1 // Protocol Buffers - Google's data interchange format
2 // Copyright 2014 Google Inc. All rights reserved.
3 // https://developers.google.com/protocol-buffers/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are
7 // met:
8 //
9 // * Redistributions of source code must retain the above copyright
10 // notice, this list of conditions and the following disclaimer.
11 // * Redistributions in binary form must reproduce the above
12 // copyright notice, this list of conditions and the following disclaimer
13 // in the documentation and/or other materials provided with the
14 // distribution.
15 // * Neither the name of Google Inc. nor the names of its
16 // contributors may be used to endorse or promote products derived from
17 // this software without specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31 #include "protobuf.h"
32
33 #include <ruby/version.h>
34
35 #include "defs.h"
36 #include "map.h"
37 #include "message.h"
38 #include "repeated_field.h"
39
40 VALUE cParseError;
41 VALUE cTypeError;
42
map_field_key(const upb_FieldDef * field)43 const upb_FieldDef *map_field_key(const upb_FieldDef *field) {
44 const upb_MessageDef *entry = upb_FieldDef_MessageSubDef(field);
45 return upb_MessageDef_FindFieldByNumber(entry, 1);
46 }
47
map_field_value(const upb_FieldDef * field)48 const upb_FieldDef *map_field_value(const upb_FieldDef *field) {
49 const upb_MessageDef *entry = upb_FieldDef_MessageSubDef(field);
50 return upb_MessageDef_FindFieldByNumber(entry, 2);
51 }
52
53 // -----------------------------------------------------------------------------
54 // StringBuilder, for inspect
55 // -----------------------------------------------------------------------------
56
57 struct StringBuilder {
58 size_t size;
59 size_t cap;
60 char *data;
61 };
62
63 typedef struct StringBuilder StringBuilder;
64
StringBuilder_SizeOf(size_t cap)65 static size_t StringBuilder_SizeOf(size_t cap) {
66 return sizeof(StringBuilder) + cap;
67 }
68
StringBuilder_New()69 StringBuilder *StringBuilder_New() {
70 const size_t cap = 128;
71 StringBuilder *builder = malloc(sizeof(*builder));
72 builder->size = 0;
73 builder->cap = cap;
74 builder->data = malloc(builder->cap);
75 return builder;
76 }
77
StringBuilder_Free(StringBuilder * b)78 void StringBuilder_Free(StringBuilder *b) {
79 free(b->data);
80 free(b);
81 }
82
StringBuilder_Printf(StringBuilder * b,const char * fmt,...)83 void StringBuilder_Printf(StringBuilder *b, const char *fmt, ...) {
84 size_t have = b->cap - b->size;
85 size_t n;
86 va_list args;
87
88 va_start(args, fmt);
89 n = vsnprintf(&b->data[b->size], have, fmt, args);
90 va_end(args);
91
92 if (have <= n) {
93 while (have <= n) {
94 b->cap *= 2;
95 have = b->cap - b->size;
96 }
97 b->data = realloc(b->data, StringBuilder_SizeOf(b->cap));
98 va_start(args, fmt);
99 n = vsnprintf(&b->data[b->size], have, fmt, args);
100 va_end(args);
101 PBRUBY_ASSERT(n < have);
102 }
103
104 b->size += n;
105 }
106
StringBuilder_ToRubyString(StringBuilder * b)107 VALUE StringBuilder_ToRubyString(StringBuilder *b) {
108 VALUE ret = rb_str_new(b->data, b->size);
109 rb_enc_associate(ret, rb_utf8_encoding());
110 return ret;
111 }
112
StringBuilder_PrintEnum(StringBuilder * b,int32_t val,const upb_EnumDef * e)113 static void StringBuilder_PrintEnum(StringBuilder *b, int32_t val,
114 const upb_EnumDef *e) {
115 const upb_EnumValueDef *ev = upb_EnumDef_FindValueByNumber(e, val);
116 if (ev) {
117 StringBuilder_Printf(b, ":%s", upb_EnumValueDef_Name(ev));
118 } else {
119 StringBuilder_Printf(b, "%" PRId32, val);
120 }
121 }
122
StringBuilder_PrintMsgval(StringBuilder * b,upb_MessageValue val,TypeInfo info)123 void StringBuilder_PrintMsgval(StringBuilder *b, upb_MessageValue val,
124 TypeInfo info) {
125 switch (info.type) {
126 case kUpb_CType_Bool:
127 StringBuilder_Printf(b, "%s", val.bool_val ? "true" : "false");
128 break;
129 case kUpb_CType_Float: {
130 VALUE str = rb_inspect(DBL2NUM(val.float_val));
131 StringBuilder_Printf(b, "%s", RSTRING_PTR(str));
132 break;
133 }
134 case kUpb_CType_Double: {
135 VALUE str = rb_inspect(DBL2NUM(val.double_val));
136 StringBuilder_Printf(b, "%s", RSTRING_PTR(str));
137 break;
138 }
139 case kUpb_CType_Int32:
140 StringBuilder_Printf(b, "%" PRId32, val.int32_val);
141 break;
142 case kUpb_CType_UInt32:
143 StringBuilder_Printf(b, "%" PRIu32, val.uint32_val);
144 break;
145 case kUpb_CType_Int64:
146 StringBuilder_Printf(b, "%" PRId64, val.int64_val);
147 break;
148 case kUpb_CType_UInt64:
149 StringBuilder_Printf(b, "%" PRIu64, val.uint64_val);
150 break;
151 case kUpb_CType_String:
152 StringBuilder_Printf(b, "\"%.*s\"", (int)val.str_val.size,
153 val.str_val.data);
154 break;
155 case kUpb_CType_Bytes:
156 StringBuilder_Printf(b, "\"%.*s\"", (int)val.str_val.size,
157 val.str_val.data);
158 break;
159 case kUpb_CType_Enum:
160 StringBuilder_PrintEnum(b, val.int32_val, info.def.enumdef);
161 break;
162 case kUpb_CType_Message:
163 Message_PrintMessage(b, val.msg_val, info.def.msgdef);
164 break;
165 }
166 }
167
168 // -----------------------------------------------------------------------------
169 // Arena
170 // -----------------------------------------------------------------------------
171
172 typedef struct {
173 upb_Arena *arena;
174 VALUE pinned_objs;
175 } Arena;
176
Arena_mark(void * data)177 static void Arena_mark(void *data) {
178 Arena *arena = data;
179 rb_gc_mark(arena->pinned_objs);
180 }
181
Arena_free(void * data)182 static void Arena_free(void *data) {
183 Arena *arena = data;
184 upb_Arena_Free(arena->arena);
185 xfree(arena);
186 }
187
188 static VALUE cArena;
189
190 const rb_data_type_t Arena_type = {
191 "Google::Protobuf::Internal::Arena",
192 {Arena_mark, Arena_free, NULL},
193 .flags = RUBY_TYPED_FREE_IMMEDIATELY,
194 };
195
ruby_upb_allocfunc(upb_alloc * alloc,void * ptr,size_t oldsize,size_t size)196 static void* ruby_upb_allocfunc(upb_alloc* alloc, void* ptr, size_t oldsize, size_t size) {
197 if (size == 0) {
198 xfree(ptr);
199 return NULL;
200 } else {
201 return xrealloc(ptr, size);
202 }
203 }
204
205 upb_alloc ruby_upb_alloc = {&ruby_upb_allocfunc};
206
Arena_alloc(VALUE klass)207 static VALUE Arena_alloc(VALUE klass) {
208 Arena *arena = ALLOC(Arena);
209 arena->arena = upb_Arena_Init(NULL, 0, &ruby_upb_alloc);
210 arena->pinned_objs = Qnil;
211 return TypedData_Wrap_Struct(klass, &Arena_type, arena);
212 }
213
Arena_get(VALUE _arena)214 upb_Arena *Arena_get(VALUE _arena) {
215 Arena *arena;
216 TypedData_Get_Struct(_arena, Arena, &Arena_type, arena);
217 return arena->arena;
218 }
219
Arena_fuse(VALUE _arena,upb_Arena * other)220 void Arena_fuse(VALUE _arena, upb_Arena *other) {
221 Arena *arena;
222 TypedData_Get_Struct(_arena, Arena, &Arena_type, arena);
223 if (!upb_Arena_Fuse(arena->arena, other)) {
224 rb_raise(rb_eRuntimeError,
225 "Unable to fuse arenas. This should never happen since Ruby does "
226 "not use initial blocks");
227 }
228 }
229
Arena_new()230 VALUE Arena_new() { return Arena_alloc(cArena); }
231
Arena_Pin(VALUE _arena,VALUE obj)232 void Arena_Pin(VALUE _arena, VALUE obj) {
233 Arena *arena;
234 TypedData_Get_Struct(_arena, Arena, &Arena_type, arena);
235 if (arena->pinned_objs == Qnil) {
236 arena->pinned_objs = rb_ary_new();
237 }
238 rb_ary_push(arena->pinned_objs, obj);
239 }
240
Arena_register(VALUE module)241 void Arena_register(VALUE module) {
242 VALUE internal = rb_define_module_under(module, "Internal");
243 VALUE klass = rb_define_class_under(internal, "Arena", rb_cObject);
244 rb_define_alloc_func(klass, Arena_alloc);
245 rb_gc_register_address(&cArena);
246 cArena = klass;
247 }
248
249 // -----------------------------------------------------------------------------
250 // Object Cache
251 // -----------------------------------------------------------------------------
252
253 // A pointer -> Ruby Object cache that keeps references to Ruby wrapper
254 // objects. This allows us to look up any Ruby wrapper object by the address
255 // of the object it is wrapping. That way we can avoid ever creating two
256 // different wrapper objects for the same C object, which saves memory and
257 // preserves object identity.
258 //
259 // We use WeakMap for the cache. For Ruby <2.7 we also need a secondary Hash
260 // to store WeakMap keys because Ruby <2.7 WeakMap doesn't allow non-finalizable
261 // keys.
262 //
263 // We also need the secondary Hash if sizeof(long) < sizeof(VALUE), because this
264 // means it may not be possible to fit a pointer into a Fixnum. Keys are
265 // pointers, and if they fit into a Fixnum, Ruby doesn't collect them, but if
266 // they overflow and require allocating a Bignum, they could get collected
267 // prematurely, thus removing the cache entry. This happens on 64-bit Windows,
268 // on which pointers are 64 bits but longs are 32 bits. In this case, we enable
269 // the secondary Hash to hold the keys and prevent them from being collected.
270
271 #if RUBY_API_VERSION_CODE >= 20700 && SIZEOF_LONG >= SIZEOF_VALUE
272 #define USE_SECONDARY_MAP 0
273 #else
274 #define USE_SECONDARY_MAP 1
275 #endif
276
277 #if USE_SECONDARY_MAP
278
279 // Maps Numeric -> Object. The object is then used as a key into the WeakMap.
280 // This is needed for Ruby <2.7 where a number cannot be a key to WeakMap.
281 // The object is used only for its identity; it does not contain any data.
282 VALUE secondary_map = Qnil;
283
284 // Mutations to the map are under a mutex, because SeconaryMap_MaybeGC()
285 // iterates over the map which cannot happen in parallel with insertions, or
286 // Ruby will throw:
287 // can't add a new key into hash during iteration (RuntimeError)
288 VALUE secondary_map_mutex = Qnil;
289
290 // Lambda that will GC entries from the secondary map that are no longer present
291 // in the primary map.
292 VALUE gc_secondary_map_lambda = Qnil;
293 ID length;
294
295 extern VALUE weak_obj_cache;
296
SecondaryMap_Init()297 static void SecondaryMap_Init() {
298 rb_gc_register_address(&secondary_map);
299 rb_gc_register_address(&gc_secondary_map_lambda);
300 rb_gc_register_address(&secondary_map_mutex);
301 secondary_map = rb_hash_new();
302 gc_secondary_map_lambda = rb_eval_string(
303 "->(secondary, weak) {\n"
304 " secondary.delete_if { |k, v| !weak.key?(v) }\n"
305 "}\n");
306 secondary_map_mutex = rb_mutex_new();
307 length = rb_intern("length");
308 }
309
310 // The secondary map is a regular Hash, and will never shrink on its own.
311 // The main object cache is a WeakMap that will automatically remove entries
312 // when the target object is no longer reachable, but unless we manually
313 // remove the corresponding entries from the secondary map, it will grow
314 // without bound.
315 //
316 // To avoid this unbounded growth we periodically remove entries from the
317 // secondary map that are no longer present in the WeakMap. The logic of
318 // how often to perform this GC is an artbirary tuning parameter that
319 // represents a straightforward CPU/memory tradeoff.
320 //
321 // Requires: secondary_map_mutex is held.
SecondaryMap_MaybeGC()322 static void SecondaryMap_MaybeGC() {
323 PBRUBY_ASSERT(rb_mutex_locked_p(secondary_map_mutex) == Qtrue);
324 size_t weak_len = NUM2ULL(rb_funcall(weak_obj_cache, length, 0));
325 size_t secondary_len = RHASH_SIZE(secondary_map);
326 if (secondary_len < weak_len) {
327 // Logically this case should not be possible: a valid entry cannot exist in
328 // the weak table unless there is a corresponding entry in the secondary
329 // table. It should *always* be the case that secondary_len >= weak_len.
330 //
331 // However ObjectSpace::WeakMap#length (and therefore weak_len) is
332 // unreliable: it overreports its true length by including non-live objects.
333 // However these non-live objects are not yielded in iteration, so we may
334 // have previously deleted them from the secondary map in a previous
335 // invocation of SecondaryMap_MaybeGC().
336 //
337 // In this case, we can't measure any waste, so we just return.
338 return;
339 }
340 size_t waste = secondary_len - weak_len;
341 // GC if we could remove at least 2000 entries or 20% of the table size
342 // (whichever is greater). Since the cost of the GC pass is O(N), we
343 // want to make sure that we condition this on overall table size, to
344 // avoid O(N^2) CPU costs.
345 size_t threshold = PBRUBY_MAX(secondary_len * 0.2, 2000);
346 if (waste > threshold) {
347 rb_funcall(gc_secondary_map_lambda, rb_intern("call"), 2, secondary_map,
348 weak_obj_cache);
349 }
350 }
351
352 // Requires: secondary_map_mutex is held by this thread iff create == true.
SecondaryMap_Get(VALUE key,bool create)353 static VALUE SecondaryMap_Get(VALUE key, bool create) {
354 PBRUBY_ASSERT(!create || rb_mutex_locked_p(secondary_map_mutex) == Qtrue);
355 VALUE ret = rb_hash_lookup(secondary_map, key);
356 if (ret == Qnil && create) {
357 SecondaryMap_MaybeGC();
358 ret = rb_class_new_instance(0, NULL, rb_cObject);
359 rb_hash_aset(secondary_map, key, ret);
360 }
361 return ret;
362 }
363
364 #endif
365
366 // Requires: secondary_map_mutex is held by this thread iff create == true.
ObjectCache_GetKey(const void * key,bool create)367 static VALUE ObjectCache_GetKey(const void *key, bool create) {
368 VALUE key_val = (VALUE)key;
369 PBRUBY_ASSERT((key_val & 3) == 0);
370 VALUE ret = LL2NUM(key_val >> 2);
371 #if USE_SECONDARY_MAP
372 ret = SecondaryMap_Get(ret, create);
373 #endif
374 return ret;
375 }
376
377 // Public ObjectCache API.
378
379 VALUE weak_obj_cache = Qnil;
380 ID item_get;
381 ID item_set;
382
ObjectCache_Init()383 static void ObjectCache_Init() {
384 rb_gc_register_address(&weak_obj_cache);
385 VALUE klass = rb_eval_string("ObjectSpace::WeakMap");
386 weak_obj_cache = rb_class_new_instance(0, NULL, klass);
387 item_get = rb_intern("[]");
388 item_set = rb_intern("[]=");
389 #if USE_SECONDARY_MAP
390 SecondaryMap_Init();
391 #endif
392 }
393
ObjectCache_Add(const void * key,VALUE val)394 void ObjectCache_Add(const void *key, VALUE val) {
395 PBRUBY_ASSERT(ObjectCache_Get(key) == Qnil);
396 #if USE_SECONDARY_MAP
397 rb_mutex_lock(secondary_map_mutex);
398 #endif
399 VALUE key_rb = ObjectCache_GetKey(key, true);
400 rb_funcall(weak_obj_cache, item_set, 2, key_rb, val);
401 #if USE_SECONDARY_MAP
402 rb_mutex_unlock(secondary_map_mutex);
403 #endif
404 PBRUBY_ASSERT(ObjectCache_Get(key) == val);
405 }
406
407 // Returns the cached object for this key, if any. Otherwise returns Qnil.
ObjectCache_Get(const void * key)408 VALUE ObjectCache_Get(const void *key) {
409 VALUE key_rb = ObjectCache_GetKey(key, false);
410 return rb_funcall(weak_obj_cache, item_get, 1, key_rb);
411 }
412
413 /*
414 * call-seq:
415 * Google::Protobuf.discard_unknown(msg)
416 *
417 * Discard unknown fields in the given message object and recursively discard
418 * unknown fields in submessages.
419 */
Google_Protobuf_discard_unknown(VALUE self,VALUE msg_rb)420 static VALUE Google_Protobuf_discard_unknown(VALUE self, VALUE msg_rb) {
421 const upb_MessageDef *m;
422 upb_Message *msg = Message_GetMutable(msg_rb, &m);
423 if (!upb_Message_DiscardUnknown(msg, m, 128)) {
424 rb_raise(rb_eRuntimeError, "Messages nested too deeply.");
425 }
426
427 return Qnil;
428 }
429
430 /*
431 * call-seq:
432 * Google::Protobuf.deep_copy(obj) => copy_of_obj
433 *
434 * Performs a deep copy of a RepeatedField instance, a Map instance, or a
435 * message object, recursively copying its members.
436 */
Google_Protobuf_deep_copy(VALUE self,VALUE obj)437 VALUE Google_Protobuf_deep_copy(VALUE self, VALUE obj) {
438 VALUE klass = CLASS_OF(obj);
439 if (klass == cRepeatedField) {
440 return RepeatedField_deep_copy(obj);
441 } else if (klass == cMap) {
442 return Map_deep_copy(obj);
443 } else {
444 VALUE new_arena_rb = Arena_new();
445 upb_Arena *new_arena = Arena_get(new_arena_rb);
446 const upb_MessageDef *m;
447 const upb_Message *msg = Message_Get(obj, &m);
448 upb_Message *new_msg = Message_deep_copy(msg, m, new_arena);
449 return Message_GetRubyWrapper(new_msg, m, new_arena_rb);
450 }
451 }
452
453 // -----------------------------------------------------------------------------
454 // Initialization/entry point.
455 // -----------------------------------------------------------------------------
456
457 // This must be named "Init_protobuf_c" because the Ruby module is named
458 // "protobuf_c" -- the VM looks for this symbol in our .so.
Init_protobuf_c()459 __attribute__((visibility("default"))) void Init_protobuf_c() {
460 ObjectCache_Init();
461
462 VALUE google = rb_define_module("Google");
463 VALUE protobuf = rb_define_module_under(google, "Protobuf");
464
465 Arena_register(protobuf);
466 Defs_register(protobuf);
467 RepeatedField_register(protobuf);
468 Map_register(protobuf);
469 Message_register(protobuf);
470
471 cParseError = rb_const_get(protobuf, rb_intern("ParseError"));
472 rb_gc_register_mark_object(cParseError);
473 cTypeError = rb_const_get(protobuf, rb_intern("TypeError"));
474 rb_gc_register_mark_object(cTypeError);
475
476 rb_define_singleton_method(protobuf, "discard_unknown",
477 Google_Protobuf_discard_unknown, 1);
478 rb_define_singleton_method(protobuf, "deep_copy", Google_Protobuf_deep_copy,
479 1);
480 }
481