + n,
988                    *dest = slot(dest_i);
989          src != end; ++src, ++dest) {
990       transfer(dest, src, alloc);
991     }
992   }
993 
994   // Same as above, except that we start at the end and work our way to the
995   // beginning.
996   void transfer_n_backward(const size_type n, const size_type dest_i,
997                            const size_type src_i, btree_node *src_node,
998                            allocator_type *alloc) {
999     next_generation();
1000     for (slot_type *src = src_node->slot(src_i + n), *end = src - n,
1001                    *dest = slot(dest_i + n);
1002          src != end; --src, --dest) {
1003       // If we modified the loop index calculations above to avoid the -1s here,
1004       // it would result in UB in the computation of `end` (and possibly `src`
1005       // as well, if n == 0), since slot() is effectively an array index and it
1006       // is UB to compute the address of any out-of-bounds array element except
1007       // for one-past-the-end.
1008       transfer(dest - 1, src - 1, alloc);
1009     }
1010   }
1011 
1012   template <typename P>
1013   friend class btree;
1014   template <typename N, typename R, typename P>
1015   friend class btree_iterator;
1016   friend class BtreeNodePeer;
1017   friend struct btree_access;
1018 };
1019 
1020 template <typename Node>
1021 bool AreNodesFromSameContainer(const Node *node_a, const Node *node_b) {
1022   // If either node is null, then give up on checking whether they're from the
1023   // same container. (If exactly one is null, then we'll trigger the
1024   // default-constructed assert in Equals.)
1025   if (node_a == nullptr || node_b == nullptr) return true;
1026   while (!node_a->is_root()) node_a = node_a->parent();
1027   while (!node_b->is_root()) node_b = node_b->parent();
1028   return node_a == node_b;
1029 }
1030 
1031 class btree_iterator_generation_info_enabled {
1032  public:
1033   explicit btree_iterator_generation_info_enabled(uint32_t g)
1034       : generation_(g) {}
1035 
1036   // Updates the generation. For use internally right before we return an
1037   // iterator to the user.
1038   template <typename Node>
1039   void update_generation(const Node *node) {
1040     if (node != nullptr) generation_ = node->generation();
1041   }
1042   uint32_t generation() const { return generation_; }
1043 
1044   template <typename Node>
1045   void assert_valid_generation(const Node *node) const {
1046     if (node != nullptr && node->generation() != generation_) {
1047       ABSL_INTERNAL_LOG(
1048           FATAL,
1049           "Attempting to use an invalidated iterator. The corresponding b-tree "
1050           "container has been mutated since this iterator was constructed.");
1051     }
1052   }
1053 
1054  private:
1055   // Used to check that the iterator hasn't been invalidated.
1056   uint32_t generation_;
1057 };
1058 
1059 class btree_iterator_generation_info_disabled {
1060  public:
1061   explicit btree_iterator_generation_info_disabled(uint32_t) {}
1062   void update_generation(const void *) {}
1063   uint32_t generation() const { return 0; }
1064   void assert_valid_generation(const void *) const {}
1065 };
1066 
1067 #ifdef ABSL_BTREE_ENABLE_GENERATIONS
1068 using btree_iterator_generation_info = btree_iterator_generation_info_enabled;
1069 #else
1070 using btree_iterator_generation_info = btree_iterator_generation_info_disabled;
1071 #endif
1072 
1073 template <typename Node, typename Reference, typename Pointer>
1074 class btree_iterator : private btree_iterator_generation_info {
1075   using field_type = typename Node::field_type;
1076   using key_type = typename Node::key_type;
1077   using size_type = typename Node::size_type;
1078   using params_type = typename Node::params_type;
1079   using is_map_container = typename params_type::is_map_container;
1080 
1081   using node_type = Node;
1082   using normal_node = typename std::remove_const<Node>::type;
1083   using const_node = const Node;
1084   using normal_pointer = typename params_type::pointer;
1085   using normal_reference = typename params_type::reference;
1086   using const_pointer = typename params_type::const_pointer;
1087   using const_reference = typename params_type::const_reference;
1088   using slot_type = typename params_type::slot_type;
1089 
1090   using iterator =
1091      btree_iterator<normal_node, normal_reference, normal_pointer>;
1092   using const_iterator =
1093       btree_iterator<const_node, const_reference, const_pointer>;
1094 
1095  public:
1096   // These aliases are public for std::iterator_traits.
1097   using difference_type = typename Node::difference_type;
1098   using value_type = typename params_type::value_type;
1099   using pointer = Pointer;
1100   using reference = Reference;
1101   using iterator_category = std::bidirectional_iterator_tag;
1102 
1103   btree_iterator() : btree_iterator(nullptr, -1) {}
1104   explicit btree_iterator(Node *n) : btree_iterator(n, n->start()) {}
1105   btree_iterator(Node *n, int p)
1106       : btree_iterator_generation_info(n != nullptr ? n->generation()
1107                                                     : ~uint32_t{}),
1108         node_(n),
1109         position_(p) {}
1110 
1111   // NOTE: this SFINAE allows for implicit conversions from iterator to
1112   // const_iterator, but it specifically avoids hiding the copy constructor so
1113   // that the trivial one will be used when possible.
1114   template <typename N, typename R, typename P,
1115             absl::enable_if_t<
1116                 std::is_same<btree_iterator<N, R, P>, iterator>::value &&
1117                     std::is_same<btree_iterator, const_iterator>::value,
1118                 int> = 0>
1119   btree_iterator(const btree_iterator<N, R, P> other)  // NOLINT
1120       : btree_iterator_generation_info(other),
1121         node_(other.node_),
1122         position_(other.position_) {}
1123 
1124   bool operator==(const iterator &other) const {
1125     return Equals(other);
1126   }
1127   bool operator==(const const_iterator &other) const {
1128     return Equals(other);
1129   }
1130   bool operator!=(const iterator &other) const {
1131     return !Equals(other);
1132   }
1133   bool operator!=(const const_iterator &other) const {
1134     return !Equals(other);
1135   }
1136 
1137   // Returns n such that n calls to ++other yields *this.
1138   // Precondition: n exists.
1139   difference_type operator-(const_iterator other) const {
1140     if (node_ == other.node_) {
1141       if (node_->is_leaf()) return position_ - other.position_;
1142       if (position_ == other.position_) return 0;
1143     }
1144     return distance_slow(other);
1145   }
1146 
1147   // Accessors for the key/value the iterator is pointing at.
1148   reference operator*() const {
1149     ABSL_HARDENING_ASSERT(node_ != nullptr);
1150     assert_valid_generation(node_);
1151     ABSL_HARDENING_ASSERT(position_ >= node_->start());
1152     if (position_ >= node_->finish()) {
1153       ABSL_HARDENING_ASSERT(!IsEndIterator() && "Dereferencing end() iterator");
1154       ABSL_HARDENING_ASSERT(position_ < node_->finish());
1155     }
1156     return node_->value(static_cast<field_type>(position_));
1157   }
1158   pointer operator->() const { return &operator*(); }
1159 
1160   btree_iterator &operator++() {
1161     increment();
1162     return *this;
1163   }
1164   btree_iterator &operator--() {
1165     decrement();
1166     return *this;
1167   }
1168   btree_iterator operator++(int) {
1169     btree_iterator tmp = *this;
1170     ++*this;
1171     return tmp;
1172   }
1173   btree_iterator operator--(int) {
1174     btree_iterator tmp = *this;
1175     --*this;
1176     return tmp;
1177   }
1178 
1179  private:
1180   friend iterator;
1181   friend const_iterator;
1182   template <typename Params>
1183   friend class btree;
1184   template <typename Tree>
1185   friend class btree_container;
1186   template <typename Tree>
1187   friend class btree_set_container;
1188   template <typename Tree>
1189   friend class btree_map_container;
1190   template <typename Tree>
1191   friend class btree_multiset_container;
1192   template <typename TreeType, typename CheckerType>
1193   friend class base_checker;
1194   friend struct btree_access;
1195 
1196   // This SFINAE allows explicit conversions from const_iterator to
1197   // iterator, but also avoids hiding the copy constructor.
1198   // NOTE: the const_cast is safe because this constructor is only called by
1199   // non-const methods and the container owns the nodes.
1200   template <typename N, typename R, typename P,
1201             absl::enable_if_t<
1202                 std::is_same<btree_iterator<N, R, P>, const_iterator>::value &&
1203                     std::is_same<btree_iterator, iterator>::value,
1204                 int> = 0>
1205   explicit btree_iterator(const btree_iterator<N, R, P> other)
1206       : btree_iterator_generation_info(other.generation()),
1207         node_(const_cast<node_type *>(other.node_)),
1208         position_(other.position_) {}
1209 
1210   bool Equals(const const_iterator other) const {
1211     ABSL_HARDENING_ASSERT(((node_ == nullptr && other.node_ == nullptr) ||
1212                            (node_ != nullptr && other.node_ != nullptr)) &&
1213                           "Comparing default-constructed iterator with "
1214                           "non-default-constructed iterator.");
1215     // Note: we use assert instead of ABSL_HARDENING_ASSERT here because this
1216     // changes the complexity of Equals from O(1) to O(log(N) + log(M)) where
1217     // N/M are sizes of the containers containing node_/other.node_.
1218     assert(AreNodesFromSameContainer(node_, other.node_) &&
1219            "Comparing iterators from different containers.");
1220     assert_valid_generation(node_);
1221     other.assert_valid_generation(other.node_);
1222     return node_ == other.node_ && position_ == other.position_;
1223   }
1224 
1225   bool IsEndIterator() const {
1226     if (position_ != node_->finish()) return false;
1227     node_type *node = node_;
1228     while (!node->is_root()) {
1229       if (node->position() != node->parent()->finish()) return false;
1230       node = node->parent();
1231     }
1232     return true;
1233   }
1234 
1235   // Returns n such that n calls to ++other yields *this.
1236   // Precondition: n exists && (this->node_ != other.node_ ||
1237   // !this->node_->is_leaf() || this->position_ != other.position_).
1238   difference_type distance_slow(const_iterator other) const;
1239 
1240   // Increment/decrement the iterator.
1241   void increment() {
1242     assert_valid_generation(node_);
1243     if (node_->is_leaf() && ++position_ < node_->finish()) {
1244       return;
1245     }
1246     increment_slow();
1247   }
1248   void increment_slow();
1249 
1250   void decrement() {
1251     assert_valid_generation(node_);
1252     if (node_->is_leaf() && --position_ >= node_->start()) {
1253       return;
1254     }
1255     decrement_slow();
1256   }
1257   void decrement_slow();
1258 
1259   const key_type &key() const {
1260     return node_->key(static_cast<size_type>(position_));
1261   }
1262   decltype(std::declval<Node *>()->slot(0)) slot() {
1263     return node_->slot(static_cast<size_type>(position_));
1264   }
1265 
1266   void update_generation() {
1267     btree_iterator_generation_info::update_generation(node_);
1268   }
1269 
1270   // The node in the tree the iterator is pointing at.
1271   Node *node_;
1272   // The position within the node of the tree the iterator is pointing at.
1273   // NOTE: this is an int rather than a field_type because iterators can point
1274   // to invalid positions (such as -1) in certain circumstances.
1275   int position_;
1276 };
1277 
1278 template <typename Params>
1279 class btree {
1280   using node_type = btree_node<Params>;
1281   using is_key_compare_to = typename Params::is_key_compare_to;
1282   using field_type = typename node_type::field_type;
1283 
1284   // We use a static empty node for the root/leftmost/rightmost of empty btrees
1285   // in order to avoid branching in begin()/end().
1286   struct alignas(node_type::Alignment()) EmptyNodeType : node_type {
1287     using field_type = typename node_type::field_type;
1288     node_type *parent;
1289 #ifdef ABSL_BTREE_ENABLE_GENERATIONS
1290     uint32_t generation = 0;
1291 #endif
1292     field_type position = 0;
1293     field_type start = 0;
1294     field_type finish = 0;
1295     // max_count must be != kInternalNodeMaxCount (so that this node is regarded
1296     // as a leaf node). max_count() is never called when the tree is empty.
1297     field_type max_count = node_type::kInternalNodeMaxCount + 1;
1298 
1299 #ifdef _MSC_VER
1300     // MSVC has constexpr code generations bugs here.
1301     EmptyNodeType() : parent(this) {}
1302 #else
1303     explicit constexpr EmptyNodeType(node_type *p) : parent(p) {}
1304 #endif
1305   };
1306 
1307   static node_type *EmptyNode() {
1308 #ifdef _MSC_VER
1309     static EmptyNodeType *empty_node = new EmptyNodeType;
1310     // This assert fails on some other construction methods.
1311     assert(empty_node->parent == empty_node);
1312     return empty_node;
1313 #else
1314     static constexpr EmptyNodeType empty_node(
1315         const_cast<EmptyNodeType *>(&empty_node));
1316     return const_cast<EmptyNodeType *>(&empty_node);
1317 #endif
1318   }
1319 
1320   enum : uint32_t {
1321     kNodeSlots = node_type::kNodeSlots,
1322     kMinNodeValues = kNodeSlots / 2,
1323   };
1324 
1325   struct node_stats {
1326     using size_type = typename Params::size_type;
1327 
1328     node_stats(size_type l, size_type i) : leaf_nodes(l), internal_nodes(i) {}
1329 
1330     node_stats &operator+=(const node_stats &other) {
1331       leaf_nodes += other.leaf_nodes;
1332       internal_nodes += other.internal_nodes;
1333       return *this;
1334     }
1335 
1336     size_type leaf_nodes;
1337     size_type internal_nodes;
1338   };
1339 
1340  public:
1341   using key_type = typename Params::key_type;
1342   using value_type = typename Params::value_type;
1343   using size_type = typename Params::size_type;
1344   using difference_type = typename Params::difference_type;
1345   using key_compare = typename Params::key_compare;
1346   using original_key_compare = typename Params::original_key_compare;
1347   using value_compare = typename Params::value_compare;
1348   using allocator_type = typename Params::allocator_type;
1349   using reference = typename Params::reference;
1350   using const_reference = typename Params::const_reference;
1351   using pointer = typename Params::pointer;
1352   using const_pointer = typename Params::const_pointer;
1353   using iterator =
1354       typename btree_iterator<node_type, reference, pointer>::iterator;
1355   using const_iterator = typename iterator::const_iterator;
1356   using reverse_iterator = std::reverse_iterator<iterator>;
1357   using const_reverse_iterator = std::reverse_iterator<const_iterator>;
1358   using node_handle_type = node_handle<Params, Params, allocator_type>;
1359 
1360   // Internal types made public for use by btree_container types.
1361   using params_type = Params;
1362   using slot_type = typename Params::slot_type;
1363 
1364  private:
1365   // Copies or moves (depending on the template parameter) the values in
1366   // other into this btree in their order in other. This btree must be empty
1367   // before this method is called. This method is used in copy construction,
1368   // copy assignment, and move assignment.
1369   template <typename Btree>
1370   void copy_or_move_values_in_order(Btree &other);
1371 
1372   // Validates that various assumptions/requirements are true at compile time.
1373   constexpr static bool static_assert_validation();
1374 
1375  public:
1376   btree(const key_compare &comp, const allocator_type &alloc)
1377       : root_(EmptyNode()), rightmost_(comp, alloc, EmptyNode()), size_(0) {}
1378 
1379   btree(const btree &other) : btree(other, other.allocator()) {}
1380   btree(const btree &other, const allocator_type &alloc)
1381       : btree(other.key_comp(), alloc) {
1382     copy_or_move_values_in_order(other);
1383   }
1384   btree(btree &&other) noexcept
1385       : root_(absl::exchange(other.root_, EmptyNode())),
1386         rightmost_(std::move(other.rightmost_)),
1387         size_(absl::exchange(other.size_, 0u)) {
1388     other.mutable_rightmost() = EmptyNode();
1389   }
1390   btree(btree &&other, const allocator_type &alloc)
1391       : btree(other.key_comp(), alloc) {
1392     if (alloc == other.allocator()) {
1393       swap(other);
1394     } else {
1395       // Move values from `other` one at a time when allocators are different.
1396       copy_or_move_values_in_order(other);
1397     }
1398   }
1399 
1400   ~btree() {
1401     // Put static_asserts in destructor to avoid triggering them before the type
1402     // is complete.
1403     static_assert(static_assert_validation(), "This call must be elided.");
1404     clear();
1405   }
1406 
1407   // Assign the contents of other to *this.
1408   btree &operator=(const btree &other);
1409   btree &operator=(btree &&other) noexcept;
1410 
1411   iterator begin() { return iterator(leftmost()); }
1412   const_iterator begin() const { return const_iterator(leftmost()); }
1413   iterator end() { return iterator(rightmost(), rightmost()->finish()); }
1414   const_iterator end() const {
1415     return const_iterator(rightmost(), rightmost()->finish());
1416   }
1417   reverse_iterator rbegin() { return reverse_iterator(end()); }
1418   const_reverse_iterator rbegin() const {
1419     return const_reverse_iterator(end());
1420   }
1421   reverse_iterator rend() { return reverse_iterator(begin()); }
1422   const_reverse_iterator rend() const {
1423     return const_reverse_iterator(begin());
1424   }
1425 
1426   // Finds the first element whose key is not less than `key`.
1427   template <typename K>
1428   iterator lower_bound(const K &key) {
1429     return internal_end(internal_lower_bound(key).value);
1430   }
1431   template <typename K>
1432   const_iterator lower_bound(const K &key) const {
1433     return internal_end(internal_lower_bound(key).value);
1434   }
1435 
1436   // Finds the first element whose key is not less than `key` and also returns
1437   // whether that element is equal to `key`.
1438   template <typename K>
1439   std::pair<iterator, bool> lower_bound_equal(const K &key) const;
1440 
1441   // Finds the first element whose key is greater than `key`.
1442   template <typename K>
1443   iterator upper_bound(const K &key) {
1444     return internal_end(internal_upper_bound(key));
1445   }
1446   template <typename K>
1447   const_iterator upper_bound(const K &key) const {
1448     return internal_end(internal_upper_bound(key));
1449   }
1450 
1451   // Finds the range of values which compare equal to key. The first member of
1452   // the returned pair is equal to lower_bound(key). The second member of the
1453   // pair is equal to upper_bound(key).
1454   template <typename K>
1455   std::pair<iterator, iterator> equal_range(const K &key);
1456   template <typename K>
1457   std::pair<const_iterator, const_iterator> equal_range(const K &key) const {
1458     return const_cast<btree *>(this)->equal_range(key);
1459   }
1460 
1461   // Inserts a value into the btree only if it does not already exist. The
1462   // boolean return value indicates whether insertion succeeded or failed.
1463   // Requirement: if `key` already exists in the btree, does not consume `args`.
1464   // Requirement: `key` is never referenced after consuming `args`.
1465   template <typename K, typename... Args>
1466   std::pair<iterator, bool> insert_unique(const K &key, Args &&...args);
1467 
1468   // Inserts with hint. Checks to see if the value should be placed immediately
1469   // before `position` in the tree. If so, then the insertion will take
1470   // amortized constant time. If not, the insertion will take amortized
1471   // logarithmic time as if a call to insert_unique() were made.
1472   // Requirement: if `key` already exists in the btree, does not consume `args`.
1473   // Requirement: `key` is never referenced after consuming `args`.
1474   template <typename K, typename... Args>
1475   std::pair<iterator, bool> insert_hint_unique(iterator position, const K &key,
1476                                                Args &&...args);
1477 
1478   // Insert a range of values into the btree.
1479   // Note: the first overload avoids constructing a value_type if the key
1480   // already exists in the btree.
1481   template <typename InputIterator,
1482             typename = decltype(std::declval<const key_compare &>()(
1483                 params_type::key(*std::declval<InputIterator>()),
1484                 std::declval<const key_type &>()))>
1485   void insert_iterator_unique(InputIterator b, InputIterator e, int);
1486   // We need the second overload for cases in which we need to construct a
1487   // value_type in order to compare it with the keys already in the btree.
1488   template <typename InputIterator>
1489   void insert_iterator_unique(InputIterator b, InputIterator e, char);
1490 
1491   // Inserts a value into the btree.
1492   template <typename ValueType>
1493   iterator insert_multi(const key_type &key, ValueType &&v);
1494 
1495   // Inserts a value into the btree.
1496   template <typename ValueType>
1497   iterator insert_multi(ValueType &&v) {
1498     return insert_multi(params_type::key(v), std::forward<ValueType>(v));
1499   }
1500 
1501   // Insert with hint. Check to see if the value should be placed immediately
1502   // before position in the tree. If it does, then the insertion will take
1503   // amortized constant time. If not, the insertion will take amortized
1504   // logarithmic time as if a call to insert_multi(v) were made.
1505   template <typename ValueType>
1506   iterator insert_hint_multi(iterator position, ValueType &&v);
1507 
1508   // Insert a range of values into the btree.
1509   template <typename InputIterator>
1510   void insert_iterator_multi(InputIterator b, InputIterator e);
1511 
1512   // Erase the specified iterator from the btree. The iterator must be valid
1513   // (i.e. not equal to end()).  Return an iterator pointing to the node after
1514   // the one that was erased (or end() if none exists).
1515   // Requirement: does not read the value at `*iter`.
1516   iterator erase(iterator iter);
1517 
1518   // Erases range. Returns the number of keys erased and an iterator pointing
1519   // to the element after the last erased element.
1520   std::pair<size_type, iterator> erase_range(iterator begin, iterator end);
1521 
1522   // Finds an element with key equivalent to `key` or returns `end()` if `key`
1523   // is not present.
1524   template <typename K>
1525   iterator find(const K &key) {
1526     return internal_end(internal_find(key));
1527   }
1528   template <typename K>
1529   const_iterator find(const K &key) const {
1530     return internal_end(internal_find(key));
1531   }
1532 
1533   // Clear the btree, deleting all of the values it contains.
1534   void clear();
1535 
1536   // Swaps the contents of `this` and `other`.
1537   void swap(btree &other);
1538 
1539   const key_compare &key_comp() const noexcept {
1540     return rightmost_.template get<0>();
1541   }
1542   template <typename K1, typename K2>
1543   bool compare_keys(const K1 &a, const K2 &b) const {
1544     return compare_internal::compare_result_as_less_than(key_comp()(a, b));
1545   }
1546 
1547   value_compare value_comp() const {
1548     return value_compare(original_key_compare(key_comp()));
1549   }
1550 
1551   // Verifies the structure of the btree.
1552   void verify() const;
1553 
1554   // Size routines.
1555   size_type size() const { return size_; }
1556   size_type max_size() const { return (std::numeric_limits<size_type>::max)(); }
1557   bool empty() const { return size_ == 0; }
1558 
1559   // The height of the btree. An empty tree will have height 0.
1560   size_type height() const {
1561     size_type h = 0;
1562     if (!empty()) {
1563       // Count the length of the chain from the leftmost node up to the
1564       // root. We actually count from the root back around to the level below
1565       // the root, but the calculation is the same because of the circularity
1566       // of that traversal.
1567       const node_type *n = root();
1568       do {
1569         ++h;
1570         n = n->parent();
1571       } while (n != root());
1572     }
1573     return h;
1574   }
1575 
1576   // The number of internal, leaf and total nodes used by the btree.
1577   size_type leaf_nodes() const { return internal_stats(root()).leaf_nodes; }
1578   size_type internal_nodes() const {
1579     return internal_stats(root()).internal_nodes;
1580   }
1581   size_type nodes() const {
1582     node_stats stats = internal_stats(root());
1583     return stats.leaf_nodes + stats.internal_nodes;
1584   }
1585 
1586   // The total number of bytes used by the btree.
1587   // TODO(b/169338300): update to support node_btree_*.
1588   size_type bytes_used() const {
1589     node_stats stats = internal_stats(root());
1590     if (stats.leaf_nodes == 1 && stats.internal_nodes == 0) {
1591       return sizeof(*this) + node_type::LeafSize(root()->max_count());
1592     } else {
1593       return sizeof(*this) + stats.leaf_nodes * node_type::LeafSize() +
1594              stats.internal_nodes * node_type::InternalSize();
1595     }
1596   }
1597 
1598   // The average number of bytes used per value stored in the btree assuming
1599   // random insertion order.
1600   static double average_bytes_per_value() {
1601     // The expected number of values per node with random insertion order is the
1602     // average of the maximum and minimum numbers of values per node.
1603     const double expected_values_per_node = (kNodeSlots + kMinNodeValues) / 2.0;
1604     return node_type::LeafSize() / expected_values_per_node;
1605   }
1606 
1607   // The fullness of the btree. Computed as the number of elements in the btree
1608   // divided by the maximum number of elements a tree with the current number
1609   // of nodes could hold. A value of 1 indicates perfect space
1610   // utilization. Smaller values indicate space wastage.
1611   // Returns 0 for empty trees.
1612   double fullness() const {
1613     if (empty()) return 0.0;
1614     return static_cast<double>(size()) / (nodes() * kNodeSlots);
1615   }
1616   // The overhead of the btree structure in bytes per node. Computed as the
1617   // total number of bytes used by the btree minus the number of bytes used for
1618   // storing elements divided by the number of elements.
1619   // Returns 0 for empty trees.
1620   double overhead() const {
1621     if (empty()) return 0.0;
1622     return (bytes_used() - size() * sizeof(value_type)) /
1623            static_cast<double>(size());
1624   }
1625 
1626   // The allocator used by the btree.
1627   allocator_type get_allocator() const { return allocator(); }
1628 
1629  private:
1630   friend struct btree_access;
1631 
1632   // Internal accessor routines.
1633   node_type *root() { return root_; }
1634   const node_type *root() const { return root_; }
1635   node_type *&mutable_root() noexcept { return root_; }
1636   node_type *rightmost() { return rightmost_.template get<2>(); }
1637   const node_type *rightmost() const { return rightmost_.template get<2>(); }
1638   node_type *&mutable_rightmost() noexcept {
1639     return rightmost_.template get<2>();
1640   }
1641   key_compare *mutable_key_comp() noexcept {
1642     return &rightmost_.template get<0>();
1643   }
1644 
1645   // The leftmost node is stored as the parent of the root node.
1646   node_type *leftmost() { return root()->parent(); }
1647   const node_type *leftmost() const { return root()->parent(); }
1648 
1649   // Allocator routines.
1650   allocator_type *mutable_allocator() noexcept {
1651     return &rightmost_.template get<1>();
1652   }
1653   const allocator_type &allocator() const noexcept {
1654     return rightmost_.template get<1>();
1655   }
1656 
1657   // Allocates a correctly aligned node of at least size bytes using the
1658   // allocator.
1659   node_type *allocate(size_type size) {
1660     return reinterpret_cast<node_type *>(
1661         absl::container_internal::Allocate<node_type::Alignment()>(
1662             mutable_allocator(), size));
1663   }
1664 
1665   // Node creation/deletion routines.
1666   node_type *new_internal_node(node_type *parent) {
1667     node_type *n = allocate(node_type::InternalSize());
1668     n->init_internal(parent);
1669     return n;
1670   }
1671   node_type *new_leaf_node(node_type *parent) {
1672     node_type *n = allocate(node_type::LeafSize());
1673     n->init_leaf(kNodeSlots, parent);
1674     return n;
1675   }
1676   node_type *new_leaf_root_node(field_type max_count) {
1677     node_type *n = allocate(node_type::LeafSize(max_count));
1678     n->init_leaf(max_count, /*parent=*/n);
1679     return n;
1680   }
1681 
1682   // Deletion helper routines.
1683   iterator rebalance_after_delete(iterator iter);
1684 
1685   // Rebalances or splits the node iter points to.
1686   void rebalance_or_split(iterator *iter);
1687 
1688   // Merges the values of left, right and the delimiting key on their parent
1689   // onto left, removing the delimiting key and deleting right.
1690   void merge_nodes(node_type *left, node_type *right);
1691 
1692   // Tries to merge node with its left or right sibling, and failing that,
1693   // rebalance with its left or right sibling. Returns true if a merge
1694   // occurred, at which point it is no longer valid to access node. Returns
1695   // false if no merging took place.
1696   bool try_merge_or_rebalance(iterator *iter);
1697 
1698   // Tries to shrink the height of the tree by 1.
1699   void try_shrink();
1700 
1701   iterator internal_end(iterator iter) {
1702     return iter.node_ != nullptr ? iter : end();
1703   }
1704   const_iterator internal_end(const_iterator iter) const {
1705     return iter.node_ != nullptr ? iter : end();
1706   }
1707 
1708   // Emplaces a value into the btree immediately before iter. Requires that
1709   // key(v) <= iter.key() and (--iter).key() <= key(v).
1710   template <typename... Args>
1711   iterator internal_emplace(iterator iter, Args &&...args);
1712 
1713   // Returns an iterator pointing to the first value >= the value "iter" is
1714   // pointing at. Note that "iter" might be pointing to an invalid location such
1715   // as iter.position_ == iter.node_->finish(). This routine simply moves iter
1716   // up in the tree to a valid location. Requires: iter.node_ is non-null.
1717   template <typename IterType>
1718   static IterType internal_last(IterType iter);
1719 
1720   // Returns an iterator pointing to the leaf position at which key would
1721   // reside in the tree, unless there is an exact match - in which case, the
1722   // result may not be on a leaf. When there's a three-way comparator, we can
1723   // return whether there was an exact match. This allows the caller to avoid a
1724   // subsequent comparison to determine if an exact match was made, which is
1725   // important for keys with expensive comparison, such as strings.
1726   template <typename K>
1727   SearchResult<iterator, is_key_compare_to::value> internal_locate(
1728       const K &key) const;
1729 
1730   // Internal routine which implements lower_bound().
1731   template <typename K>
1732   SearchResult<iterator, is_key_compare_to::value> internal_lower_bound(
1733       const K &key) const;
1734 
1735   // Internal routine which implements upper_bound().
1736   template <typename K>
1737   iterator internal_upper_bound(const K &key) const;
1738 
1739   // Internal routine which implements find().
1740   template <typename K>
1741   iterator internal_find(const K &key) const;
1742 
1743   // Verifies the tree structure of node.
1744   size_type internal_verify(const node_type *node, const key_type *lo,
1745                             const key_type *hi) const;
1746 
1747   node_stats internal_stats(const node_type *node) const {
1748     // The root can be a static empty node.
1749     if (node == nullptr || (node == root() && empty())) {
1750       return node_stats(0, 0);
1751     }
1752     if (node->is_leaf()) {
1753       return node_stats(1, 0);
1754     }
1755     node_stats res(0, 1);
1756     for (int i = node->start(); i <= node->finish(); ++i) {
1757       res += internal_stats(node->child(i));
1758     }
1759     return res;
1760   }
1761 
1762   node_type *root_;
1763 
1764   // A pointer to the rightmost node. Note that the leftmost node is stored as
1765   // the root's parent. We use compressed tuple in order to save space because
1766   // key_compare and allocator_type are usually empty.
1767   absl::container_internal::CompressedTuple<key_compare, allocator_type,
1768                                             node_type *>
1769       rightmost_;
1770 
1771   // Number of values.
1772   size_type size_;
1773 };
1774 
1775 ////
1776 // btree_node methods
1777 template <typename P>
1778 template <typename... Args>
1779 inline void btree_node<P>::emplace_value(const field_type i,
1780                                          allocator_type *alloc,
1781                                          Args &&...args) {
1782   assert(i >= start());
1783   assert(i <= finish());
1784   // Shift old values to create space for new value and then construct it in
1785   // place.
1786   if (i < finish()) {
1787     transfer_n_backward(finish() - i, /*dest_i=*/i + 1, /*src_i=*/i, this,
1788                         alloc);
1789   }
1790   value_init(static_cast<field_type>(i), alloc, std::forward<Args>(args)...);
1791   set_finish(finish() + 1);
1792 
1793   if (is_internal() && finish() > i + 1) {
1794     for (field_type j = finish(); j > i + 1; --j) {
1795       set_child(j, child(j - 1));
1796     }
1797     clear_child(i + 1);
1798   }
1799 }
1800 
1801 template <typename P>
1802 inline void btree_node<P>::remove_values(const field_type i,
1803                                          const field_type to_erase,
1804                                          allocator_type *alloc) {
1805   // Transfer values after the removed range into their new places.
1806   value_destroy_n(i, to_erase, alloc);
1807   const field_type orig_finish = finish();
1808   const field_type src_i = i + to_erase;
1809   transfer_n(orig_finish - src_i, i, src_i, this, alloc);
1810 
1811   if (is_internal()) {
1812     // Delete all children between begin and end.
1813     for (field_type j = 0; j < to_erase; ++j) {
1814       clear_and_delete(child(i + j + 1), alloc);
1815     }
1816     // Rotate children after end into new positions.
1817     for (field_type j = i + to_erase + 1; j <= orig_finish; ++j) {
1818       set_child(j - to_erase, child(j));
1819       clear_child(j);
1820     }
1821   }
1822   set_finish(orig_finish - to_erase);
1823 }
1824 
1825 template <typename P>
1826 void btree_node<P>::rebalance_right_to_left(field_type to_move,
1827                                             btree_node *right,
1828                                             allocator_type *alloc) {
1829   assert(parent() == right->parent());
1830   assert(position() + 1 == right->position());
1831   assert(right->count() >= count());
1832   assert(to_move >= 1);
1833   assert(to_move <= right->count());
1834 
1835   // 1) Move the delimiting value in the parent to the left node.
1836   transfer(finish(), position(), parent(), alloc);
1837 
1838   // 2) Move the (to_move - 1) values from the right node to the left node.
1839   transfer_n(to_move - 1, finish() + 1, right->start(), right, alloc);
1840 
1841   // 3) Move the new delimiting value to the parent from the right node.
1842   parent()->transfer(position(), right->start() + to_move - 1, right, alloc);
1843 
1844   // 4) Shift the values in the right node to their correct positions.
1845   right->transfer_n(right->count() - to_move, right->start(),
1846                     right->start() + to_move, right, alloc);
1847 
1848   if (is_internal()) {
1849     // Move the child pointers from the right to the left node.
1850     for (field_type i = 0; i < to_move; ++i) {
1851       init_child(finish() + i + 1, right->child(i));
1852     }
1853     for (field_type i = right->start(); i <= right->finish() - to_move; ++i) {
1854       assert(i + to_move <= right->max_count());
1855       right->init_child(i, right->child(i + to_move));
1856       right->clear_child(i + to_move);
1857     }
1858   }
1859 
1860   // Fixup `finish` on the left and right nodes.
1861   set_finish(finish() + to_move);
1862   right->set_finish(right->finish() - to_move);
1863 }
1864 
1865 template <typename P>
1866 void btree_node<P>::rebalance_left_to_right(field_type to_move,
1867                                             btree_node *right,
1868                                             allocator_type *alloc) {
1869   assert(parent() == right->parent());
1870   assert(position() + 1 == right->position());
1871   assert(count() >= right->count());
1872   assert(to_move >= 1);
1873   assert(to_move <= count());
1874 
1875   // Values in the right node are shifted to the right to make room for the
1876   // new to_move values. Then, the delimiting value in the parent and the
1877   // other (to_move - 1) values in the left node are moved into the right node.
1878   // Lastly, a new delimiting value is moved from the left node into the
1879   // parent, and the remaining empty left node entries are destroyed.
1880 
1881   // 1) Shift existing values in the right node to their correct positions.
1882   right->transfer_n_backward(right->count(), right->start() + to_move,
1883                              right->start(), right, alloc);
1884 
1885   // 2) Move the delimiting value in the parent to the right node.
1886   right->transfer(right->start() + to_move - 1, position(), parent(), alloc);
1887 
1888   // 3) Move the (to_move - 1) values from the left node to the right node.
1889   right->transfer_n(to_move - 1, right->start(), finish() - (to_move - 1), this,
1890                     alloc);
1891 
1892   // 4) Move the new delimiting value to the parent from the left node.
1893   parent()->transfer(position(), finish() - to_move, this, alloc);
1894 
1895   if (is_internal()) {
1896     // Move the child pointers from the left to the right node.
1897     for (field_type i = right->finish() + 1; i > right->start(); --i) {
1898       right->init_child(i - 1 + to_move, right->child(i - 1));
1899       right->clear_child(i - 1);
1900     }
1901     for (field_type i = 1; i <= to_move; ++i) {
1902       right->init_child(i - 1, child(finish() - to_move + i));
1903       clear_child(finish() - to_move + i);
1904     }
1905   }
1906 
1907   // Fixup the counts on the left and right nodes.
1908   set_finish(finish() - to_move);
1909   right->set_finish(right->finish() + to_move);
1910 }
1911 
1912 template <typename P>
1913 void btree_node<P>::split(const int insert_position, btree_node *dest,
1914                           allocator_type *alloc) {
1915   assert(dest->count() == 0);
1916   assert(max_count() == kNodeSlots);
1917 
1918   // We bias the split based on the position being inserted. If we're
1919   // inserting at the beginning of the left node then bias the split to put
1920   // more values on the right node. If we're inserting at the end of the
1921   // right node then bias the split to put more values on the left node.
1922   if (insert_position == start()) {
1923     dest->set_finish(dest->start() + finish() - 1);
1924   } else if (insert_position == kNodeSlots) {
1925     dest->set_finish(dest->start());
1926   } else {
1927     dest->set_finish(dest->start() + count() / 2);
1928   }
1929   set_finish(finish() - dest->count());
1930   assert(count() >= 1);
1931 
1932   // Move values from the left sibling to the right sibling.
1933   dest->transfer_n(dest->count(), dest->start(), finish(), this, alloc);
1934 
1935   // The split key is the largest value in the left sibling.
1936   --mutable_finish();
1937   parent()->emplace_value(position(), alloc, finish_slot());
1938   value_destroy(finish(), alloc);
1939   parent()->init_child(position() + 1, dest);
1940 
1941   if (is_internal()) {
1942     for (field_type i = dest->start(), j = finish() + 1; i <= dest->finish();
1943          ++i, ++j) {
1944       assert(child(j) != nullptr);
1945       dest->init_child(i, child(j));
1946       clear_child(j);
1947     }
1948   }
1949 }
1950 
1951 template <typename P>
1952 void btree_node<P>::merge(btree_node *src, allocator_type *alloc) {
1953   assert(parent() == src->parent());
1954   assert(position() + 1 == src->position());
1955 
1956   // Move the delimiting value to the left node.
1957   value_init(finish(), alloc, parent()->slot(position()));
1958 
1959   // Move the values from the right to the left node.
1960   transfer_n(src->count(), finish() + 1, src->start(), src, alloc);
1961 
1962   if (is_internal()) {
1963     // Move the child pointers from the right to the left node.
1964     for (field_type i = src->start(), j = finish() + 1; i <= src->finish();
1965          ++i, ++j) {
1966       init_child(j, src->child(i));
1967       src->clear_child(i);
1968     }
1969   }
1970 
1971   // Fixup `finish` on the src and dest nodes.
1972   set_finish(start() + 1 + count() + src->count());
1973   src->set_finish(src->start());
1974 
1975   // Remove the value on the parent node and delete the src node.
1976   parent()->remove_values(position(), /*to_erase=*/1, alloc);
1977 }
1978 
1979 template <typename P>
1980 void btree_node<P>::clear_and_delete(btree_node *node, allocator_type *alloc) {
1981   if (node->is_leaf()) {
1982     node->value_destroy_n(node->start(), node->count(), alloc);
1983     deallocate(LeafSize(node->max_count()), node, alloc);
1984     return;
1985   }
1986   if (node->count() == 0) {
1987     deallocate(InternalSize(), node, alloc);
1988     return;
1989   }
1990 
1991   // The parent of the root of the subtree we are deleting.
1992   btree_node *delete_root_parent = node->parent();
1993 
1994   // Navigate to the leftmost leaf under node, and then delete upwards.
1995   while (node->is_internal()) node = node->start_child();
1996 #ifdef ABSL_BTREE_ENABLE_GENERATIONS
1997   // When generations are enabled, we delete the leftmost leaf last in case it's
1998   // the parent of the root and we need to check whether it's a leaf before we
1999   // can update the root's generation.
2000   // TODO(ezb): if we change btree_node::is_root to check a bool inside the node
2001   // instead of checking whether the parent is a leaf, we can remove this logic.
2002   btree_node *leftmost_leaf = node;
2003 #endif
2004   // Use `size_type` because `pos` needs to be able to hold `kNodeSlots+1`,
2005   // which isn't guaranteed to be a valid `field_type`.
2006   size_type pos = node->position();
2007   btree_node *parent = node->parent();
2008   for (;;) {
2009     // In each iteration of the next loop, we delete one leaf node and go right.
2010     assert(pos <= parent->finish());
2011     do {
2012       node = parent->child(static_cast<field_type>(pos));
2013       if (node->is_internal()) {
2014         // Navigate to the leftmost leaf under node.
2015         while (node->is_internal()) node = node->start_child();
2016         pos = node->position();
2017         parent = node->parent();
2018       }
2019       node->value_destroy_n(node->start(), node->count(), alloc);
2020 #ifdef ABSL_BTREE_ENABLE_GENERATIONS
2021       if (leftmost_leaf != node)
2022 #endif
2023         deallocate(LeafSize(node->max_count()), node, alloc);
2024       ++pos;
2025     } while (pos <= parent->finish());
2026 
2027     // Once we've deleted all children of parent, delete parent and go up/right.
2028     assert(pos > parent->finish());
2029     do {
2030       node = parent;
2031       pos = node->position();
2032       parent = node->parent();
2033       node->value_destroy_n(node->start(), node->count(), alloc);
2034       deallocate(InternalSize(), node, alloc);
2035       if (parent == delete_root_parent) {
2036 #ifdef ABSL_BTREE_ENABLE_GENERATIONS
2037         deallocate(LeafSize(leftmost_leaf->max_count()), leftmost_leaf, alloc);
2038 #endif
2039         return;
2040       }
2041       ++pos;
2042     } while (pos > parent->finish());
2043   }
2044 }
2045 
2046 ////
2047 // btree_iterator methods
2048 
2049 // Note: the implementation here is based on btree_node::clear_and_delete.
2050 template <typename N, typename R, typename P>
2051 auto btree_iterator<N, R, P>::distance_slow(const_iterator other) const
2052     -> difference_type {
2053   const_iterator begin = other;
2054   const_iterator end = *this;
2055   assert(begin.node_ != end.node_ || !begin.node_->is_leaf() ||
2056          begin.position_ != end.position_);
2057 
2058   const node_type *node = begin.node_;
2059   // We need to compensate for double counting if begin.node_ is a leaf node.
2060   difference_type count = node->is_leaf() ? -begin.position_ : 0;
2061 
2062   // First navigate to the leftmost leaf node past begin.
2063   if (node->is_internal()) {
2064     ++count;
2065     node = node->child(begin.position_ + 1);
2066   }
2067   while (node->is_internal()) node = node->start_child();
2068 
2069   // Use `size_type` because `pos` needs to be able to hold `kNodeSlots+1`,
2070   // which isn't guaranteed to be a valid `field_type`.
2071   size_type pos = node->position();
2072   const node_type *parent = node->parent();
2073   for (;;) {
2074     // In each iteration of the next loop, we count one leaf node and go right.
2075     assert(pos <= parent->finish());
2076     do {
2077       node = parent->child(static_cast<field_type>(pos));
2078       if (node->is_internal()) {
2079         // Navigate to the leftmost leaf under node.
2080         while (node->is_internal()) node = node->start_child();
2081         pos = node->position();
2082         parent = node->parent();
2083       }
2084       if (node == end.node_) return count + end.position_;
2085       if (parent == end.node_ && pos == static_cast<size_type>(end.position_))
2086         return count + node->count();
2087       // +1 is for the next internal node value.
2088       count += node->count() + 1;
2089       ++pos;
2090     } while (pos <= parent->finish());
2091 
2092     // Once we've counted all children of parent, go up/right.
2093     assert(pos > parent->finish());
2094     do {
2095       node = parent;
2096       pos = node->position();
2097       parent = node->parent();
2098       // -1 because we counted the value at end and shouldn't.
2099       if (parent == end.node_ && pos == static_cast<size_type>(end.position_))
2100         return count - 1;
2101       ++pos;
2102     } while (pos > parent->finish());
2103   }
2104 }
2105 
2106 template <typename N, typename R, typename P>
2107 void btree_iterator<N, R, P>::increment_slow() {
2108   if (node_->is_leaf()) {
2109     assert(position_ >= node_->finish());
2110     btree_iterator save(*this);
2111     while (position_ == node_->finish() && !node_->is_root()) {
2112       assert(node_->parent()->child(node_->position()) == node_);
2113       position_ = node_->position();
2114       node_ = node_->parent();
2115     }
2116     // TODO(ezb): assert we aren't incrementing end() instead of handling.
2117     if (position_ == node_->finish()) {
2118       *this = save;
2119     }
2120   } else {
2121     assert(position_ < node_->finish());
2122     node_ = node_->child(static_cast<field_type>(position_ + 1));
2123     while (node_->is_internal()) {
2124       node_ = node_->start_child();
2125     }
2126     position_ = node_->start();
2127   }
2128 }
2129 
2130 template <typename N, typename R, typename P>
2131 void btree_iterator<N, R, P>::decrement_slow() {
2132   if (node_->is_leaf()) {
2133     assert(position_ <= -1);
2134     btree_iterator save(*this);
2135     while (position_ < node_->start() && !node_->is_root()) {
2136       assert(node_->parent()->child(node_->position()) == node_);
2137       position_ = node_->position() - 1;
2138       node_ = node_->parent();
2139     }
2140     // TODO(ezb): assert we aren't decrementing begin() instead of handling.
2141     if (position_ < node_->start()) {
2142       *this = save;
2143     }
2144   } else {
2145     assert(position_ >= node_->start());
2146     node_ = node_->child(static_cast<field_type>(position_));
2147     while (node_->is_internal()) {
2148       node_ = node_->child(node_->finish());
2149     }
2150     position_ = node_->finish() - 1;
2151   }
2152 }
2153 
2154 ////
2155 // btree methods
2156 template <typename P>
2157 template <typename Btree>
2158 void btree<P>::copy_or_move_values_in_order(Btree &other) {
2159   static_assert(std::is_same<btree, Btree>::value ||
2160                     std::is_same<const btree, Btree>::value,
2161                 "Btree type must be same or const.");
2162   assert(empty());
2163 
2164   // We can avoid key comparisons because we know the order of the
2165   // values is the same order we'll store them in.
2166   auto iter = other.begin();
2167   if (iter == other.end()) return;
2168   insert_multi(iter.slot());
2169   ++iter;
2170   for (; iter != other.end(); ++iter) {
2171     // If the btree is not empty, we can just insert the new value at the end
2172     // of the tree.
2173     internal_emplace(end(), iter.slot());
2174   }
2175 }
2176 
2177 template <typename P>
2178 constexpr bool btree<P>::static_assert_validation() {
2179   static_assert(std::is_nothrow_copy_constructible<key_compare>::value,
2180                 "Key comparison must be nothrow copy constructible");
2181   static_assert(std::is_nothrow_copy_constructible<allocator_type>::value,
2182                 "Allocator must be nothrow copy constructible");
2183   static_assert(type_traits_internal::is_trivially_copyable<iterator>::value,
2184                 "iterator not trivially copyable.");
2185 
2186   // Note: We assert that kTargetValues, which is computed from
2187   // Params::kTargetNodeSize, must fit the node_type::field_type.
2188   static_assert(
2189       kNodeSlots < (1 << (8 * sizeof(typename node_type::field_type))),
2190       "target node size too large");
2191 
2192   // Verify that key_compare returns an absl::{weak,strong}_ordering or bool.
2193   static_assert(
2194       compare_has_valid_result_type<key_compare, key_type>(),
2195       "key comparison function must return absl::{weak,strong}_ordering or "
2196       "bool.");
2197 
2198   // Test the assumption made in setting kNodeSlotSpace.
2199   static_assert(node_type::MinimumOverhead() >= sizeof(void *) + 4,
2200                 "node space assumption incorrect");
2201 
2202   return true;
2203 }
2204 
2205 template <typename P>
2206 template <typename K>
2207 auto btree<P>::lower_bound_equal(const K &key) const
2208     -> std::pair<iterator, bool> {
2209   const SearchResult<iterator, is_key_compare_to::value> res =
2210       internal_lower_bound(key);
2211   const iterator lower = iterator(internal_end(res.value));
2212   const bool equal = res.HasMatch()
2213                          ? res.IsEq()
2214                          : lower != end() && !compare_keys(key, lower.key());
2215   return {lower, equal};
2216 }
2217 
2218 template <typename P>
2219 template <typename K>
2220 auto btree<P>::equal_range(const K &key) -> std::pair<iterator, iterator> {
2221   const std::pair<iterator, bool> lower_and_equal = lower_bound_equal(key);
2222   const iterator lower = lower_and_equal.first;
2223   if (!lower_and_equal.second) {
2224     return {lower, lower};
2225   }
2226 
2227   const iterator next = std::next(lower);
2228   if (!params_type::template can_have_multiple_equivalent_keys<K>()) {
2229     // The next iterator after lower must point to a key greater than `key`.
2230     // Note: if this assert fails, then it may indicate that the comparator does
2231     // not meet the equivalence requirements for Compare
2232     // (see https://en.cppreference.com/w/cpp/named_req/Compare).
2233     assert(next == end() || compare_keys(key, next.key()));
2234     return {lower, next};
2235   }
2236   // Try once more to avoid the call to upper_bound() if there's only one
2237   // equivalent key. This should prevent all calls to upper_bound() in cases of
2238   // unique-containers with heterogeneous comparators in which all comparison
2239   // operators have the same equivalence classes.
2240   if (next == end() || compare_keys(key, next.key())) return {lower, next};
2241 
2242   // In this case, we need to call upper_bound() to avoid worst case O(N)
2243   // behavior if we were to iterate over equal keys.
2244   return {lower, upper_bound(key)};
2245 }
2246 
2247 template <typename P>
2248 template <typename K, typename... Args>
2249 auto btree<P>::insert_unique(const K &key, Args &&...args)
2250     -> std::pair<iterator, bool> {
2251   if (empty()) {
2252     mutable_root() = mutable_rightmost() = new_leaf_root_node(1);
2253   }
2254 
2255   SearchResult<iterator, is_key_compare_to::value> res = internal_locate(key);
2256   iterator iter = res.value;
2257 
2258   if (res.HasMatch()) {
2259     if (res.IsEq()) {
2260       // The key already exists in the tree, do nothing.
2261       return {iter, false};
2262     }
2263   } else {
2264     iterator last = internal_last(iter);
2265     if (last.node_ && !compare_keys(key, last.key())) {
2266       // The key already exists in the tree, do nothing.
2267       return {last, false};
2268     }
2269   }
2270   return {internal_emplace(iter, std::forward<Args>(args)...), true};
2271 }
2272 
2273 template <typename P>
2274 template <typename K, typename... Args>
2275 inline auto btree<P>::insert_hint_unique(iterator position, const K &key,
2276                                          Args &&...args)
2277     -> std::pair<iterator, bool> {
2278   if (!empty()) {
2279     if (position == end() || compare_keys(key, position.key())) {
2280       if (position == begin() || compare_keys(std::prev(position).key(), key)) {
2281         // prev.key() < key < position.key()
2282         return {internal_emplace(position, std::forward<Args>(args)...), true};
2283       }
2284     } else if (compare_keys(position.key(), key)) {
2285       ++position;
2286       if (position == end() || compare_keys(key, position.key())) {
2287         // {original `position`}.key() < key < {current `position`}.key()
2288         return {internal_emplace(position, std::forward<Args>(args)...), true};
2289       }
2290     } else {
2291       // position.key() == key
2292       return {position, false};
2293     }
2294   }
2295   return insert_unique(key, std::forward<Args>(args)...);
2296 }
2297 
2298 template <typename P>
2299 template <typename InputIterator, typename>
2300 void btree<P>::insert_iterator_unique(InputIterator b, InputIterator e, int) {
2301   for (; b != e; ++b) {
2302     insert_hint_unique(end(), params_type::key(*b), *b);
2303   }
2304 }
2305 
2306 template <typename P>
2307 template <typename InputIterator>
2308 void btree<P>::insert_iterator_unique(InputIterator b, InputIterator e, char) {
2309   for (; b != e; ++b) {
2310     // Use a node handle to manage a temp slot.
2311     auto node_handle =
2312         CommonAccess::Construct<node_handle_type>(get_allocator(), *b);
2313     slot_type *slot = CommonAccess::GetSlot(node_handle);
2314     insert_hint_unique(end(), params_type::key(slot), slot);
2315   }
2316 }
2317 
2318 template <typename P>
2319 template <typename ValueType>
2320 auto btree<P>::insert_multi(const key_type &key, ValueType &&v) -> iterator {
2321   if (empty()) {
2322     mutable_root() = mutable_rightmost() = new_leaf_root_node(1);
2323   }
2324 
2325   iterator iter = internal_upper_bound(key);
2326   if (iter.node_ == nullptr) {
2327     iter = end();
2328   }
2329   return internal_emplace(iter, std::forward<ValueType>(v));
2330 }
2331 
2332 template <typename P>
2333 template <typename ValueType>
2334 auto btree<P>::insert_hint_multi(iterator position, ValueType &&v) -> iterator {
2335   if (!empty()) {
2336     const key_type &key = params_type::key(v);
2337     if (position == end() || !compare_keys(position.key(), key)) {
2338       if (position == begin() ||
2339           !compare_keys(key, std::prev(position).key())) {
2340         // prev.key() <= key <= position.key()
2341         return internal_emplace(position, std::forward<ValueType>(v));
2342       }
2343     } else {
2344       ++position;
2345       if (position == end() || !compare_keys(position.key(), key)) {
2346         // {original `position`}.key() < key < {current `position`}.key()
2347         return internal_emplace(position, std::forward<ValueType>(v));
2348       }
2349     }
2350   }
2351   return insert_multi(std::forward<ValueType>(v));
2352 }
2353 
2354 template <typename P>
2355 template <typename InputIterator>
2356 void btree<P>::insert_iterator_multi(InputIterator b, InputIterator e) {
2357   for (; b != e; ++b) {
2358     insert_hint_multi(end(), *b);
2359   }
2360 }
2361 
2362 template <typename P>
2363 auto btree<P>::operator=(const btree &other) -> btree & {
2364   if (this != &other) {
2365     clear();
2366 
2367     *mutable_key_comp() = other.key_comp();
2368     if (absl::allocator_traits<
2369             allocator_type>::propagate_on_container_copy_assignment::value) {
2370       *mutable_allocator() = other.allocator();
2371     }
2372 
2373     copy_or_move_values_in_order(other);
2374   }
2375   return *this;
2376 }
2377 
2378 template <typename P>
2379 auto btree<P>::operator=(btree &&other) noexcept -> btree & {
2380   if (this != &other) {
2381     clear();
2382 
2383     using std::swap;
2384     if (absl::allocator_traits<
2385             allocator_type>::propagate_on_container_copy_assignment::value) {
2386       swap(root_, other.root_);
2387       // Note: `rightmost_` also contains the allocator and the key comparator.
2388       swap(rightmost_, other.rightmost_);
2389       swap(size_, other.size_);
2390     } else {
2391       if (allocator() == other.allocator()) {
2392         swap(mutable_root(), other.mutable_root());
2393         swap(*mutable_key_comp(), *other.mutable_key_comp());
2394         swap(mutable_rightmost(), other.mutable_rightmost());
2395         swap(size_, other.size_);
2396       } else {
2397         // We aren't allowed to propagate the allocator and the allocator is
2398         // different so we can't take over its memory. We must move each element
2399         // individually. We need both `other` and `this` to have `other`s key
2400         // comparator while moving the values so we can't swap the key
2401         // comparators.
2402         *mutable_key_comp() = other.key_comp();
2403         copy_or_move_values_in_order(other);
2404       }
2405     }
2406   }
2407   return *this;
2408 }
2409 
2410 template <typename P>
2411 auto btree<P>::erase(iterator iter) -> iterator {
2412   iter.node_->value_destroy(static_cast<field_type>(iter.position_),
2413                             mutable_allocator());
2414   iter.update_generation();
2415 
2416   const bool internal_delete = iter.node_->is_internal();
2417   if (internal_delete) {
2418     // Deletion of a value on an internal node. First, transfer the largest
2419     // value from our left child here, then erase/rebalance from that position.
2420     // We can get to the largest value from our left child by decrementing iter.
2421     iterator internal_iter(iter);
2422     --iter;
2423     assert(iter.node_->is_leaf());
2424     internal_iter.node_->transfer(
2425         static_cast<size_type>(internal_iter.position_),
2426         static_cast<size_type>(iter.position_), iter.node_,
2427         mutable_allocator());
2428   } else {
2429     // Shift values after erased position in leaf. In the internal case, we
2430     // don't need to do this because the leaf position is the end of the node.
2431     const field_type transfer_from =
2432         static_cast<field_type>(iter.position_ + 1);
2433     const field_type num_to_transfer = iter.node_->finish() - transfer_from;
2434     iter.node_->transfer_n(num_to_transfer,
2435                            static_cast<size_type>(iter.position_),
2436                            transfer_from, iter.node_, mutable_allocator());
2437   }
2438   // Update node finish and container size.
2439   iter.node_->set_finish(iter.node_->finish() - 1);
2440   --size_;
2441 
2442   // We want to return the next value after the one we just erased. If we
2443   // erased from an internal node (internal_delete == true), then the next
2444   // value is ++(++iter). If we erased from a leaf node (internal_delete ==
2445   // false) then the next value is ++iter. Note that ++iter may point to an
2446   // internal node and the value in the internal node may move to a leaf node
2447   // (iter.node_) when rebalancing is performed at the leaf level.
2448 
2449   iterator res = rebalance_after_delete(iter);
2450 
2451   // If we erased from an internal node, advance the iterator.
2452   if (internal_delete) {
2453     ++res;
2454   }
2455   return res;
2456 }
2457 
2458 template <typename P>
2459 auto btree<P>::rebalance_after_delete(iterator iter) -> iterator {
2460   // Merge/rebalance as we walk back up the tree.
2461   iterator res(iter);
2462   bool first_iteration = true;
2463   for (;;) {
2464     if (iter.node_ == root()) {
2465       try_shrink();
2466       if (empty()) {
2467         return end();
2468       }
2469       break;
2470     }
2471     if (iter.node_->count() >= kMinNodeValues) {
2472       break;
2473     }
2474     bool merged = try_merge_or_rebalance(&iter);
2475     // On the first iteration, we should update `res` with `iter` because `res`
2476     // may have been invalidated.
2477     if (first_iteration) {
2478       res = iter;
2479       first_iteration = false;
2480     }
2481     if (!merged) {
2482       break;
2483     }
2484     iter.position_ = iter.node_->position();
2485     iter.node_ = iter.node_->parent();
2486   }
2487   res.update_generation();
2488 
2489   // Adjust our return value. If we're pointing at the end of a node, advance
2490   // the iterator.
2491   if (res.position_ == res.node_->finish()) {
2492     res.position_ = res.node_->finish() - 1;
2493     ++res;
2494   }
2495 
2496   return res;
2497 }
2498 
2499 template <typename P>
2500 auto btree<P>::erase_range(iterator begin, iterator end)
2501     -> std::pair<size_type, iterator> {
2502   size_type count = static_cast<size_type>(end - begin);
2503   assert(count >= 0);
2504 
2505   if (count == 0) {
2506     return {0, begin};
2507   }
2508 
2509   if (static_cast<size_type>(count) == size_) {
2510     clear();
2511     return {count, this->end()};
2512   }
2513 
2514   if (begin.node_ == end.node_) {
2515     assert(end.position_ > begin.position_);
2516     begin.node_->remove_values(
2517         static_cast<field_type>(begin.position_),
2518         static_cast<field_type>(end.position_ - begin.position_),
2519         mutable_allocator());
2520     size_ -= count;
2521     return {count, rebalance_after_delete(begin)};
2522   }
2523 
2524   const size_type target_size = size_ - count;
2525   while (size_ > target_size) {
2526     if (begin.node_->is_leaf()) {
2527       const size_type remaining_to_erase = size_ - target_size;
2528       const size_type remaining_in_node =
2529           static_cast<size_type>(begin.node_->finish() - begin.position_);
2530       const field_type to_erase = static_cast<field_type>(
2531           (std::min)(remaining_to_erase, remaining_in_node));
2532       begin.node_->remove_values(static_cast<field_type>(begin.position_),
2533                                  to_erase, mutable_allocator());
2534       size_ -= to_erase;
2535       begin = rebalance_after_delete(begin);
2536     } else {
2537       begin = erase(begin);
2538     }
2539   }
2540   begin.update_generation();
2541   return {count, begin};
2542 }
2543 
2544 template <typename P>
2545 void btree<P>::clear() {
2546   if (!empty()) {
2547     node_type::clear_and_delete(root(), mutable_allocator());
2548   }
2549   mutable_root() = mutable_rightmost() = EmptyNode();
2550   size_ = 0;
2551 }
2552 
2553 template <typename P>
2554 void btree<P>::swap(btree &other) {
2555   using std::swap;
2556   if (absl::allocator_traits<
2557           allocator_type>::propagate_on_container_swap::value) {
2558     // Note: `rightmost_` also contains the allocator and the key comparator.
2559     swap(rightmost_, other.rightmost_);
2560   } else {
2561     // It's undefined behavior if the allocators are unequal here.
2562     assert(allocator() == other.allocator());
2563     swap(mutable_rightmost(), other.mutable_rightmost());
2564     swap(*mutable_key_comp(), *other.mutable_key_comp());
2565   }
2566   swap(mutable_root(), other.mutable_root());
2567   swap(size_, other.size_);
2568 }
2569 
2570 template <typename P>
2571 void btree<P>::verify() const {
2572   assert(root() != nullptr);
2573   assert(leftmost() != nullptr);
2574   assert(rightmost() != nullptr);
2575   assert(empty() || size() == internal_verify(root(), nullptr, nullptr));
2576   assert(leftmost() == (++const_iterator(root(), -1)).node_);
2577   assert(rightmost() == (--const_iterator(root(), root()->finish())).node_);
2578   assert(leftmost()->is_leaf());
2579   assert(rightmost()->is_leaf());
2580 }
2581 
2582 template <typename P>
2583 void btree<P>::rebalance_or_split(iterator *iter) {
2584   node_type *&node = iter->node_;
2585   int &insert_position = iter->position_;
2586   assert(node->count() == node->max_count());
2587   assert(kNodeSlots == node->max_count());
2588 
2589   // First try to make room on the node by rebalancing.
2590   node_type *parent = node->parent();
2591   if (node != root()) {
2592     if (node->position() > parent->start()) {
2593       // Try rebalancing with our left sibling.
2594       node_type *left = parent->child(node->position() - 1);
2595       assert(left->max_count() == kNodeSlots);
2596       if (left->count() < kNodeSlots) {
2597         // We bias rebalancing based on the position being inserted. If we're
2598         // inserting at the end of the right node then we bias rebalancing to
2599         // fill up the left node.
2600         field_type to_move =
2601             (kNodeSlots - left->count()) /
2602             (1 + (static_cast<field_type>(insert_position) < kNodeSlots));
2603         to_move = (std::max)(field_type{1}, to_move);
2604 
2605         if (static_cast<field_type>(insert_position) - to_move >=
2606                 node->start() ||
2607             left->count() + to_move < kNodeSlots) {
2608           left->rebalance_right_to_left(to_move, node, mutable_allocator());
2609 
2610           assert(node->max_count() - node->count() == to_move);
2611           insert_position = static_cast<int>(
2612               static_cast<field_type>(insert_position) - to_move);
2613           if (insert_position < node->start()) {
2614             insert_position = insert_position + left->count() + 1;
2615             node = left;
2616           }
2617 
2618           assert(node->count() < node->max_count());
2619           return;
2620         }
2621       }
2622     }
2623 
2624     if (node->position() < parent->finish()) {
2625       // Try rebalancing with our right sibling.
2626       node_type *right = parent->child(node->position() + 1);
2627       assert(right->max_count() == kNodeSlots);
2628       if (right->count() < kNodeSlots) {
2629         // We bias rebalancing based on the position being inserted. If we're
2630         // inserting at the beginning of the left node then we bias rebalancing
2631         // to fill up the right node.
2632         field_type to_move = (kNodeSlots - right->count()) /
2633                              (1 + (insert_position > node->start()));
2634         to_move = (std::max)(field_type{1}, to_move);
2635 
2636         if (static_cast<field_type>(insert_position) <=
2637                 node->finish() - to_move ||
2638             right->count() + to_move < kNodeSlots) {
2639           node->rebalance_left_to_right(to_move, right, mutable_allocator());
2640 
2641           if (insert_position > node->finish()) {
2642             insert_position = insert_position - node->count() - 1;
2643             node = right;
2644           }
2645 
2646           assert(node->count() < node->max_count());
2647           return;
2648         }
2649       }
2650     }
2651 
2652     // Rebalancing failed, make sure there is room on the parent node for a new
2653     // value.
2654     assert(parent->max_count() == kNodeSlots);
2655     if (parent->count() == kNodeSlots) {
2656       iterator parent_iter(node->parent(), node->position());
2657       rebalance_or_split(&parent_iter);
2658     }
2659   } else {
2660     // Rebalancing not possible because this is the root node.
2661     // Create a new root node and set the current root node as the child of the
2662     // new root.
2663     parent = new_internal_node(parent);
2664     parent->set_generation(root()->generation());
2665     parent->init_child(parent->start(), root());
2666     mutable_root() = parent;
2667     // If the former root was a leaf node, then it's now the rightmost node.
2668     assert(parent->start_child()->is_internal() ||
2669            parent->start_child() == rightmost());
2670   }
2671 
2672   // Split the node.
2673   node_type *split_node;
2674   if (node->is_leaf()) {
2675     split_node = new_leaf_node(parent);
2676     node->split(insert_position, split_node, mutable_allocator());
2677     if (rightmost() == node) mutable_rightmost() = split_node;
2678   } else {
2679     split_node = new_internal_node(parent);
2680     node->split(insert_position, split_node, mutable_allocator());
2681   }
2682 
2683   if (insert_position > node->finish()) {
2684     insert_position = insert_position - node->count() - 1;
2685     node = split_node;
2686   }
2687 }
2688 
2689 template <typename P>
2690 void btree<P>::merge_nodes(node_type *left, node_type *right) {
2691   left->merge(right, mutable_allocator());
2692   if (rightmost() == right) mutable_rightmost() = left;
2693 }
2694 
2695 template <typename P>
2696 bool btree<P>::try_merge_or_rebalance(iterator *iter) {
2697   node_type *parent = iter->node_->parent();
2698   if (iter->node_->position() > parent->start()) {
2699     // Try merging with our left sibling.
2700     node_type *left = parent->child(iter->node_->position() - 1);
2701     assert(left->max_count() == kNodeSlots);
2702     if (1U + left->count() + iter->node_->count() <= kNodeSlots) {
2703       iter->position_ += 1 + left->count();
2704       merge_nodes(left, iter->node_);
2705       iter->node_ = left;
2706       return true;
2707     }
2708   }
2709   if (iter->node_->position() < parent->finish()) {
2710     // Try merging with our right sibling.
2711     node_type *right = parent->child(iter->node_->position() + 1);
2712     assert(right->max_count() == kNodeSlots);
2713     if (1U + iter->node_->count() + right->count() <= kNodeSlots) {
2714       merge_nodes(iter->node_, right);
2715       return true;
2716     }
2717     // Try rebalancing with our right sibling. We don't perform rebalancing if
2718     // we deleted the first element from iter->node_ and the node is not
2719     // empty. This is a small optimization for the common pattern of deleting
2720     // from the front of the tree.
2721     if (right->count() > kMinNodeValues &&
2722         (iter->node_->count() == 0 || iter->position_ > iter->node_->start())) {
2723       field_type to_move = (right->count() - iter->node_->count()) / 2;
2724       to_move =
2725           (std::min)(to_move, static_cast<field_type>(right->count() - 1));
2726       iter->node_->rebalance_right_to_left(to_move, right, mutable_allocator());
2727       return false;
2728     }
2729   }
2730   if (iter->node_->position() > parent->start()) {
2731     // Try rebalancing with our left sibling. We don't perform rebalancing if
2732     // we deleted the last element from iter->node_ and the node is not
2733     // empty. This is a small optimization for the common pattern of deleting
2734     // from the back of the tree.
2735     node_type *left = parent->child(iter->node_->position() - 1);
2736     if (left->count() > kMinNodeValues &&
2737         (iter->node_->count() == 0 ||
2738          iter->position_ < iter->node_->finish())) {
2739       field_type to_move = (left->count() - iter->node_->count()) / 2;
2740       to_move = (std::min)(to_move, static_cast<field_type>(left->count() - 1));
2741       left->rebalance_left_to_right(to_move, iter->node_, mutable_allocator());
2742       iter->position_ += to_move;
2743       return false;
2744     }
2745   }
2746   return false;
2747 }
2748 
2749 template <typename P>
2750 void btree<P>::try_shrink() {
2751   node_type *orig_root = root();
2752   if (orig_root->count() > 0) {
2753     return;
2754   }
2755   // Deleted the last item on the root node, shrink the height of the tree.
2756   if (orig_root->is_leaf()) {
2757     assert(size() == 0);
2758     mutable_root() = mutable_rightmost() = EmptyNode();
2759   } else {
2760     node_type *child = orig_root->start_child();
2761     child->make_root();
2762     mutable_root() = child;
2763   }
2764   node_type::clear_and_delete(orig_root, mutable_allocator());
2765 }
2766 
2767 template <typename P>
2768 template <typename IterType>
2769 inline IterType btree<P>::internal_last(IterType iter) {
2770   assert(iter.node_ != nullptr);
2771   while (iter.position_ == iter.node_->finish()) {
2772     iter.position_ = iter.node_->position();
2773     iter.node_ = iter.node_->parent();
2774     if (iter.node_->is_leaf()) {
2775       iter.node_ = nullptr;
2776       break;
2777     }
2778   }
2779   iter.update_generation();
2780   return iter;
2781 }
2782 
2783 template <typename P>
2784 template <typename... Args>
2785 inline auto btree<P>::internal_emplace(iterator iter, Args &&...args)
2786     -> iterator {
2787   if (iter.node_->is_internal()) {
2788     // We can't insert on an internal node. Instead, we'll insert after the
2789     // previous value which is guaranteed to be on a leaf node.
2790     --iter;
2791     ++iter.position_;
2792   }
2793   const field_type max_count = iter.node_->max_count();
2794   allocator_type *alloc = mutable_allocator();
2795   if (iter.node_->count() == max_count) {
2796     // Make room in the leaf for the new item.
2797     if (max_count < kNodeSlots) {
2798       // Insertion into the root where the root is smaller than the full node
2799       // size. Simply grow the size of the root node.
2800       assert(iter.node_ == root());
2801       iter.node_ = new_leaf_root_node(static_cast<field_type>(
2802           (std::min)(static_cast<int>(kNodeSlots), 2 * max_count)));
2803       // Transfer the values from the old root to the new root.
2804       node_type *old_root = root();
2805       node_type *new_root = iter.node_;
2806       new_root->transfer_n(old_root->count(), new_root->start(),
2807                            old_root->start(), old_root, alloc);
2808       new_root->set_finish(old_root->finish());
2809       old_root->set_finish(old_root->start());
2810       new_root->set_generation(old_root->generation());
2811       node_type::clear_and_delete(old_root, alloc);
2812       mutable_root() = mutable_rightmost() = new_root;
2813     } else {
2814       rebalance_or_split(&iter);
2815     }
2816   }
2817   iter.node_->emplace_value(static_cast<field_type>(iter.position_), alloc,
2818                             std::forward<Args>(args)...);
2819   ++size_;
2820   iter.update_generation();
2821   return iter;
2822 }
2823 
2824 template <typename P>
2825 template <typename K>
2826 inline auto btree<P>::internal_locate(const K &key) const
2827     -> SearchResult<iterator, is_key_compare_to::value> {
2828   iterator iter(const_cast<node_type *>(root()));
2829   for (;;) {
2830     SearchResult<size_type, is_key_compare_to::value> res =
2831         iter.node_->lower_bound(key, key_comp());
2832     iter.position_ = static_cast<int>(res.value);
2833     if (res.IsEq()) {
2834       return {iter, MatchKind::kEq};
2835     }
2836     // Note: in the non-key-compare-to case, we don't need to walk all the way
2837     // down the tree if the keys are equal, but determining equality would
2838     // require doing an extra comparison on each node on the way down, and we
2839     // will need to go all the way to the leaf node in the expected case.
2840     if (iter.node_->is_leaf()) {
2841       break;
2842     }
2843     iter.node_ = iter.node_->child(static_cast<field_type>(iter.position_));
2844   }
2845   // Note: in the non-key-compare-to case, the key may actually be equivalent
2846   // here (and the MatchKind::kNe is ignored).
2847   return {iter, MatchKind::kNe};
2848 }
2849 
2850 template <typename P>
2851 template <typename K>
2852 auto btree<P>::internal_lower_bound(const K &key) const
2853     -> SearchResult<iterator, is_key_compare_to::value> {
2854   if (!params_type::template can_have_multiple_equivalent_keys<K>()) {
2855     SearchResult<iterator, is_key_compare_to::value> ret = internal_locate(key);
2856     ret.value = internal_last(ret.value);
2857     return ret;
2858   }
2859   iterator iter(const_cast<node_type *>(root()));
2860   SearchResult<size_type, is_key_compare_to::value> res;
2861   bool seen_eq = false;
2862   for (;;) {
2863     res = iter.node_->lower_bound(key, key_comp());
2864     iter.position_ = static_cast<int>(res.value);
2865     if (iter.node_->is_leaf()) {
2866       break;
2867     }
2868     seen_eq = seen_eq || res.IsEq();
2869     iter.node_ = iter.node_->child(static_cast<field_type>(iter.position_));
2870   }
2871   if (res.IsEq()) return {iter, MatchKind::kEq};
2872   return {internal_last(iter), seen_eq ? MatchKind::kEq : MatchKind::kNe};
2873 }
2874 
2875 template <typename P>
2876 template <typename K>
2877 auto btree<P>::internal_upper_bound(const K &key) const -> iterator {
2878   iterator iter(const_cast<node_type *>(root()));
2879   for (;;) {
2880     iter.position_ = static_cast<int>(iter.node_->upper_bound(key, key_comp()));
2881     if (iter.node_->is_leaf()) {
2882       break;
2883     }
2884     iter.node_ = iter.node_->child(static_cast<field_type>(iter.position_));
2885   }
2886   return internal_last(iter);
2887 }
2888 
2889 template <typename P>
2890 template <typename K>
2891 auto btree<P>::internal_find(const K &key) const -> iterator {
2892   SearchResult<iterator, is_key_compare_to::value> res = internal_locate(key);
2893   if (res.HasMatch()) {
2894     if (res.IsEq()) {
2895       return res.value;
2896     }
2897   } else {
2898     const iterator iter = internal_last(res.value);
2899     if (iter.node_ != nullptr && !compare_keys(key, iter.key())) {
2900       return iter;
2901     }
2902   }
2903   return {nullptr, 0};
2904 }
2905 
2906 template <typename P>
2907 typename btree<P>::size_type btree<P>::internal_verify(
2908     const node_type *node, const key_type *lo, const key_type *hi) const {
2909   assert(node->count() > 0);
2910   assert(node->count() <= node->max_count());
2911   if (lo) {
2912     assert(!compare_keys(node->key(node->start()), *lo));
2913   }
2914   if (hi) {
2915     assert(!compare_keys(*hi, node->key(node->finish() - 1)));
2916   }
2917   for (int i = node->start() + 1; i < node->finish(); ++i) {
2918     assert(!compare_keys(node->key(i), node->key(i - 1)));
2919   }
2920   size_type count = node->count();
2921   if (node->is_internal()) {
2922     for (field_type i = node->start(); i <= node->finish(); ++i) {
2923       assert(node->child(i) != nullptr);
2924       assert(node->child(i)->parent() == node);
2925       assert(node->child(i)->position() == i);
2926       count += internal_verify(node->child(i),
2927                                i == node->start() ? lo : &node->key(i - 1),
2928                                i == node->finish() ? hi : &node->key(i));
2929     }
2930   }
2931   return count;
2932 }
2933 
2934 struct btree_access {
2935   template <typename BtreeContainer, typename Pred>
2936   static auto erase_if(BtreeContainer &container, Pred pred) ->
2937       typename BtreeContainer::size_type {
2938     const auto initial_size = container.size();
2939     auto &tree = container.tree_;
2940     auto *alloc = tree.mutable_allocator();
2941     for (auto it = container.begin(); it != container.end();) {
2942       if (!pred(*it)) {
2943         ++it;
2944         continue;
2945       }
2946       auto *node = it.node_;
2947       if (node->is_internal()) {
2948         // Handle internal nodes normally.
2949         it = container.erase(it);
2950         continue;
2951       }
2952       // If this is a leaf node, then we do all the erases from this node
2953       // at once before doing rebalancing.
2954 
2955       // The current position to transfer slots to.
2956       int to_pos = it.position_;
2957       node->value_destroy(it.position_, alloc);
2958       while (++it.position_ < node->finish()) {
2959         it.update_generation();
2960         if (pred(*it)) {
2961           node->value_destroy(it.position_, alloc);
2962         } else {
2963           node->transfer(node->slot(to_pos++), node->slot(it.position_), alloc);
2964         }
2965       }
2966       const int num_deleted = node->finish() - to_pos;
2967       tree.size_ -= num_deleted;
2968       node->set_finish(to_pos);
2969       it.position_ = to_pos;
2970       it = tree.rebalance_after_delete(it);
2971     }
2972     return initial_size - container.size();
2973   }
2974 };
2975 
2976 #undef ABSL_BTREE_ENABLE_GENERATIONS
2977 
2978 }  // namespace container_internal
2979 ABSL_NAMESPACE_END
2980 }  // namespace absl
2981 
2982 #endif  // ABSL_CONTAINER_INTERNAL_BTREE_H_
2983