1 // Copyright 2018 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 // For reference check out:
16 // https://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangling
17 //
18 // Note that we only have partial C++11 support yet.
19
20 #include "absl/debugging/internal/demangle.h"
21
22 #include <cstdint>
23 #include <cstdio>
24 #include <limits>
25
26 namespace absl {
27 ABSL_NAMESPACE_BEGIN
28 namespace debugging_internal {
29
30 typedef struct {
31 const char *abbrev;
32 const char *real_name;
33 // Number of arguments in <expression> context, or 0 if disallowed.
34 int arity;
35 } AbbrevPair;
36
37 // List of operators from Itanium C++ ABI.
38 static const AbbrevPair kOperatorList[] = {
39 // New has special syntax (not currently supported).
40 {"nw", "new", 0},
41 {"na", "new[]", 0},
42
43 // Works except that the 'gs' prefix is not supported.
44 {"dl", "delete", 1},
45 {"da", "delete[]", 1},
46
47 {"ps", "+", 1}, // "positive"
48 {"ng", "-", 1}, // "negative"
49 {"ad", "&", 1}, // "address-of"
50 {"de", "*", 1}, // "dereference"
51 {"co", "~", 1},
52
53 {"pl", "+", 2},
54 {"mi", "-", 2},
55 {"ml", "*", 2},
56 {"dv", "/", 2},
57 {"rm", "%", 2},
58 {"an", "&", 2},
59 {"or", "|", 2},
60 {"eo", "^", 2},
61 {"aS", "=", 2},
62 {"pL", "+=", 2},
63 {"mI", "-=", 2},
64 {"mL", "*=", 2},
65 {"dV", "/=", 2},
66 {"rM", "%=", 2},
67 {"aN", "&=", 2},
68 {"oR", "|=", 2},
69 {"eO", "^=", 2},
70 {"ls", "<<", 2},
71 {"rs", ">>", 2},
72 {"lS", "<<=", 2},
73 {"rS", ">>=", 2},
74 {"eq", "==", 2},
75 {"ne", "!=", 2},
76 {"lt", "<", 2},
77 {"gt", ">", 2},
78 {"le", "<=", 2},
79 {"ge", ">=", 2},
80 {"nt", "!", 1},
81 {"aa", "&&", 2},
82 {"oo", "||", 2},
83 {"pp", "++", 1},
84 {"mm", "--", 1},
85 {"cm", ",", 2},
86 {"pm", "->*", 2},
87 {"pt", "->", 0}, // Special syntax
88 {"cl", "()", 0}, // Special syntax
89 {"ix", "[]", 2},
90 {"qu", "?", 3},
91 {"st", "sizeof", 0}, // Special syntax
92 {"sz", "sizeof", 1}, // Not a real operator name, but used in expressions.
93 {nullptr, nullptr, 0},
94 };
95
96 // List of builtin types from Itanium C++ ABI.
97 //
98 // Invariant: only one- or two-character type abbreviations here.
99 static const AbbrevPair kBuiltinTypeList[] = {
100 {"v", "void", 0},
101 {"w", "wchar_t", 0},
102 {"b", "bool", 0},
103 {"c", "char", 0},
104 {"a", "signed char", 0},
105 {"h", "unsigned char", 0},
106 {"s", "short", 0},
107 {"t", "unsigned short", 0},
108 {"i", "int", 0},
109 {"j", "unsigned int", 0},
110 {"l", "long", 0},
111 {"m", "unsigned long", 0},
112 {"x", "long long", 0},
113 {"y", "unsigned long long", 0},
114 {"n", "__int128", 0},
115 {"o", "unsigned __int128", 0},
116 {"f", "float", 0},
117 {"d", "double", 0},
118 {"e", "long double", 0},
119 {"g", "__float128", 0},
120 {"z", "ellipsis", 0},
121
122 {"De", "decimal128", 0}, // IEEE 754r decimal floating point (128 bits)
123 {"Dd", "decimal64", 0}, // IEEE 754r decimal floating point (64 bits)
124 {"Dc", "decltype(auto)", 0},
125 {"Da", "auto", 0},
126 {"Dn", "std::nullptr_t", 0}, // i.e., decltype(nullptr)
127 {"Df", "decimal32", 0}, // IEEE 754r decimal floating point (32 bits)
128 {"Di", "char32_t", 0},
129 {"Du", "char8_t", 0},
130 {"Ds", "char16_t", 0},
131 {"Dh", "float16", 0}, // IEEE 754r half-precision float (16 bits)
132 {nullptr, nullptr, 0},
133 };
134
135 // List of substitutions Itanium C++ ABI.
136 static const AbbrevPair kSubstitutionList[] = {
137 {"St", "", 0},
138 {"Sa", "allocator", 0},
139 {"Sb", "basic_string", 0},
140 // std::basic_string<char, std::char_traits<char>,std::allocator<char> >
141 {"Ss", "string", 0},
142 // std::basic_istream<char, std::char_traits<char> >
143 {"Si", "istream", 0},
144 // std::basic_ostream<char, std::char_traits<char> >
145 {"So", "ostream", 0},
146 // std::basic_iostream<char, std::char_traits<char> >
147 {"Sd", "iostream", 0},
148 {nullptr, nullptr, 0},
149 };
150
151 // State needed for demangling. This struct is copied in almost every stack
152 // frame, so every byte counts.
153 typedef struct {
154 int mangled_idx; // Cursor of mangled name.
155 int out_cur_idx; // Cursor of output string.
156 int prev_name_idx; // For constructors/destructors.
157 unsigned int prev_name_length : 16; // For constructors/destructors.
158 signed int nest_level : 15; // For nested names.
159 unsigned int append : 1; // Append flag.
160 // Note: for some reason MSVC can't pack "bool append : 1" into the same int
161 // with the above two fields, so we use an int instead. Amusingly it can pack
162 // "signed bool" as expected, but relying on that to continue to be a legal
163 // type seems ill-advised (as it's illegal in at least clang).
164 } ParseState;
165
166 static_assert(sizeof(ParseState) == 4 * sizeof(int),
167 "unexpected size of ParseState");
168
169 // One-off state for demangling that's not subject to backtracking -- either
170 // constant data, data that's intentionally immune to backtracking (steps), or
171 // data that would never be changed by backtracking anyway (recursion_depth).
172 //
173 // Only one copy of this exists for each call to Demangle, so the size of this
174 // struct is nearly inconsequential.
175 typedef struct {
176 const char *mangled_begin; // Beginning of input string.
177 char *out; // Beginning of output string.
178 int out_end_idx; // One past last allowed output character.
179 int recursion_depth; // For stack exhaustion prevention.
180 int steps; // Cap how much work we'll do, regardless of depth.
181 ParseState parse_state; // Backtrackable state copied for most frames.
182 } State;
183
184 namespace {
185 // Prevent deep recursion / stack exhaustion.
186 // Also prevent unbounded handling of complex inputs.
187 class ComplexityGuard {
188 public:
ComplexityGuard(State * state)189 explicit ComplexityGuard(State *state) : state_(state) {
190 ++state->recursion_depth;
191 ++state->steps;
192 }
~ComplexityGuard()193 ~ComplexityGuard() { --state_->recursion_depth; }
194
195 // 256 levels of recursion seems like a reasonable upper limit on depth.
196 // 128 is not enough to demagle synthetic tests from demangle_unittest.txt:
197 // "_ZaaZZZZ..." and "_ZaaZcvZcvZ..."
198 static constexpr int kRecursionDepthLimit = 256;
199
200 // We're trying to pick a charitable upper-limit on how many parse steps are
201 // necessary to handle something that a human could actually make use of.
202 // This is mostly in place as a bound on how much work we'll do if we are
203 // asked to demangle an mangled name from an untrusted source, so it should be
204 // much larger than the largest expected symbol, but much smaller than the
205 // amount of work we can do in, e.g., a second.
206 //
207 // Some real-world symbols from an arbitrary binary started failing between
208 // 2^12 and 2^13, so we multiply the latter by an extra factor of 16 to set
209 // the limit.
210 //
211 // Spending one second on 2^17 parse steps would require each step to take
212 // 7.6us, or ~30000 clock cycles, so it's safe to say this can be done in
213 // under a second.
214 static constexpr int kParseStepsLimit = 1 << 17;
215
IsTooComplex() const216 bool IsTooComplex() const {
217 return state_->recursion_depth > kRecursionDepthLimit ||
218 state_->steps > kParseStepsLimit;
219 }
220
221 private:
222 State *state_;
223 };
224 } // namespace
225
226 // We don't use strlen() in libc since it's not guaranteed to be async
227 // signal safe.
StrLen(const char * str)228 static size_t StrLen(const char *str) {
229 size_t len = 0;
230 while (*str != '\0') {
231 ++str;
232 ++len;
233 }
234 return len;
235 }
236
237 // Returns true if "str" has at least "n" characters remaining.
AtLeastNumCharsRemaining(const char * str,size_t n)238 static bool AtLeastNumCharsRemaining(const char *str, size_t n) {
239 for (size_t i = 0; i < n; ++i) {
240 if (str[i] == '\0') {
241 return false;
242 }
243 }
244 return true;
245 }
246
247 // Returns true if "str" has "prefix" as a prefix.
StrPrefix(const char * str,const char * prefix)248 static bool StrPrefix(const char *str, const char *prefix) {
249 size_t i = 0;
250 while (str[i] != '\0' && prefix[i] != '\0' && str[i] == prefix[i]) {
251 ++i;
252 }
253 return prefix[i] == '\0'; // Consumed everything in "prefix".
254 }
255
InitState(State * state,const char * mangled,char * out,size_t out_size)256 static void InitState(State* state,
257 const char* mangled,
258 char* out,
259 size_t out_size) {
260 state->mangled_begin = mangled;
261 state->out = out;
262 state->out_end_idx = static_cast<int>(out_size);
263 state->recursion_depth = 0;
264 state->steps = 0;
265
266 state->parse_state.mangled_idx = 0;
267 state->parse_state.out_cur_idx = 0;
268 state->parse_state.prev_name_idx = 0;
269 state->parse_state.prev_name_length = 0;
270 state->parse_state.nest_level = -1;
271 state->parse_state.append = true;
272 }
273
RemainingInput(State * state)274 static inline const char *RemainingInput(State *state) {
275 return &state->mangled_begin[state->parse_state.mangled_idx];
276 }
277
278 // Returns true and advances "mangled_idx" if we find "one_char_token"
279 // at "mangled_idx" position. It is assumed that "one_char_token" does
280 // not contain '\0'.
ParseOneCharToken(State * state,const char one_char_token)281 static bool ParseOneCharToken(State *state, const char one_char_token) {
282 ComplexityGuard guard(state);
283 if (guard.IsTooComplex()) return false;
284 if (RemainingInput(state)[0] == one_char_token) {
285 ++state->parse_state.mangled_idx;
286 return true;
287 }
288 return false;
289 }
290
291 // Returns true and advances "mangled_cur" if we find "two_char_token"
292 // at "mangled_cur" position. It is assumed that "two_char_token" does
293 // not contain '\0'.
ParseTwoCharToken(State * state,const char * two_char_token)294 static bool ParseTwoCharToken(State *state, const char *two_char_token) {
295 ComplexityGuard guard(state);
296 if (guard.IsTooComplex()) return false;
297 if (RemainingInput(state)[0] == two_char_token[0] &&
298 RemainingInput(state)[1] == two_char_token[1]) {
299 state->parse_state.mangled_idx += 2;
300 return true;
301 }
302 return false;
303 }
304
305 // Returns true and advances "mangled_cur" if we find any character in
306 // "char_class" at "mangled_cur" position.
ParseCharClass(State * state,const char * char_class)307 static bool ParseCharClass(State *state, const char *char_class) {
308 ComplexityGuard guard(state);
309 if (guard.IsTooComplex()) return false;
310 if (RemainingInput(state)[0] == '\0') {
311 return false;
312 }
313 const char *p = char_class;
314 for (; *p != '\0'; ++p) {
315 if (RemainingInput(state)[0] == *p) {
316 ++state->parse_state.mangled_idx;
317 return true;
318 }
319 }
320 return false;
321 }
322
ParseDigit(State * state,int * digit)323 static bool ParseDigit(State *state, int *digit) {
324 char c = RemainingInput(state)[0];
325 if (ParseCharClass(state, "0123456789")) {
326 if (digit != nullptr) {
327 *digit = c - '0';
328 }
329 return true;
330 }
331 return false;
332 }
333
334 // This function is used for handling an optional non-terminal.
Optional(bool)335 static bool Optional(bool /*status*/) { return true; }
336
337 // This function is used for handling <non-terminal>+ syntax.
338 typedef bool (*ParseFunc)(State *);
OneOrMore(ParseFunc parse_func,State * state)339 static bool OneOrMore(ParseFunc parse_func, State *state) {
340 if (parse_func(state)) {
341 while (parse_func(state)) {
342 }
343 return true;
344 }
345 return false;
346 }
347
348 // This function is used for handling <non-terminal>* syntax. The function
349 // always returns true and must be followed by a termination token or a
350 // terminating sequence not handled by parse_func (e.g.
351 // ParseOneCharToken(state, 'E')).
ZeroOrMore(ParseFunc parse_func,State * state)352 static bool ZeroOrMore(ParseFunc parse_func, State *state) {
353 while (parse_func(state)) {
354 }
355 return true;
356 }
357
358 // Append "str" at "out_cur_idx". If there is an overflow, out_cur_idx is
359 // set to out_end_idx+1. The output string is ensured to
360 // always terminate with '\0' as long as there is no overflow.
Append(State * state,const char * const str,const size_t length)361 static void Append(State *state, const char *const str, const size_t length) {
362 for (size_t i = 0; i < length; ++i) {
363 if (state->parse_state.out_cur_idx + 1 <
364 state->out_end_idx) { // +1 for '\0'
365 state->out[state->parse_state.out_cur_idx++] = str[i];
366 } else {
367 // signal overflow
368 state->parse_state.out_cur_idx = state->out_end_idx + 1;
369 break;
370 }
371 }
372 if (state->parse_state.out_cur_idx < state->out_end_idx) {
373 state->out[state->parse_state.out_cur_idx] =
374 '\0'; // Terminate it with '\0'
375 }
376 }
377
378 // We don't use equivalents in libc to avoid locale issues.
IsLower(char c)379 static bool IsLower(char c) { return c >= 'a' && c <= 'z'; }
380
IsAlpha(char c)381 static bool IsAlpha(char c) {
382 return (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z');
383 }
384
IsDigit(char c)385 static bool IsDigit(char c) { return c >= '0' && c <= '9'; }
386
387 // Returns true if "str" is a function clone suffix. These suffixes are used
388 // by GCC 4.5.x and later versions (and our locally-modified version of GCC
389 // 4.4.x) to indicate functions which have been cloned during optimization.
390 // We treat any sequence (.<alpha>+.<digit>+)+ as a function clone suffix.
391 // Additionally, '_' is allowed along with the alphanumeric sequence.
IsFunctionCloneSuffix(const char * str)392 static bool IsFunctionCloneSuffix(const char *str) {
393 size_t i = 0;
394 while (str[i] != '\0') {
395 bool parsed = false;
396 // Consume a single [.<alpha> | _]*[.<digit>]* sequence.
397 if (str[i] == '.' && (IsAlpha(str[i + 1]) || str[i + 1] == '_')) {
398 parsed = true;
399 i += 2;
400 while (IsAlpha(str[i]) || str[i] == '_') {
401 ++i;
402 }
403 }
404 if (str[i] == '.' && IsDigit(str[i + 1])) {
405 parsed = true;
406 i += 2;
407 while (IsDigit(str[i])) {
408 ++i;
409 }
410 }
411 if (!parsed)
412 return false;
413 }
414 return true; // Consumed everything in "str".
415 }
416
EndsWith(State * state,const char chr)417 static bool EndsWith(State *state, const char chr) {
418 return state->parse_state.out_cur_idx > 0 &&
419 state->parse_state.out_cur_idx < state->out_end_idx &&
420 chr == state->out[state->parse_state.out_cur_idx - 1];
421 }
422
423 // Append "str" with some tweaks, iff "append" state is true.
MaybeAppendWithLength(State * state,const char * const str,const size_t length)424 static void MaybeAppendWithLength(State *state, const char *const str,
425 const size_t length) {
426 if (state->parse_state.append && length > 0) {
427 // Append a space if the output buffer ends with '<' and "str"
428 // starts with '<' to avoid <<<.
429 if (str[0] == '<' && EndsWith(state, '<')) {
430 Append(state, " ", 1);
431 }
432 // Remember the last identifier name for ctors/dtors,
433 // but only if we haven't yet overflown the buffer.
434 if (state->parse_state.out_cur_idx < state->out_end_idx &&
435 (IsAlpha(str[0]) || str[0] == '_')) {
436 state->parse_state.prev_name_idx = state->parse_state.out_cur_idx;
437 state->parse_state.prev_name_length = static_cast<unsigned int>(length);
438 }
439 Append(state, str, length);
440 }
441 }
442
443 // Appends a positive decimal number to the output if appending is enabled.
MaybeAppendDecimal(State * state,int val)444 static bool MaybeAppendDecimal(State *state, int val) {
445 // Max {32-64}-bit unsigned int is 20 digits.
446 constexpr size_t kMaxLength = 20;
447 char buf[kMaxLength];
448
449 // We can't use itoa or sprintf as neither is specified to be
450 // async-signal-safe.
451 if (state->parse_state.append) {
452 // We can't have a one-before-the-beginning pointer, so instead start with
453 // one-past-the-end and manipulate one character before the pointer.
454 char *p = &buf[kMaxLength];
455 do { // val=0 is the only input that should write a leading zero digit.
456 *--p = static_cast<char>((val % 10) + '0');
457 val /= 10;
458 } while (p > buf && val != 0);
459
460 // 'p' landed on the last character we set. How convenient.
461 Append(state, p, kMaxLength - static_cast<size_t>(p - buf));
462 }
463
464 return true;
465 }
466
467 // A convenient wrapper around MaybeAppendWithLength().
468 // Returns true so that it can be placed in "if" conditions.
MaybeAppend(State * state,const char * const str)469 static bool MaybeAppend(State *state, const char *const str) {
470 if (state->parse_state.append) {
471 size_t length = StrLen(str);
472 MaybeAppendWithLength(state, str, length);
473 }
474 return true;
475 }
476
477 // This function is used for handling nested names.
EnterNestedName(State * state)478 static bool EnterNestedName(State *state) {
479 state->parse_state.nest_level = 0;
480 return true;
481 }
482
483 // This function is used for handling nested names.
LeaveNestedName(State * state,int16_t prev_value)484 static bool LeaveNestedName(State *state, int16_t prev_value) {
485 state->parse_state.nest_level = prev_value;
486 return true;
487 }
488
489 // Disable the append mode not to print function parameters, etc.
DisableAppend(State * state)490 static bool DisableAppend(State *state) {
491 state->parse_state.append = false;
492 return true;
493 }
494
495 // Restore the append mode to the previous state.
RestoreAppend(State * state,bool prev_value)496 static bool RestoreAppend(State *state, bool prev_value) {
497 state->parse_state.append = prev_value;
498 return true;
499 }
500
501 // Increase the nest level for nested names.
MaybeIncreaseNestLevel(State * state)502 static void MaybeIncreaseNestLevel(State *state) {
503 if (state->parse_state.nest_level > -1) {
504 ++state->parse_state.nest_level;
505 }
506 }
507
508 // Appends :: for nested names if necessary.
MaybeAppendSeparator(State * state)509 static void MaybeAppendSeparator(State *state) {
510 if (state->parse_state.nest_level >= 1) {
511 MaybeAppend(state, "::");
512 }
513 }
514
515 // Cancel the last separator if necessary.
MaybeCancelLastSeparator(State * state)516 static void MaybeCancelLastSeparator(State *state) {
517 if (state->parse_state.nest_level >= 1 && state->parse_state.append &&
518 state->parse_state.out_cur_idx >= 2) {
519 state->parse_state.out_cur_idx -= 2;
520 state->out[state->parse_state.out_cur_idx] = '\0';
521 }
522 }
523
524 // Returns true if the identifier of the given length pointed to by
525 // "mangled_cur" is anonymous namespace.
IdentifierIsAnonymousNamespace(State * state,size_t length)526 static bool IdentifierIsAnonymousNamespace(State *state, size_t length) {
527 // Returns true if "anon_prefix" is a proper prefix of "mangled_cur".
528 static const char anon_prefix[] = "_GLOBAL__N_";
529 return (length > (sizeof(anon_prefix) - 1) &&
530 StrPrefix(RemainingInput(state), anon_prefix));
531 }
532
533 // Forward declarations of our parsing functions.
534 static bool ParseMangledName(State *state);
535 static bool ParseEncoding(State *state);
536 static bool ParseName(State *state);
537 static bool ParseUnscopedName(State *state);
538 static bool ParseNestedName(State *state);
539 static bool ParsePrefix(State *state);
540 static bool ParseUnqualifiedName(State *state);
541 static bool ParseSourceName(State *state);
542 static bool ParseLocalSourceName(State *state);
543 static bool ParseUnnamedTypeName(State *state);
544 static bool ParseNumber(State *state, int *number_out);
545 static bool ParseFloatNumber(State *state);
546 static bool ParseSeqId(State *state);
547 static bool ParseIdentifier(State *state, size_t length);
548 static bool ParseOperatorName(State *state, int *arity);
549 static bool ParseSpecialName(State *state);
550 static bool ParseCallOffset(State *state);
551 static bool ParseNVOffset(State *state);
552 static bool ParseVOffset(State *state);
553 static bool ParseAbiTags(State *state);
554 static bool ParseCtorDtorName(State *state);
555 static bool ParseDecltype(State *state);
556 static bool ParseType(State *state);
557 static bool ParseCVQualifiers(State *state);
558 static bool ParseBuiltinType(State *state);
559 static bool ParseFunctionType(State *state);
560 static bool ParseBareFunctionType(State *state);
561 static bool ParseClassEnumType(State *state);
562 static bool ParseArrayType(State *state);
563 static bool ParsePointerToMemberType(State *state);
564 static bool ParseTemplateParam(State *state);
565 static bool ParseTemplateTemplateParam(State *state);
566 static bool ParseTemplateArgs(State *state);
567 static bool ParseTemplateArg(State *state);
568 static bool ParseBaseUnresolvedName(State *state);
569 static bool ParseUnresolvedName(State *state);
570 static bool ParseExpression(State *state);
571 static bool ParseExprPrimary(State *state);
572 static bool ParseExprCastValue(State *state);
573 static bool ParseLocalName(State *state);
574 static bool ParseLocalNameSuffix(State *state);
575 static bool ParseDiscriminator(State *state);
576 static bool ParseSubstitution(State *state, bool accept_std);
577
578 // Implementation note: the following code is a straightforward
579 // translation of the Itanium C++ ABI defined in BNF with a couple of
580 // exceptions.
581 //
582 // - Support GNU extensions not defined in the Itanium C++ ABI
583 // - <prefix> and <template-prefix> are combined to avoid infinite loop
584 // - Reorder patterns to shorten the code
585 // - Reorder patterns to give greedier functions precedence
586 // We'll mark "Less greedy than" for these cases in the code
587 //
588 // Each parsing function changes the parse state and returns true on
589 // success, or returns false and doesn't change the parse state (note:
590 // the parse-steps counter increases regardless of success or failure).
591 // To ensure that the parse state isn't changed in the latter case, we
592 // save the original state before we call multiple parsing functions
593 // consecutively with &&, and restore it if unsuccessful. See
594 // ParseEncoding() as an example of this convention. We follow the
595 // convention throughout the code.
596 //
597 // Originally we tried to do demangling without following the full ABI
598 // syntax but it turned out we needed to follow the full syntax to
599 // parse complicated cases like nested template arguments. Note that
600 // implementing a full-fledged demangler isn't trivial (libiberty's
601 // cp-demangle.c has +4300 lines).
602 //
603 // Note that (foo) in <(foo) ...> is a modifier to be ignored.
604 //
605 // Reference:
606 // - Itanium C++ ABI
607 // <https://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangling>
608
609 // <mangled-name> ::= _Z <encoding>
ParseMangledName(State * state)610 static bool ParseMangledName(State *state) {
611 ComplexityGuard guard(state);
612 if (guard.IsTooComplex()) return false;
613 return ParseTwoCharToken(state, "_Z") && ParseEncoding(state);
614 }
615
616 // <encoding> ::= <(function) name> <bare-function-type>
617 // ::= <(data) name>
618 // ::= <special-name>
ParseEncoding(State * state)619 static bool ParseEncoding(State *state) {
620 ComplexityGuard guard(state);
621 if (guard.IsTooComplex()) return false;
622 // Implementing the first two productions together as <name>
623 // [<bare-function-type>] avoids exponential blowup of backtracking.
624 //
625 // Since Optional(...) can't fail, there's no need to copy the state for
626 // backtracking.
627 if (ParseName(state) && Optional(ParseBareFunctionType(state))) {
628 return true;
629 }
630
631 if (ParseSpecialName(state)) {
632 return true;
633 }
634 return false;
635 }
636
637 // <name> ::= <nested-name>
638 // ::= <unscoped-template-name> <template-args>
639 // ::= <unscoped-name>
640 // ::= <local-name>
ParseName(State * state)641 static bool ParseName(State *state) {
642 ComplexityGuard guard(state);
643 if (guard.IsTooComplex()) return false;
644 if (ParseNestedName(state) || ParseLocalName(state)) {
645 return true;
646 }
647
648 // We reorganize the productions to avoid re-parsing unscoped names.
649 // - Inline <unscoped-template-name> productions:
650 // <name> ::= <substitution> <template-args>
651 // ::= <unscoped-name> <template-args>
652 // ::= <unscoped-name>
653 // - Merge the two productions that start with unscoped-name:
654 // <name> ::= <unscoped-name> [<template-args>]
655
656 ParseState copy = state->parse_state;
657 // "std<...>" isn't a valid name.
658 if (ParseSubstitution(state, /*accept_std=*/false) &&
659 ParseTemplateArgs(state)) {
660 return true;
661 }
662 state->parse_state = copy;
663
664 // Note there's no need to restore state after this since only the first
665 // subparser can fail.
666 return ParseUnscopedName(state) && Optional(ParseTemplateArgs(state));
667 }
668
669 // <unscoped-name> ::= <unqualified-name>
670 // ::= St <unqualified-name>
ParseUnscopedName(State * state)671 static bool ParseUnscopedName(State *state) {
672 ComplexityGuard guard(state);
673 if (guard.IsTooComplex()) return false;
674 if (ParseUnqualifiedName(state)) {
675 return true;
676 }
677
678 ParseState copy = state->parse_state;
679 if (ParseTwoCharToken(state, "St") && MaybeAppend(state, "std::") &&
680 ParseUnqualifiedName(state)) {
681 return true;
682 }
683 state->parse_state = copy;
684 return false;
685 }
686
687 // <ref-qualifer> ::= R // lvalue method reference qualifier
688 // ::= O // rvalue method reference qualifier
ParseRefQualifier(State * state)689 static inline bool ParseRefQualifier(State *state) {
690 return ParseCharClass(state, "OR");
691 }
692
693 // <nested-name> ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix>
694 // <unqualified-name> E
695 // ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix>
696 // <template-args> E
ParseNestedName(State * state)697 static bool ParseNestedName(State *state) {
698 ComplexityGuard guard(state);
699 if (guard.IsTooComplex()) return false;
700 ParseState copy = state->parse_state;
701 if (ParseOneCharToken(state, 'N') && EnterNestedName(state) &&
702 Optional(ParseCVQualifiers(state)) &&
703 Optional(ParseRefQualifier(state)) && ParsePrefix(state) &&
704 LeaveNestedName(state, copy.nest_level) &&
705 ParseOneCharToken(state, 'E')) {
706 return true;
707 }
708 state->parse_state = copy;
709 return false;
710 }
711
712 // This part is tricky. If we literally translate them to code, we'll
713 // end up infinite loop. Hence we merge them to avoid the case.
714 //
715 // <prefix> ::= <prefix> <unqualified-name>
716 // ::= <template-prefix> <template-args>
717 // ::= <template-param>
718 // ::= <substitution>
719 // ::= # empty
720 // <template-prefix> ::= <prefix> <(template) unqualified-name>
721 // ::= <template-param>
722 // ::= <substitution>
ParsePrefix(State * state)723 static bool ParsePrefix(State *state) {
724 ComplexityGuard guard(state);
725 if (guard.IsTooComplex()) return false;
726 bool has_something = false;
727 while (true) {
728 MaybeAppendSeparator(state);
729 if (ParseTemplateParam(state) ||
730 ParseSubstitution(state, /*accept_std=*/true) ||
731 ParseUnscopedName(state) ||
732 (ParseOneCharToken(state, 'M') && ParseUnnamedTypeName(state))) {
733 has_something = true;
734 MaybeIncreaseNestLevel(state);
735 continue;
736 }
737 MaybeCancelLastSeparator(state);
738 if (has_something && ParseTemplateArgs(state)) {
739 return ParsePrefix(state);
740 } else {
741 break;
742 }
743 }
744 return true;
745 }
746
747 // <unqualified-name> ::= <operator-name> [<abi-tags>]
748 // ::= <ctor-dtor-name> [<abi-tags>]
749 // ::= <source-name> [<abi-tags>]
750 // ::= <local-source-name> [<abi-tags>]
751 // ::= <unnamed-type-name> [<abi-tags>]
752 //
753 // <local-source-name> is a GCC extension; see below.
ParseUnqualifiedName(State * state)754 static bool ParseUnqualifiedName(State *state) {
755 ComplexityGuard guard(state);
756 if (guard.IsTooComplex()) return false;
757 if (ParseOperatorName(state, nullptr) || ParseCtorDtorName(state) ||
758 ParseSourceName(state) || ParseLocalSourceName(state) ||
759 ParseUnnamedTypeName(state)) {
760 return ParseAbiTags(state);
761 }
762 return false;
763 }
764
765 // <abi-tags> ::= <abi-tag> [<abi-tags>]
766 // <abi-tag> ::= B <source-name>
ParseAbiTags(State * state)767 static bool ParseAbiTags(State *state) {
768 ComplexityGuard guard(state);
769 if (guard.IsTooComplex()) return false;
770
771 while (ParseOneCharToken(state, 'B')) {
772 ParseState copy = state->parse_state;
773 MaybeAppend(state, "[abi:");
774
775 if (!ParseSourceName(state)) {
776 state->parse_state = copy;
777 return false;
778 }
779 MaybeAppend(state, "]");
780 }
781
782 return true;
783 }
784
785 // <source-name> ::= <positive length number> <identifier>
ParseSourceName(State * state)786 static bool ParseSourceName(State *state) {
787 ComplexityGuard guard(state);
788 if (guard.IsTooComplex()) return false;
789 ParseState copy = state->parse_state;
790 int length = -1;
791 if (ParseNumber(state, &length) &&
792 ParseIdentifier(state, static_cast<size_t>(length))) {
793 return true;
794 }
795 state->parse_state = copy;
796 return false;
797 }
798
799 // <local-source-name> ::= L <source-name> [<discriminator>]
800 //
801 // References:
802 // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=31775
803 // https://gcc.gnu.org/viewcvs?view=rev&revision=124467
ParseLocalSourceName(State * state)804 static bool ParseLocalSourceName(State *state) {
805 ComplexityGuard guard(state);
806 if (guard.IsTooComplex()) return false;
807 ParseState copy = state->parse_state;
808 if (ParseOneCharToken(state, 'L') && ParseSourceName(state) &&
809 Optional(ParseDiscriminator(state))) {
810 return true;
811 }
812 state->parse_state = copy;
813 return false;
814 }
815
816 // <unnamed-type-name> ::= Ut [<(nonnegative) number>] _
817 // ::= <closure-type-name>
818 // <closure-type-name> ::= Ul <lambda-sig> E [<(nonnegative) number>] _
819 // <lambda-sig> ::= <(parameter) type>+
ParseUnnamedTypeName(State * state)820 static bool ParseUnnamedTypeName(State *state) {
821 ComplexityGuard guard(state);
822 if (guard.IsTooComplex()) return false;
823 ParseState copy = state->parse_state;
824 // Type's 1-based index n is encoded as { "", n == 1; itoa(n-2), otherwise }.
825 // Optionally parse the encoded value into 'which' and add 2 to get the index.
826 int which = -1;
827
828 // Unnamed type local to function or class.
829 if (ParseTwoCharToken(state, "Ut") && Optional(ParseNumber(state, &which)) &&
830 which <= std::numeric_limits<int>::max() - 2 && // Don't overflow.
831 ParseOneCharToken(state, '_')) {
832 MaybeAppend(state, "{unnamed type#");
833 MaybeAppendDecimal(state, 2 + which);
834 MaybeAppend(state, "}");
835 return true;
836 }
837 state->parse_state = copy;
838
839 // Closure type.
840 which = -1;
841 if (ParseTwoCharToken(state, "Ul") && DisableAppend(state) &&
842 OneOrMore(ParseType, state) && RestoreAppend(state, copy.append) &&
843 ParseOneCharToken(state, 'E') && Optional(ParseNumber(state, &which)) &&
844 which <= std::numeric_limits<int>::max() - 2 && // Don't overflow.
845 ParseOneCharToken(state, '_')) {
846 MaybeAppend(state, "{lambda()#");
847 MaybeAppendDecimal(state, 2 + which);
848 MaybeAppend(state, "}");
849 return true;
850 }
851 state->parse_state = copy;
852
853 return false;
854 }
855
856 // <number> ::= [n] <non-negative decimal integer>
857 // If "number_out" is non-null, then *number_out is set to the value of the
858 // parsed number on success.
ParseNumber(State * state,int * number_out)859 static bool ParseNumber(State *state, int *number_out) {
860 ComplexityGuard guard(state);
861 if (guard.IsTooComplex()) return false;
862 bool negative = false;
863 if (ParseOneCharToken(state, 'n')) {
864 negative = true;
865 }
866 const char *p = RemainingInput(state);
867 uint64_t number = 0;
868 for (; *p != '\0'; ++p) {
869 if (IsDigit(*p)) {
870 number = number * 10 + static_cast<uint64_t>(*p - '0');
871 } else {
872 break;
873 }
874 }
875 // Apply the sign with uint64_t arithmetic so overflows aren't UB. Gives
876 // "incorrect" results for out-of-range inputs, but negative values only
877 // appear for literals, which aren't printed.
878 if (negative) {
879 number = ~number + 1;
880 }
881 if (p != RemainingInput(state)) { // Conversion succeeded.
882 state->parse_state.mangled_idx += p - RemainingInput(state);
883 if (number_out != nullptr) {
884 // Note: possibly truncate "number".
885 *number_out = static_cast<int>(number);
886 }
887 return true;
888 }
889 return false;
890 }
891
892 // Floating-point literals are encoded using a fixed-length lowercase
893 // hexadecimal string.
ParseFloatNumber(State * state)894 static bool ParseFloatNumber(State *state) {
895 ComplexityGuard guard(state);
896 if (guard.IsTooComplex()) return false;
897 const char *p = RemainingInput(state);
898 for (; *p != '\0'; ++p) {
899 if (!IsDigit(*p) && !(*p >= 'a' && *p <= 'f')) {
900 break;
901 }
902 }
903 if (p != RemainingInput(state)) { // Conversion succeeded.
904 state->parse_state.mangled_idx += p - RemainingInput(state);
905 return true;
906 }
907 return false;
908 }
909
910 // The <seq-id> is a sequence number in base 36,
911 // using digits and upper case letters
ParseSeqId(State * state)912 static bool ParseSeqId(State *state) {
913 ComplexityGuard guard(state);
914 if (guard.IsTooComplex()) return false;
915 const char *p = RemainingInput(state);
916 for (; *p != '\0'; ++p) {
917 if (!IsDigit(*p) && !(*p >= 'A' && *p <= 'Z')) {
918 break;
919 }
920 }
921 if (p != RemainingInput(state)) { // Conversion succeeded.
922 state->parse_state.mangled_idx += p - RemainingInput(state);
923 return true;
924 }
925 return false;
926 }
927
928 // <identifier> ::= <unqualified source code identifier> (of given length)
ParseIdentifier(State * state,size_t length)929 static bool ParseIdentifier(State *state, size_t length) {
930 ComplexityGuard guard(state);
931 if (guard.IsTooComplex()) return false;
932 if (!AtLeastNumCharsRemaining(RemainingInput(state), length)) {
933 return false;
934 }
935 if (IdentifierIsAnonymousNamespace(state, length)) {
936 MaybeAppend(state, "(anonymous namespace)");
937 } else {
938 MaybeAppendWithLength(state, RemainingInput(state), length);
939 }
940 state->parse_state.mangled_idx += length;
941 return true;
942 }
943
944 // <operator-name> ::= nw, and other two letters cases
945 // ::= cv <type> # (cast)
946 // ::= v <digit> <source-name> # vendor extended operator
ParseOperatorName(State * state,int * arity)947 static bool ParseOperatorName(State *state, int *arity) {
948 ComplexityGuard guard(state);
949 if (guard.IsTooComplex()) return false;
950 if (!AtLeastNumCharsRemaining(RemainingInput(state), 2)) {
951 return false;
952 }
953 // First check with "cv" (cast) case.
954 ParseState copy = state->parse_state;
955 if (ParseTwoCharToken(state, "cv") && MaybeAppend(state, "operator ") &&
956 EnterNestedName(state) && ParseType(state) &&
957 LeaveNestedName(state, copy.nest_level)) {
958 if (arity != nullptr) {
959 *arity = 1;
960 }
961 return true;
962 }
963 state->parse_state = copy;
964
965 // Then vendor extended operators.
966 if (ParseOneCharToken(state, 'v') && ParseDigit(state, arity) &&
967 ParseSourceName(state)) {
968 return true;
969 }
970 state->parse_state = copy;
971
972 // Other operator names should start with a lower alphabet followed
973 // by a lower/upper alphabet.
974 if (!(IsLower(RemainingInput(state)[0]) &&
975 IsAlpha(RemainingInput(state)[1]))) {
976 return false;
977 }
978 // We may want to perform a binary search if we really need speed.
979 const AbbrevPair *p;
980 for (p = kOperatorList; p->abbrev != nullptr; ++p) {
981 if (RemainingInput(state)[0] == p->abbrev[0] &&
982 RemainingInput(state)[1] == p->abbrev[1]) {
983 if (arity != nullptr) {
984 *arity = p->arity;
985 }
986 MaybeAppend(state, "operator");
987 if (IsLower(*p->real_name)) { // new, delete, etc.
988 MaybeAppend(state, " ");
989 }
990 MaybeAppend(state, p->real_name);
991 state->parse_state.mangled_idx += 2;
992 return true;
993 }
994 }
995 return false;
996 }
997
998 // <special-name> ::= TV <type>
999 // ::= TT <type>
1000 // ::= TI <type>
1001 // ::= TS <type>
1002 // ::= TH <type> # thread-local
1003 // ::= Tc <call-offset> <call-offset> <(base) encoding>
1004 // ::= GV <(object) name>
1005 // ::= T <call-offset> <(base) encoding>
1006 // G++ extensions:
1007 // ::= TC <type> <(offset) number> _ <(base) type>
1008 // ::= TF <type>
1009 // ::= TJ <type>
1010 // ::= GR <name>
1011 // ::= GA <encoding>
1012 // ::= Th <call-offset> <(base) encoding>
1013 // ::= Tv <call-offset> <(base) encoding>
1014 //
1015 // Note: we don't care much about them since they don't appear in
1016 // stack traces. The are special data.
ParseSpecialName(State * state)1017 static bool ParseSpecialName(State *state) {
1018 ComplexityGuard guard(state);
1019 if (guard.IsTooComplex()) return false;
1020 ParseState copy = state->parse_state;
1021 if (ParseOneCharToken(state, 'T') && ParseCharClass(state, "VTISH") &&
1022 ParseType(state)) {
1023 return true;
1024 }
1025 state->parse_state = copy;
1026
1027 if (ParseTwoCharToken(state, "Tc") && ParseCallOffset(state) &&
1028 ParseCallOffset(state) && ParseEncoding(state)) {
1029 return true;
1030 }
1031 state->parse_state = copy;
1032
1033 if (ParseTwoCharToken(state, "GV") && ParseName(state)) {
1034 return true;
1035 }
1036 state->parse_state = copy;
1037
1038 if (ParseOneCharToken(state, 'T') && ParseCallOffset(state) &&
1039 ParseEncoding(state)) {
1040 return true;
1041 }
1042 state->parse_state = copy;
1043
1044 // G++ extensions
1045 if (ParseTwoCharToken(state, "TC") && ParseType(state) &&
1046 ParseNumber(state, nullptr) && ParseOneCharToken(state, '_') &&
1047 DisableAppend(state) && ParseType(state)) {
1048 RestoreAppend(state, copy.append);
1049 return true;
1050 }
1051 state->parse_state = copy;
1052
1053 if (ParseOneCharToken(state, 'T') && ParseCharClass(state, "FJ") &&
1054 ParseType(state)) {
1055 return true;
1056 }
1057 state->parse_state = copy;
1058
1059 if (ParseTwoCharToken(state, "GR") && ParseName(state)) {
1060 return true;
1061 }
1062 state->parse_state = copy;
1063
1064 if (ParseTwoCharToken(state, "GA") && ParseEncoding(state)) {
1065 return true;
1066 }
1067 state->parse_state = copy;
1068
1069 if (ParseOneCharToken(state, 'T') && ParseCharClass(state, "hv") &&
1070 ParseCallOffset(state) && ParseEncoding(state)) {
1071 return true;
1072 }
1073 state->parse_state = copy;
1074 return false;
1075 }
1076
1077 // <call-offset> ::= h <nv-offset> _
1078 // ::= v <v-offset> _
ParseCallOffset(State * state)1079 static bool ParseCallOffset(State *state) {
1080 ComplexityGuard guard(state);
1081 if (guard.IsTooComplex()) return false;
1082 ParseState copy = state->parse_state;
1083 if (ParseOneCharToken(state, 'h') && ParseNVOffset(state) &&
1084 ParseOneCharToken(state, '_')) {
1085 return true;
1086 }
1087 state->parse_state = copy;
1088
1089 if (ParseOneCharToken(state, 'v') && ParseVOffset(state) &&
1090 ParseOneCharToken(state, '_')) {
1091 return true;
1092 }
1093 state->parse_state = copy;
1094
1095 return false;
1096 }
1097
1098 // <nv-offset> ::= <(offset) number>
ParseNVOffset(State * state)1099 static bool ParseNVOffset(State *state) {
1100 ComplexityGuard guard(state);
1101 if (guard.IsTooComplex()) return false;
1102 return ParseNumber(state, nullptr);
1103 }
1104
1105 // <v-offset> ::= <(offset) number> _ <(virtual offset) number>
ParseVOffset(State * state)1106 static bool ParseVOffset(State *state) {
1107 ComplexityGuard guard(state);
1108 if (guard.IsTooComplex()) return false;
1109 ParseState copy = state->parse_state;
1110 if (ParseNumber(state, nullptr) && ParseOneCharToken(state, '_') &&
1111 ParseNumber(state, nullptr)) {
1112 return true;
1113 }
1114 state->parse_state = copy;
1115 return false;
1116 }
1117
1118 // <ctor-dtor-name> ::= C1 | C2 | C3 | CI1 <base-class-type> | CI2
1119 // <base-class-type>
1120 // ::= D0 | D1 | D2
1121 // # GCC extensions: "unified" constructor/destructor. See
1122 // #
1123 // https://github.com/gcc-mirror/gcc/blob/7ad17b583c3643bd4557f29b8391ca7ef08391f5/gcc/cp/mangle.c#L1847
1124 // ::= C4 | D4
ParseCtorDtorName(State * state)1125 static bool ParseCtorDtorName(State *state) {
1126 ComplexityGuard guard(state);
1127 if (guard.IsTooComplex()) return false;
1128 ParseState copy = state->parse_state;
1129 if (ParseOneCharToken(state, 'C')) {
1130 if (ParseCharClass(state, "1234")) {
1131 const char *const prev_name =
1132 state->out + state->parse_state.prev_name_idx;
1133 MaybeAppendWithLength(state, prev_name,
1134 state->parse_state.prev_name_length);
1135 return true;
1136 } else if (ParseOneCharToken(state, 'I') && ParseCharClass(state, "12") &&
1137 ParseClassEnumType(state)) {
1138 return true;
1139 }
1140 }
1141 state->parse_state = copy;
1142
1143 if (ParseOneCharToken(state, 'D') && ParseCharClass(state, "0124")) {
1144 const char *const prev_name = state->out + state->parse_state.prev_name_idx;
1145 MaybeAppend(state, "~");
1146 MaybeAppendWithLength(state, prev_name,
1147 state->parse_state.prev_name_length);
1148 return true;
1149 }
1150 state->parse_state = copy;
1151 return false;
1152 }
1153
1154 // <decltype> ::= Dt <expression> E # decltype of an id-expression or class
1155 // # member access (C++0x)
1156 // ::= DT <expression> E # decltype of an expression (C++0x)
ParseDecltype(State * state)1157 static bool ParseDecltype(State *state) {
1158 ComplexityGuard guard(state);
1159 if (guard.IsTooComplex()) return false;
1160
1161 ParseState copy = state->parse_state;
1162 if (ParseOneCharToken(state, 'D') && ParseCharClass(state, "tT") &&
1163 ParseExpression(state) && ParseOneCharToken(state, 'E')) {
1164 return true;
1165 }
1166 state->parse_state = copy;
1167
1168 return false;
1169 }
1170
1171 // <type> ::= <CV-qualifiers> <type>
1172 // ::= P <type> # pointer-to
1173 // ::= R <type> # reference-to
1174 // ::= O <type> # rvalue reference-to (C++0x)
1175 // ::= C <type> # complex pair (C 2000)
1176 // ::= G <type> # imaginary (C 2000)
1177 // ::= U <source-name> <type> # vendor extended type qualifier
1178 // ::= <builtin-type>
1179 // ::= <function-type>
1180 // ::= <class-enum-type> # note: just an alias for <name>
1181 // ::= <array-type>
1182 // ::= <pointer-to-member-type>
1183 // ::= <template-template-param> <template-args>
1184 // ::= <template-param>
1185 // ::= <decltype>
1186 // ::= <substitution>
1187 // ::= Dp <type> # pack expansion of (C++0x)
1188 // ::= Dv <num-elems> _ # GNU vector extension
1189 //
ParseType(State * state)1190 static bool ParseType(State *state) {
1191 ComplexityGuard guard(state);
1192 if (guard.IsTooComplex()) return false;
1193 ParseState copy = state->parse_state;
1194
1195 // We should check CV-qualifers, and PRGC things first.
1196 //
1197 // CV-qualifiers overlap with some operator names, but an operator name is not
1198 // valid as a type. To avoid an ambiguity that can lead to exponential time
1199 // complexity, refuse to backtrack the CV-qualifiers.
1200 //
1201 // _Z4aoeuIrMvvE
1202 // => _Z 4aoeuI rM v v E
1203 // aoeu<operator%=, void, void>
1204 // => _Z 4aoeuI r Mv v E
1205 // aoeu<void void::* restrict>
1206 //
1207 // By consuming the CV-qualifiers first, the former parse is disabled.
1208 if (ParseCVQualifiers(state)) {
1209 const bool result = ParseType(state);
1210 if (!result) state->parse_state = copy;
1211 return result;
1212 }
1213 state->parse_state = copy;
1214
1215 // Similarly, these tag characters can overlap with other <name>s resulting in
1216 // two different parse prefixes that land on <template-args> in the same
1217 // place, such as "C3r1xI...". So, disable the "ctor-name = C3" parse by
1218 // refusing to backtrack the tag characters.
1219 if (ParseCharClass(state, "OPRCG")) {
1220 const bool result = ParseType(state);
1221 if (!result) state->parse_state = copy;
1222 return result;
1223 }
1224 state->parse_state = copy;
1225
1226 if (ParseTwoCharToken(state, "Dp") && ParseType(state)) {
1227 return true;
1228 }
1229 state->parse_state = copy;
1230
1231 if (ParseOneCharToken(state, 'U') && ParseSourceName(state) &&
1232 ParseType(state)) {
1233 return true;
1234 }
1235 state->parse_state = copy;
1236
1237 if (ParseBuiltinType(state) || ParseFunctionType(state) ||
1238 ParseClassEnumType(state) || ParseArrayType(state) ||
1239 ParsePointerToMemberType(state) || ParseDecltype(state) ||
1240 // "std" on its own isn't a type.
1241 ParseSubstitution(state, /*accept_std=*/false)) {
1242 return true;
1243 }
1244
1245 if (ParseTemplateTemplateParam(state) && ParseTemplateArgs(state)) {
1246 return true;
1247 }
1248 state->parse_state = copy;
1249
1250 // Less greedy than <template-template-param> <template-args>.
1251 if (ParseTemplateParam(state)) {
1252 return true;
1253 }
1254
1255 if (ParseTwoCharToken(state, "Dv") && ParseNumber(state, nullptr) &&
1256 ParseOneCharToken(state, '_')) {
1257 return true;
1258 }
1259 state->parse_state = copy;
1260
1261 return false;
1262 }
1263
1264 // <CV-qualifiers> ::= [r] [V] [K]
1265 // We don't allow empty <CV-qualifiers> to avoid infinite loop in
1266 // ParseType().
ParseCVQualifiers(State * state)1267 static bool ParseCVQualifiers(State *state) {
1268 ComplexityGuard guard(state);
1269 if (guard.IsTooComplex()) return false;
1270 int num_cv_qualifiers = 0;
1271 num_cv_qualifiers += ParseOneCharToken(state, 'r');
1272 num_cv_qualifiers += ParseOneCharToken(state, 'V');
1273 num_cv_qualifiers += ParseOneCharToken(state, 'K');
1274 return num_cv_qualifiers > 0;
1275 }
1276
1277 // <builtin-type> ::= v, etc. # single-character builtin types
1278 // ::= u <source-name>
1279 // ::= Dd, etc. # two-character builtin types
1280 //
1281 // Not supported:
1282 // ::= DF <number> _ # _FloatN (N bits)
1283 //
ParseBuiltinType(State * state)1284 static bool ParseBuiltinType(State *state) {
1285 ComplexityGuard guard(state);
1286 if (guard.IsTooComplex()) return false;
1287 const AbbrevPair *p;
1288 for (p = kBuiltinTypeList; p->abbrev != nullptr; ++p) {
1289 // Guaranteed only 1- or 2-character strings in kBuiltinTypeList.
1290 if (p->abbrev[1] == '\0') {
1291 if (ParseOneCharToken(state, p->abbrev[0])) {
1292 MaybeAppend(state, p->real_name);
1293 return true;
1294 }
1295 } else if (p->abbrev[2] == '\0' && ParseTwoCharToken(state, p->abbrev)) {
1296 MaybeAppend(state, p->real_name);
1297 return true;
1298 }
1299 }
1300
1301 ParseState copy = state->parse_state;
1302 if (ParseOneCharToken(state, 'u') && ParseSourceName(state)) {
1303 return true;
1304 }
1305 state->parse_state = copy;
1306 return false;
1307 }
1308
1309 // <exception-spec> ::= Do # non-throwing
1310 // exception-specification (e.g.,
1311 // noexcept, throw())
1312 // ::= DO <expression> E # computed (instantiation-dependent)
1313 // noexcept
1314 // ::= Dw <type>+ E # dynamic exception specification
1315 // with instantiation-dependent types
ParseExceptionSpec(State * state)1316 static bool ParseExceptionSpec(State *state) {
1317 ComplexityGuard guard(state);
1318 if (guard.IsTooComplex()) return false;
1319
1320 if (ParseTwoCharToken(state, "Do")) return true;
1321
1322 ParseState copy = state->parse_state;
1323 if (ParseTwoCharToken(state, "DO") && ParseExpression(state) &&
1324 ParseOneCharToken(state, 'E')) {
1325 return true;
1326 }
1327 state->parse_state = copy;
1328 if (ParseTwoCharToken(state, "Dw") && OneOrMore(ParseType, state) &&
1329 ParseOneCharToken(state, 'E')) {
1330 return true;
1331 }
1332 state->parse_state = copy;
1333
1334 return false;
1335 }
1336
1337 // <function-type> ::= [exception-spec] F [Y] <bare-function-type> [O] E
ParseFunctionType(State * state)1338 static bool ParseFunctionType(State *state) {
1339 ComplexityGuard guard(state);
1340 if (guard.IsTooComplex()) return false;
1341 ParseState copy = state->parse_state;
1342 if (Optional(ParseExceptionSpec(state)) && ParseOneCharToken(state, 'F') &&
1343 Optional(ParseOneCharToken(state, 'Y')) && ParseBareFunctionType(state) &&
1344 Optional(ParseOneCharToken(state, 'O')) &&
1345 ParseOneCharToken(state, 'E')) {
1346 return true;
1347 }
1348 state->parse_state = copy;
1349 return false;
1350 }
1351
1352 // <bare-function-type> ::= <(signature) type>+
ParseBareFunctionType(State * state)1353 static bool ParseBareFunctionType(State *state) {
1354 ComplexityGuard guard(state);
1355 if (guard.IsTooComplex()) return false;
1356 ParseState copy = state->parse_state;
1357 DisableAppend(state);
1358 if (OneOrMore(ParseType, state)) {
1359 RestoreAppend(state, copy.append);
1360 MaybeAppend(state, "()");
1361 return true;
1362 }
1363 state->parse_state = copy;
1364 return false;
1365 }
1366
1367 // <class-enum-type> ::= <name>
ParseClassEnumType(State * state)1368 static bool ParseClassEnumType(State *state) {
1369 ComplexityGuard guard(state);
1370 if (guard.IsTooComplex()) return false;
1371 return ParseName(state);
1372 }
1373
1374 // <array-type> ::= A <(positive dimension) number> _ <(element) type>
1375 // ::= A [<(dimension) expression>] _ <(element) type>
ParseArrayType(State * state)1376 static bool ParseArrayType(State *state) {
1377 ComplexityGuard guard(state);
1378 if (guard.IsTooComplex()) return false;
1379 ParseState copy = state->parse_state;
1380 if (ParseOneCharToken(state, 'A') && ParseNumber(state, nullptr) &&
1381 ParseOneCharToken(state, '_') && ParseType(state)) {
1382 return true;
1383 }
1384 state->parse_state = copy;
1385
1386 if (ParseOneCharToken(state, 'A') && Optional(ParseExpression(state)) &&
1387 ParseOneCharToken(state, '_') && ParseType(state)) {
1388 return true;
1389 }
1390 state->parse_state = copy;
1391 return false;
1392 }
1393
1394 // <pointer-to-member-type> ::= M <(class) type> <(member) type>
ParsePointerToMemberType(State * state)1395 static bool ParsePointerToMemberType(State *state) {
1396 ComplexityGuard guard(state);
1397 if (guard.IsTooComplex()) return false;
1398 ParseState copy = state->parse_state;
1399 if (ParseOneCharToken(state, 'M') && ParseType(state) && ParseType(state)) {
1400 return true;
1401 }
1402 state->parse_state = copy;
1403 return false;
1404 }
1405
1406 // <template-param> ::= T_
1407 // ::= T <parameter-2 non-negative number> _
ParseTemplateParam(State * state)1408 static bool ParseTemplateParam(State *state) {
1409 ComplexityGuard guard(state);
1410 if (guard.IsTooComplex()) return false;
1411 if (ParseTwoCharToken(state, "T_")) {
1412 MaybeAppend(state, "?"); // We don't support template substitutions.
1413 return true;
1414 }
1415
1416 ParseState copy = state->parse_state;
1417 if (ParseOneCharToken(state, 'T') && ParseNumber(state, nullptr) &&
1418 ParseOneCharToken(state, '_')) {
1419 MaybeAppend(state, "?"); // We don't support template substitutions.
1420 return true;
1421 }
1422 state->parse_state = copy;
1423 return false;
1424 }
1425
1426 // <template-template-param> ::= <template-param>
1427 // ::= <substitution>
ParseTemplateTemplateParam(State * state)1428 static bool ParseTemplateTemplateParam(State *state) {
1429 ComplexityGuard guard(state);
1430 if (guard.IsTooComplex()) return false;
1431 return (ParseTemplateParam(state) ||
1432 // "std" on its own isn't a template.
1433 ParseSubstitution(state, /*accept_std=*/false));
1434 }
1435
1436 // <template-args> ::= I <template-arg>+ E
ParseTemplateArgs(State * state)1437 static bool ParseTemplateArgs(State *state) {
1438 ComplexityGuard guard(state);
1439 if (guard.IsTooComplex()) return false;
1440 ParseState copy = state->parse_state;
1441 DisableAppend(state);
1442 if (ParseOneCharToken(state, 'I') && OneOrMore(ParseTemplateArg, state) &&
1443 ParseOneCharToken(state, 'E')) {
1444 RestoreAppend(state, copy.append);
1445 MaybeAppend(state, "<>");
1446 return true;
1447 }
1448 state->parse_state = copy;
1449 return false;
1450 }
1451
1452 // <template-arg> ::= <type>
1453 // ::= <expr-primary>
1454 // ::= J <template-arg>* E # argument pack
1455 // ::= X <expression> E
ParseTemplateArg(State * state)1456 static bool ParseTemplateArg(State *state) {
1457 ComplexityGuard guard(state);
1458 if (guard.IsTooComplex()) return false;
1459 ParseState copy = state->parse_state;
1460 if (ParseOneCharToken(state, 'J') && ZeroOrMore(ParseTemplateArg, state) &&
1461 ParseOneCharToken(state, 'E')) {
1462 return true;
1463 }
1464 state->parse_state = copy;
1465
1466 // There can be significant overlap between the following leading to
1467 // exponential backtracking:
1468 //
1469 // <expr-primary> ::= L <type> <expr-cast-value> E
1470 // e.g. L 2xxIvE 1 E
1471 // <type> ==> <local-source-name> <template-args>
1472 // e.g. L 2xx IvE
1473 //
1474 // This means parsing an entire <type> twice, and <type> can contain
1475 // <template-arg>, so this can generate exponential backtracking. There is
1476 // only overlap when the remaining input starts with "L <source-name>", so
1477 // parse all cases that can start this way jointly to share the common prefix.
1478 //
1479 // We have:
1480 //
1481 // <template-arg> ::= <type>
1482 // ::= <expr-primary>
1483 //
1484 // First, drop all the productions of <type> that must start with something
1485 // other than 'L'. All that's left is <class-enum-type>; inline it.
1486 //
1487 // <type> ::= <nested-name> # starts with 'N'
1488 // ::= <unscoped-name>
1489 // ::= <unscoped-template-name> <template-args>
1490 // ::= <local-name> # starts with 'Z'
1491 //
1492 // Drop and inline again:
1493 //
1494 // <type> ::= <unscoped-name>
1495 // ::= <unscoped-name> <template-args>
1496 // ::= <substitution> <template-args> # starts with 'S'
1497 //
1498 // Merge the first two, inline <unscoped-name>, drop last:
1499 //
1500 // <type> ::= <unqualified-name> [<template-args>]
1501 // ::= St <unqualified-name> [<template-args>] # starts with 'S'
1502 //
1503 // Drop and inline:
1504 //
1505 // <type> ::= <operator-name> [<template-args>] # starts with lowercase
1506 // ::= <ctor-dtor-name> [<template-args>] # starts with 'C' or 'D'
1507 // ::= <source-name> [<template-args>] # starts with digit
1508 // ::= <local-source-name> [<template-args>]
1509 // ::= <unnamed-type-name> [<template-args>] # starts with 'U'
1510 //
1511 // One more time:
1512 //
1513 // <type> ::= L <source-name> [<template-args>]
1514 //
1515 // Likewise with <expr-primary>:
1516 //
1517 // <expr-primary> ::= L <type> <expr-cast-value> E
1518 // ::= LZ <encoding> E # cannot overlap; drop
1519 // ::= L <mangled_name> E # cannot overlap; drop
1520 //
1521 // By similar reasoning as shown above, the only <type>s starting with
1522 // <source-name> are "<source-name> [<template-args>]". Inline this.
1523 //
1524 // <expr-primary> ::= L <source-name> [<template-args>] <expr-cast-value> E
1525 //
1526 // Now inline both of these into <template-arg>:
1527 //
1528 // <template-arg> ::= L <source-name> [<template-args>]
1529 // ::= L <source-name> [<template-args>] <expr-cast-value> E
1530 //
1531 // Merge them and we're done:
1532 // <template-arg>
1533 // ::= L <source-name> [<template-args>] [<expr-cast-value> E]
1534 if (ParseLocalSourceName(state) && Optional(ParseTemplateArgs(state))) {
1535 copy = state->parse_state;
1536 if (ParseExprCastValue(state) && ParseOneCharToken(state, 'E')) {
1537 return true;
1538 }
1539 state->parse_state = copy;
1540 return true;
1541 }
1542
1543 // Now that the overlapping cases can't reach this code, we can safely call
1544 // both of these.
1545 if (ParseType(state) || ParseExprPrimary(state)) {
1546 return true;
1547 }
1548 state->parse_state = copy;
1549
1550 if (ParseOneCharToken(state, 'X') && ParseExpression(state) &&
1551 ParseOneCharToken(state, 'E')) {
1552 return true;
1553 }
1554 state->parse_state = copy;
1555 return false;
1556 }
1557
1558 // <unresolved-type> ::= <template-param> [<template-args>]
1559 // ::= <decltype>
1560 // ::= <substitution>
ParseUnresolvedType(State * state)1561 static inline bool ParseUnresolvedType(State *state) {
1562 // No ComplexityGuard because we don't copy the state in this stack frame.
1563 return (ParseTemplateParam(state) && Optional(ParseTemplateArgs(state))) ||
1564 ParseDecltype(state) || ParseSubstitution(state, /*accept_std=*/false);
1565 }
1566
1567 // <simple-id> ::= <source-name> [<template-args>]
ParseSimpleId(State * state)1568 static inline bool ParseSimpleId(State *state) {
1569 // No ComplexityGuard because we don't copy the state in this stack frame.
1570
1571 // Note: <simple-id> cannot be followed by a parameter pack; see comment in
1572 // ParseUnresolvedType.
1573 return ParseSourceName(state) && Optional(ParseTemplateArgs(state));
1574 }
1575
1576 // <base-unresolved-name> ::= <source-name> [<template-args>]
1577 // ::= on <operator-name> [<template-args>]
1578 // ::= dn <destructor-name>
ParseBaseUnresolvedName(State * state)1579 static bool ParseBaseUnresolvedName(State *state) {
1580 ComplexityGuard guard(state);
1581 if (guard.IsTooComplex()) return false;
1582
1583 if (ParseSimpleId(state)) {
1584 return true;
1585 }
1586
1587 ParseState copy = state->parse_state;
1588 if (ParseTwoCharToken(state, "on") && ParseOperatorName(state, nullptr) &&
1589 Optional(ParseTemplateArgs(state))) {
1590 return true;
1591 }
1592 state->parse_state = copy;
1593
1594 if (ParseTwoCharToken(state, "dn") &&
1595 (ParseUnresolvedType(state) || ParseSimpleId(state))) {
1596 return true;
1597 }
1598 state->parse_state = copy;
1599
1600 return false;
1601 }
1602
1603 // <unresolved-name> ::= [gs] <base-unresolved-name>
1604 // ::= sr <unresolved-type> <base-unresolved-name>
1605 // ::= srN <unresolved-type> <unresolved-qualifier-level>+ E
1606 // <base-unresolved-name>
1607 // ::= [gs] sr <unresolved-qualifier-level>+ E
1608 // <base-unresolved-name>
ParseUnresolvedName(State * state)1609 static bool ParseUnresolvedName(State *state) {
1610 ComplexityGuard guard(state);
1611 if (guard.IsTooComplex()) return false;
1612
1613 ParseState copy = state->parse_state;
1614 if (Optional(ParseTwoCharToken(state, "gs")) &&
1615 ParseBaseUnresolvedName(state)) {
1616 return true;
1617 }
1618 state->parse_state = copy;
1619
1620 if (ParseTwoCharToken(state, "sr") && ParseUnresolvedType(state) &&
1621 ParseBaseUnresolvedName(state)) {
1622 return true;
1623 }
1624 state->parse_state = copy;
1625
1626 if (ParseTwoCharToken(state, "sr") && ParseOneCharToken(state, 'N') &&
1627 ParseUnresolvedType(state) &&
1628 OneOrMore(/* <unresolved-qualifier-level> ::= */ ParseSimpleId, state) &&
1629 ParseOneCharToken(state, 'E') && ParseBaseUnresolvedName(state)) {
1630 return true;
1631 }
1632 state->parse_state = copy;
1633
1634 if (Optional(ParseTwoCharToken(state, "gs")) &&
1635 ParseTwoCharToken(state, "sr") &&
1636 OneOrMore(/* <unresolved-qualifier-level> ::= */ ParseSimpleId, state) &&
1637 ParseOneCharToken(state, 'E') && ParseBaseUnresolvedName(state)) {
1638 return true;
1639 }
1640 state->parse_state = copy;
1641
1642 return false;
1643 }
1644
1645 // <expression> ::= <1-ary operator-name> <expression>
1646 // ::= <2-ary operator-name> <expression> <expression>
1647 // ::= <3-ary operator-name> <expression> <expression> <expression>
1648 // ::= cl <expression>+ E
1649 // ::= cp <simple-id> <expression>* E # Clang-specific.
1650 // ::= cv <type> <expression> # type (expression)
1651 // ::= cv <type> _ <expression>* E # type (expr-list)
1652 // ::= st <type>
1653 // ::= <template-param>
1654 // ::= <function-param>
1655 // ::= <expr-primary>
1656 // ::= dt <expression> <unresolved-name> # expr.name
1657 // ::= pt <expression> <unresolved-name> # expr->name
1658 // ::= sp <expression> # argument pack expansion
1659 // ::= sr <type> <unqualified-name> <template-args>
1660 // ::= sr <type> <unqualified-name>
1661 // <function-param> ::= fp <(top-level) CV-qualifiers> _
1662 // ::= fp <(top-level) CV-qualifiers> <number> _
1663 // ::= fL <number> p <(top-level) CV-qualifiers> _
1664 // ::= fL <number> p <(top-level) CV-qualifiers> <number> _
ParseExpression(State * state)1665 static bool ParseExpression(State *state) {
1666 ComplexityGuard guard(state);
1667 if (guard.IsTooComplex()) return false;
1668 if (ParseTemplateParam(state) || ParseExprPrimary(state)) {
1669 return true;
1670 }
1671
1672 ParseState copy = state->parse_state;
1673
1674 // Object/function call expression.
1675 if (ParseTwoCharToken(state, "cl") && OneOrMore(ParseExpression, state) &&
1676 ParseOneCharToken(state, 'E')) {
1677 return true;
1678 }
1679 state->parse_state = copy;
1680
1681 // Clang-specific "cp <simple-id> <expression>* E"
1682 // https://clang.llvm.org/doxygen/ItaniumMangle_8cpp_source.html#l04338
1683 if (ParseTwoCharToken(state, "cp") && ParseSimpleId(state) &&
1684 ZeroOrMore(ParseExpression, state) && ParseOneCharToken(state, 'E')) {
1685 return true;
1686 }
1687 state->parse_state = copy;
1688
1689 // Function-param expression (level 0).
1690 if (ParseTwoCharToken(state, "fp") && Optional(ParseCVQualifiers(state)) &&
1691 Optional(ParseNumber(state, nullptr)) && ParseOneCharToken(state, '_')) {
1692 return true;
1693 }
1694 state->parse_state = copy;
1695
1696 // Function-param expression (level 1+).
1697 if (ParseTwoCharToken(state, "fL") && Optional(ParseNumber(state, nullptr)) &&
1698 ParseOneCharToken(state, 'p') && Optional(ParseCVQualifiers(state)) &&
1699 Optional(ParseNumber(state, nullptr)) && ParseOneCharToken(state, '_')) {
1700 return true;
1701 }
1702 state->parse_state = copy;
1703
1704 // Parse the conversion expressions jointly to avoid re-parsing the <type> in
1705 // their common prefix. Parsed as:
1706 // <expression> ::= cv <type> <conversion-args>
1707 // <conversion-args> ::= _ <expression>* E
1708 // ::= <expression>
1709 //
1710 // Also don't try ParseOperatorName after seeing "cv", since ParseOperatorName
1711 // also needs to accept "cv <type>" in other contexts.
1712 if (ParseTwoCharToken(state, "cv")) {
1713 if (ParseType(state)) {
1714 ParseState copy2 = state->parse_state;
1715 if (ParseOneCharToken(state, '_') && ZeroOrMore(ParseExpression, state) &&
1716 ParseOneCharToken(state, 'E')) {
1717 return true;
1718 }
1719 state->parse_state = copy2;
1720 if (ParseExpression(state)) {
1721 return true;
1722 }
1723 }
1724 } else {
1725 // Parse unary, binary, and ternary operator expressions jointly, taking
1726 // care not to re-parse subexpressions repeatedly. Parse like:
1727 // <expression> ::= <operator-name> <expression>
1728 // [<one-to-two-expressions>]
1729 // <one-to-two-expressions> ::= <expression> [<expression>]
1730 int arity = -1;
1731 if (ParseOperatorName(state, &arity) &&
1732 arity > 0 && // 0 arity => disabled.
1733 (arity < 3 || ParseExpression(state)) &&
1734 (arity < 2 || ParseExpression(state)) &&
1735 (arity < 1 || ParseExpression(state))) {
1736 return true;
1737 }
1738 }
1739 state->parse_state = copy;
1740
1741 // sizeof type
1742 if (ParseTwoCharToken(state, "st") && ParseType(state)) {
1743 return true;
1744 }
1745 state->parse_state = copy;
1746
1747 // Object and pointer member access expressions.
1748 if ((ParseTwoCharToken(state, "dt") || ParseTwoCharToken(state, "pt")) &&
1749 ParseExpression(state) && ParseType(state)) {
1750 return true;
1751 }
1752 state->parse_state = copy;
1753
1754 // Pointer-to-member access expressions. This parses the same as a binary
1755 // operator, but it's implemented separately because "ds" shouldn't be
1756 // accepted in other contexts that parse an operator name.
1757 if (ParseTwoCharToken(state, "ds") && ParseExpression(state) &&
1758 ParseExpression(state)) {
1759 return true;
1760 }
1761 state->parse_state = copy;
1762
1763 // Parameter pack expansion
1764 if (ParseTwoCharToken(state, "sp") && ParseExpression(state)) {
1765 return true;
1766 }
1767 state->parse_state = copy;
1768
1769 return ParseUnresolvedName(state);
1770 }
1771
1772 // <expr-primary> ::= L <type> <(value) number> E
1773 // ::= L <type> <(value) float> E
1774 // ::= L <mangled-name> E
1775 // // A bug in g++'s C++ ABI version 2 (-fabi-version=2).
1776 // ::= LZ <encoding> E
1777 //
1778 // Warning, subtle: the "bug" LZ production above is ambiguous with the first
1779 // production where <type> starts with <local-name>, which can lead to
1780 // exponential backtracking in two scenarios:
1781 //
1782 // - When whatever follows the E in the <local-name> in the first production is
1783 // not a name, we backtrack the whole <encoding> and re-parse the whole thing.
1784 //
1785 // - When whatever follows the <local-name> in the first production is not a
1786 // number and this <expr-primary> may be followed by a name, we backtrack the
1787 // <name> and re-parse it.
1788 //
1789 // Moreover this ambiguity isn't always resolved -- for example, the following
1790 // has two different parses:
1791 //
1792 // _ZaaILZ4aoeuE1x1EvE
1793 // => operator&&<aoeu, x, E, void>
1794 // => operator&&<(aoeu::x)(1), void>
1795 //
1796 // To resolve this, we just do what GCC's demangler does, and refuse to parse
1797 // casts to <local-name> types.
ParseExprPrimary(State * state)1798 static bool ParseExprPrimary(State *state) {
1799 ComplexityGuard guard(state);
1800 if (guard.IsTooComplex()) return false;
1801 ParseState copy = state->parse_state;
1802
1803 // The "LZ" special case: if we see LZ, we commit to accept "LZ <encoding> E"
1804 // or fail, no backtracking.
1805 if (ParseTwoCharToken(state, "LZ")) {
1806 if (ParseEncoding(state) && ParseOneCharToken(state, 'E')) {
1807 return true;
1808 }
1809
1810 state->parse_state = copy;
1811 return false;
1812 }
1813
1814 // The merged cast production.
1815 if (ParseOneCharToken(state, 'L') && ParseType(state) &&
1816 ParseExprCastValue(state)) {
1817 return true;
1818 }
1819 state->parse_state = copy;
1820
1821 if (ParseOneCharToken(state, 'L') && ParseMangledName(state) &&
1822 ParseOneCharToken(state, 'E')) {
1823 return true;
1824 }
1825 state->parse_state = copy;
1826
1827 return false;
1828 }
1829
1830 // <number> or <float>, followed by 'E', as described above ParseExprPrimary.
ParseExprCastValue(State * state)1831 static bool ParseExprCastValue(State *state) {
1832 ComplexityGuard guard(state);
1833 if (guard.IsTooComplex()) return false;
1834 // We have to be able to backtrack after accepting a number because we could
1835 // have e.g. "7fffE", which will accept "7" as a number but then fail to find
1836 // the 'E'.
1837 ParseState copy = state->parse_state;
1838 if (ParseNumber(state, nullptr) && ParseOneCharToken(state, 'E')) {
1839 return true;
1840 }
1841 state->parse_state = copy;
1842
1843 if (ParseFloatNumber(state) && ParseOneCharToken(state, 'E')) {
1844 return true;
1845 }
1846 state->parse_state = copy;
1847
1848 return false;
1849 }
1850
1851 // <local-name> ::= Z <(function) encoding> E <(entity) name> [<discriminator>]
1852 // ::= Z <(function) encoding> E s [<discriminator>]
1853 //
1854 // Parsing a common prefix of these two productions together avoids an
1855 // exponential blowup of backtracking. Parse like:
1856 // <local-name> := Z <encoding> E <local-name-suffix>
1857 // <local-name-suffix> ::= s [<discriminator>]
1858 // ::= <name> [<discriminator>]
1859
ParseLocalNameSuffix(State * state)1860 static bool ParseLocalNameSuffix(State *state) {
1861 ComplexityGuard guard(state);
1862 if (guard.IsTooComplex()) return false;
1863
1864 if (MaybeAppend(state, "::") && ParseName(state) &&
1865 Optional(ParseDiscriminator(state))) {
1866 return true;
1867 }
1868
1869 // Since we're not going to overwrite the above "::" by re-parsing the
1870 // <encoding> (whose trailing '\0' byte was in the byte now holding the
1871 // first ':'), we have to rollback the "::" if the <name> parse failed.
1872 if (state->parse_state.append) {
1873 state->out[state->parse_state.out_cur_idx - 2] = '\0';
1874 }
1875
1876 return ParseOneCharToken(state, 's') && Optional(ParseDiscriminator(state));
1877 }
1878
ParseLocalName(State * state)1879 static bool ParseLocalName(State *state) {
1880 ComplexityGuard guard(state);
1881 if (guard.IsTooComplex()) return false;
1882 ParseState copy = state->parse_state;
1883 if (ParseOneCharToken(state, 'Z') && ParseEncoding(state) &&
1884 ParseOneCharToken(state, 'E') && ParseLocalNameSuffix(state)) {
1885 return true;
1886 }
1887 state->parse_state = copy;
1888 return false;
1889 }
1890
1891 // <discriminator> := _ <(non-negative) number>
ParseDiscriminator(State * state)1892 static bool ParseDiscriminator(State *state) {
1893 ComplexityGuard guard(state);
1894 if (guard.IsTooComplex()) return false;
1895 ParseState copy = state->parse_state;
1896 if (ParseOneCharToken(state, '_') && ParseNumber(state, nullptr)) {
1897 return true;
1898 }
1899 state->parse_state = copy;
1900 return false;
1901 }
1902
1903 // <substitution> ::= S_
1904 // ::= S <seq-id> _
1905 // ::= St, etc.
1906 //
1907 // "St" is special in that it's not valid as a standalone name, and it *is*
1908 // allowed to precede a name without being wrapped in "N...E". This means that
1909 // if we accept it on its own, we can accept "St1a" and try to parse
1910 // template-args, then fail and backtrack, accept "St" on its own, then "1a" as
1911 // an unqualified name and re-parse the same template-args. To block this
1912 // exponential backtracking, we disable it with 'accept_std=false' in
1913 // problematic contexts.
ParseSubstitution(State * state,bool accept_std)1914 static bool ParseSubstitution(State *state, bool accept_std) {
1915 ComplexityGuard guard(state);
1916 if (guard.IsTooComplex()) return false;
1917 if (ParseTwoCharToken(state, "S_")) {
1918 MaybeAppend(state, "?"); // We don't support substitutions.
1919 return true;
1920 }
1921
1922 ParseState copy = state->parse_state;
1923 if (ParseOneCharToken(state, 'S') && ParseSeqId(state) &&
1924 ParseOneCharToken(state, '_')) {
1925 MaybeAppend(state, "?"); // We don't support substitutions.
1926 return true;
1927 }
1928 state->parse_state = copy;
1929
1930 // Expand abbreviations like "St" => "std".
1931 if (ParseOneCharToken(state, 'S')) {
1932 const AbbrevPair *p;
1933 for (p = kSubstitutionList; p->abbrev != nullptr; ++p) {
1934 if (RemainingInput(state)[0] == p->abbrev[1] &&
1935 (accept_std || p->abbrev[1] != 't')) {
1936 MaybeAppend(state, "std");
1937 if (p->real_name[0] != '\0') {
1938 MaybeAppend(state, "::");
1939 MaybeAppend(state, p->real_name);
1940 }
1941 ++state->parse_state.mangled_idx;
1942 return true;
1943 }
1944 }
1945 }
1946 state->parse_state = copy;
1947 return false;
1948 }
1949
1950 // Parse <mangled-name>, optionally followed by either a function-clone suffix
1951 // or version suffix. Returns true only if all of "mangled_cur" was consumed.
ParseTopLevelMangledName(State * state)1952 static bool ParseTopLevelMangledName(State *state) {
1953 ComplexityGuard guard(state);
1954 if (guard.IsTooComplex()) return false;
1955 if (ParseMangledName(state)) {
1956 if (RemainingInput(state)[0] != '\0') {
1957 // Drop trailing function clone suffix, if any.
1958 if (IsFunctionCloneSuffix(RemainingInput(state))) {
1959 return true;
1960 }
1961 // Append trailing version suffix if any.
1962 // ex. _Z3foo@@GLIBCXX_3.4
1963 if (RemainingInput(state)[0] == '@') {
1964 MaybeAppend(state, RemainingInput(state));
1965 return true;
1966 }
1967 return false; // Unconsumed suffix.
1968 }
1969 return true;
1970 }
1971 return false;
1972 }
1973
Overflowed(const State * state)1974 static bool Overflowed(const State *state) {
1975 return state->parse_state.out_cur_idx >= state->out_end_idx;
1976 }
1977
1978 // The demangler entry point.
Demangle(const char * mangled,char * out,size_t out_size)1979 bool Demangle(const char* mangled, char* out, size_t out_size) {
1980 State state;
1981 InitState(&state, mangled, out, out_size);
1982 return ParseTopLevelMangledName(&state) && !Overflowed(&state) &&
1983 state.parse_state.out_cur_idx > 0;
1984 }
1985
1986 } // namespace debugging_internal
1987 ABSL_NAMESPACE_END
1988 } // namespace absl
1989