1 /*
2
3 Reference Cycle Garbage Collection
4 ==================================
5
6 Neil Schemenauer <[email protected]>
7
8 Based on a post on the python-dev list. Ideas from Guido van Rossum,
9 Eric Tiedemann, and various others.
10
11 http://www.arctrix.com/nas/python/gc/
12
13 The following mailing list threads provide a historical perspective on
14 the design of this module. Note that a fair amount of refinement has
15 occurred since those discussions.
16
17 http://mail.python.org/pipermail/python-dev/2000-March/002385.html
18 http://mail.python.org/pipermail/python-dev/2000-March/002434.html
19 http://mail.python.org/pipermail/python-dev/2000-March/002497.html
20
21 For a highlevel view of the collection process, read the collect
22 function.
23
24 */
25
26 #include "Python.h"
27 #include "pycore_context.h"
28 #include "pycore_initconfig.h"
29 #include "pycore_interp.h" // PyInterpreterState.gc
30 #include "pycore_object.h"
31 #include "pycore_pyerrors.h"
32 #include "pycore_pystate.h" // _PyThreadState_GET()
33 #include "pydtrace.h"
34
35 typedef struct _gc_runtime_state GCState;
36
37 /*[clinic input]
38 module gc
39 [clinic start generated code]*/
40 /*[clinic end generated code: output=da39a3ee5e6b4b0d input=b5c9690ecc842d79]*/
41
42
43 #ifdef Py_DEBUG
44 # define GC_DEBUG
45 #endif
46
47 #define GC_NEXT _PyGCHead_NEXT
48 #define GC_PREV _PyGCHead_PREV
49
50 // update_refs() set this bit for all objects in current generation.
51 // subtract_refs() and move_unreachable() uses this to distinguish
52 // visited object is in GCing or not.
53 //
54 // move_unreachable() removes this flag from reachable objects.
55 // Only unreachable objects have this flag.
56 //
57 // No objects in interpreter have this flag after GC ends.
58 #define PREV_MASK_COLLECTING _PyGC_PREV_MASK_COLLECTING
59
60 // Lowest bit of _gc_next is used for UNREACHABLE flag.
61 //
62 // This flag represents the object is in unreachable list in move_unreachable()
63 //
64 // Although this flag is used only in move_unreachable(), move_unreachable()
65 // doesn't clear this flag to skip unnecessary iteration.
66 // move_legacy_finalizers() removes this flag instead.
67 // Between them, unreachable list is not normal list and we can not use
68 // most gc_list_* functions for it.
69 #define NEXT_MASK_UNREACHABLE (1)
70
71 /* Get an object's GC head */
72 #define AS_GC(o) ((PyGC_Head *)(((char *)(o))-sizeof(PyGC_Head)))
73
74 /* Get the object given the GC head */
75 #define FROM_GC(g) ((PyObject *)(((char *)(g))+sizeof(PyGC_Head)))
76
77 static inline int
gc_is_collecting(PyGC_Head * g)78 gc_is_collecting(PyGC_Head *g)
79 {
80 return (g->_gc_prev & PREV_MASK_COLLECTING) != 0;
81 }
82
83 static inline void
gc_clear_collecting(PyGC_Head * g)84 gc_clear_collecting(PyGC_Head *g)
85 {
86 g->_gc_prev &= ~PREV_MASK_COLLECTING;
87 }
88
89 static inline Py_ssize_t
gc_get_refs(PyGC_Head * g)90 gc_get_refs(PyGC_Head *g)
91 {
92 return (Py_ssize_t)(g->_gc_prev >> _PyGC_PREV_SHIFT);
93 }
94
95 static inline void
gc_set_refs(PyGC_Head * g,Py_ssize_t refs)96 gc_set_refs(PyGC_Head *g, Py_ssize_t refs)
97 {
98 g->_gc_prev = (g->_gc_prev & ~_PyGC_PREV_MASK)
99 | ((uintptr_t)(refs) << _PyGC_PREV_SHIFT);
100 }
101
102 static inline void
gc_reset_refs(PyGC_Head * g,Py_ssize_t refs)103 gc_reset_refs(PyGC_Head *g, Py_ssize_t refs)
104 {
105 g->_gc_prev = (g->_gc_prev & _PyGC_PREV_MASK_FINALIZED)
106 | PREV_MASK_COLLECTING
107 | ((uintptr_t)(refs) << _PyGC_PREV_SHIFT);
108 }
109
110 static inline void
gc_decref(PyGC_Head * g)111 gc_decref(PyGC_Head *g)
112 {
113 _PyObject_ASSERT_WITH_MSG(FROM_GC(g),
114 gc_get_refs(g) > 0,
115 "refcount is too small");
116 g->_gc_prev -= 1 << _PyGC_PREV_SHIFT;
117 }
118
119 /* set for debugging information */
120 #define DEBUG_STATS (1<<0) /* print collection statistics */
121 #define DEBUG_COLLECTABLE (1<<1) /* print collectable objects */
122 #define DEBUG_UNCOLLECTABLE (1<<2) /* print uncollectable objects */
123 #define DEBUG_SAVEALL (1<<5) /* save all garbage in gc.garbage */
124 #define DEBUG_LEAK DEBUG_COLLECTABLE | \
125 DEBUG_UNCOLLECTABLE | \
126 DEBUG_SAVEALL
127
128 #define GEN_HEAD(gcstate, n) (&(gcstate)->generations[n].head)
129
130
131 static GCState *
get_gc_state(void)132 get_gc_state(void)
133 {
134 PyInterpreterState *interp = _PyInterpreterState_GET();
135 return &interp->gc;
136 }
137
138
139 void
_PyGC_InitState(GCState * gcstate)140 _PyGC_InitState(GCState *gcstate)
141 {
142 #define INIT_HEAD(GEN) \
143 do { \
144 GEN.head._gc_next = (uintptr_t)&GEN.head; \
145 GEN.head._gc_prev = (uintptr_t)&GEN.head; \
146 } while (0)
147
148 for (int i = 0; i < NUM_GENERATIONS; i++) {
149 assert(gcstate->generations[i].count == 0);
150 INIT_HEAD(gcstate->generations[i]);
151 };
152 gcstate->generation0 = GEN_HEAD(gcstate, 0);
153 INIT_HEAD(gcstate->permanent_generation);
154
155 #undef INIT_HEAD
156 }
157
158
159 PyStatus
_PyGC_Init(PyInterpreterState * interp)160 _PyGC_Init(PyInterpreterState *interp)
161 {
162 GCState *gcstate = &interp->gc;
163
164 gcstate->garbage = PyList_New(0);
165 if (gcstate->garbage == NULL) {
166 return _PyStatus_NO_MEMORY();
167 }
168
169 gcstate->callbacks = PyList_New(0);
170 if (gcstate->callbacks == NULL) {
171 return _PyStatus_NO_MEMORY();
172 }
173
174 return _PyStatus_OK();
175 }
176
177
178 /*
179 _gc_prev values
180 ---------------
181
182 Between collections, _gc_prev is used for doubly linked list.
183
184 Lowest two bits of _gc_prev are used for flags.
185 PREV_MASK_COLLECTING is used only while collecting and cleared before GC ends
186 or _PyObject_GC_UNTRACK() is called.
187
188 During a collection, _gc_prev is temporary used for gc_refs, and the gc list
189 is singly linked until _gc_prev is restored.
190
191 gc_refs
192 At the start of a collection, update_refs() copies the true refcount
193 to gc_refs, for each object in the generation being collected.
194 subtract_refs() then adjusts gc_refs so that it equals the number of
195 times an object is referenced directly from outside the generation
196 being collected.
197
198 PREV_MASK_COLLECTING
199 Objects in generation being collected are marked PREV_MASK_COLLECTING in
200 update_refs().
201
202
203 _gc_next values
204 ---------------
205
206 _gc_next takes these values:
207
208 0
209 The object is not tracked
210
211 != 0
212 Pointer to the next object in the GC list.
213 Additionally, lowest bit is used temporary for
214 NEXT_MASK_UNREACHABLE flag described below.
215
216 NEXT_MASK_UNREACHABLE
217 move_unreachable() then moves objects not reachable (whether directly or
218 indirectly) from outside the generation into an "unreachable" set and
219 set this flag.
220
221 Objects that are found to be reachable have gc_refs set to 1.
222 When this flag is set for the reachable object, the object must be in
223 "unreachable" set.
224 The flag is unset and the object is moved back to "reachable" set.
225
226 move_legacy_finalizers() will remove this flag from "unreachable" set.
227 */
228
229 /*** list functions ***/
230
231 static inline void
gc_list_init(PyGC_Head * list)232 gc_list_init(PyGC_Head *list)
233 {
234 // List header must not have flags.
235 // We can assign pointer by simple cast.
236 list->_gc_prev = (uintptr_t)list;
237 list->_gc_next = (uintptr_t)list;
238 }
239
240 static inline int
gc_list_is_empty(PyGC_Head * list)241 gc_list_is_empty(PyGC_Head *list)
242 {
243 return (list->_gc_next == (uintptr_t)list);
244 }
245
246 /* Append `node` to `list`. */
247 static inline void
gc_list_append(PyGC_Head * node,PyGC_Head * list)248 gc_list_append(PyGC_Head *node, PyGC_Head *list)
249 {
250 PyGC_Head *last = (PyGC_Head *)list->_gc_prev;
251
252 // last <-> node
253 _PyGCHead_SET_PREV(node, last);
254 _PyGCHead_SET_NEXT(last, node);
255
256 // node <-> list
257 _PyGCHead_SET_NEXT(node, list);
258 list->_gc_prev = (uintptr_t)node;
259 }
260
261 /* Remove `node` from the gc list it's currently in. */
262 static inline void
gc_list_remove(PyGC_Head * node)263 gc_list_remove(PyGC_Head *node)
264 {
265 PyGC_Head *prev = GC_PREV(node);
266 PyGC_Head *next = GC_NEXT(node);
267
268 _PyGCHead_SET_NEXT(prev, next);
269 _PyGCHead_SET_PREV(next, prev);
270
271 node->_gc_next = 0; /* object is not currently tracked */
272 }
273
274 /* Move `node` from the gc list it's currently in (which is not explicitly
275 * named here) to the end of `list`. This is semantically the same as
276 * gc_list_remove(node) followed by gc_list_append(node, list).
277 */
278 static void
gc_list_move(PyGC_Head * node,PyGC_Head * list)279 gc_list_move(PyGC_Head *node, PyGC_Head *list)
280 {
281 /* Unlink from current list. */
282 PyGC_Head *from_prev = GC_PREV(node);
283 PyGC_Head *from_next = GC_NEXT(node);
284 _PyGCHead_SET_NEXT(from_prev, from_next);
285 _PyGCHead_SET_PREV(from_next, from_prev);
286
287 /* Relink at end of new list. */
288 // list must not have flags. So we can skip macros.
289 PyGC_Head *to_prev = (PyGC_Head*)list->_gc_prev;
290 _PyGCHead_SET_PREV(node, to_prev);
291 _PyGCHead_SET_NEXT(to_prev, node);
292 list->_gc_prev = (uintptr_t)node;
293 _PyGCHead_SET_NEXT(node, list);
294 }
295
296 /* append list `from` onto list `to`; `from` becomes an empty list */
297 static void
gc_list_merge(PyGC_Head * from,PyGC_Head * to)298 gc_list_merge(PyGC_Head *from, PyGC_Head *to)
299 {
300 assert(from != to);
301 if (!gc_list_is_empty(from)) {
302 PyGC_Head *to_tail = GC_PREV(to);
303 PyGC_Head *from_head = GC_NEXT(from);
304 PyGC_Head *from_tail = GC_PREV(from);
305 assert(from_head != from);
306 assert(from_tail != from);
307
308 _PyGCHead_SET_NEXT(to_tail, from_head);
309 _PyGCHead_SET_PREV(from_head, to_tail);
310
311 _PyGCHead_SET_NEXT(from_tail, to);
312 _PyGCHead_SET_PREV(to, from_tail);
313 }
314 gc_list_init(from);
315 }
316
317 static Py_ssize_t
gc_list_size(PyGC_Head * list)318 gc_list_size(PyGC_Head *list)
319 {
320 PyGC_Head *gc;
321 Py_ssize_t n = 0;
322 for (gc = GC_NEXT(list); gc != list; gc = GC_NEXT(gc)) {
323 n++;
324 }
325 return n;
326 }
327
328 /* Walk the list and mark all objects as non-collecting */
329 static inline void
gc_list_clear_collecting(PyGC_Head * collectable)330 gc_list_clear_collecting(PyGC_Head *collectable)
331 {
332 PyGC_Head *gc;
333 for (gc = GC_NEXT(collectable); gc != collectable; gc = GC_NEXT(gc)) {
334 gc_clear_collecting(gc);
335 }
336 }
337
338 /* Append objects in a GC list to a Python list.
339 * Return 0 if all OK, < 0 if error (out of memory for list)
340 */
341 static int
append_objects(PyObject * py_list,PyGC_Head * gc_list)342 append_objects(PyObject *py_list, PyGC_Head *gc_list)
343 {
344 PyGC_Head *gc;
345 for (gc = GC_NEXT(gc_list); gc != gc_list; gc = GC_NEXT(gc)) {
346 PyObject *op = FROM_GC(gc);
347 if (op != py_list) {
348 if (PyList_Append(py_list, op)) {
349 return -1; /* exception */
350 }
351 }
352 }
353 return 0;
354 }
355
356 // Constants for validate_list's flags argument.
357 enum flagstates {collecting_clear_unreachable_clear,
358 collecting_clear_unreachable_set,
359 collecting_set_unreachable_clear,
360 collecting_set_unreachable_set};
361
362 #ifdef GC_DEBUG
363 // validate_list checks list consistency. And it works as document
364 // describing when flags are expected to be set / unset.
365 // `head` must be a doubly-linked gc list, although it's fine (expected!) if
366 // the prev and next pointers are "polluted" with flags.
367 // What's checked:
368 // - The `head` pointers are not polluted.
369 // - The objects' PREV_MASK_COLLECTING and NEXT_MASK_UNREACHABLE flags are all
370 // `set or clear, as specified by the 'flags' argument.
371 // - The prev and next pointers are mutually consistent.
372 static void
validate_list(PyGC_Head * head,enum flagstates flags)373 validate_list(PyGC_Head *head, enum flagstates flags)
374 {
375 assert((head->_gc_prev & PREV_MASK_COLLECTING) == 0);
376 assert((head->_gc_next & NEXT_MASK_UNREACHABLE) == 0);
377 uintptr_t prev_value = 0, next_value = 0;
378 switch (flags) {
379 case collecting_clear_unreachable_clear:
380 break;
381 case collecting_set_unreachable_clear:
382 prev_value = PREV_MASK_COLLECTING;
383 break;
384 case collecting_clear_unreachable_set:
385 next_value = NEXT_MASK_UNREACHABLE;
386 break;
387 case collecting_set_unreachable_set:
388 prev_value = PREV_MASK_COLLECTING;
389 next_value = NEXT_MASK_UNREACHABLE;
390 break;
391 default:
392 assert(! "bad internal flags argument");
393 }
394 PyGC_Head *prev = head;
395 PyGC_Head *gc = GC_NEXT(head);
396 while (gc != head) {
397 PyGC_Head *trueprev = GC_PREV(gc);
398 PyGC_Head *truenext = (PyGC_Head *)(gc->_gc_next & ~NEXT_MASK_UNREACHABLE);
399 assert(truenext != NULL);
400 assert(trueprev == prev);
401 assert((gc->_gc_prev & PREV_MASK_COLLECTING) == prev_value);
402 assert((gc->_gc_next & NEXT_MASK_UNREACHABLE) == next_value);
403 prev = gc;
404 gc = truenext;
405 }
406 assert(prev == GC_PREV(head));
407 }
408 #else
409 #define validate_list(x, y) do{}while(0)
410 #endif
411
412 /*** end of list stuff ***/
413
414
415 /* Set all gc_refs = ob_refcnt. After this, gc_refs is > 0 and
416 * PREV_MASK_COLLECTING bit is set for all objects in containers.
417 */
418 static void
update_refs(PyGC_Head * containers)419 update_refs(PyGC_Head *containers)
420 {
421 PyGC_Head *gc = GC_NEXT(containers);
422 for (; gc != containers; gc = GC_NEXT(gc)) {
423 gc_reset_refs(gc, Py_REFCNT(FROM_GC(gc)));
424 /* Python's cyclic gc should never see an incoming refcount
425 * of 0: if something decref'ed to 0, it should have been
426 * deallocated immediately at that time.
427 * Possible cause (if the assert triggers): a tp_dealloc
428 * routine left a gc-aware object tracked during its teardown
429 * phase, and did something-- or allowed something to happen --
430 * that called back into Python. gc can trigger then, and may
431 * see the still-tracked dying object. Before this assert
432 * was added, such mistakes went on to allow gc to try to
433 * delete the object again. In a debug build, that caused
434 * a mysterious segfault, when _Py_ForgetReference tried
435 * to remove the object from the doubly-linked list of all
436 * objects a second time. In a release build, an actual
437 * double deallocation occurred, which leads to corruption
438 * of the allocator's internal bookkeeping pointers. That's
439 * so serious that maybe this should be a release-build
440 * check instead of an assert?
441 */
442 _PyObject_ASSERT(FROM_GC(gc), gc_get_refs(gc) != 0);
443 }
444 }
445
446 /* A traversal callback for subtract_refs. */
447 static int
visit_decref(PyObject * op,void * parent)448 visit_decref(PyObject *op, void *parent)
449 {
450 _PyObject_ASSERT(_PyObject_CAST(parent), !_PyObject_IsFreed(op));
451
452 if (_PyObject_IS_GC(op)) {
453 PyGC_Head *gc = AS_GC(op);
454 /* We're only interested in gc_refs for objects in the
455 * generation being collected, which can be recognized
456 * because only they have positive gc_refs.
457 */
458 if (gc_is_collecting(gc)) {
459 gc_decref(gc);
460 }
461 }
462 return 0;
463 }
464
465 /* Subtract internal references from gc_refs. After this, gc_refs is >= 0
466 * for all objects in containers, and is GC_REACHABLE for all tracked gc
467 * objects not in containers. The ones with gc_refs > 0 are directly
468 * reachable from outside containers, and so can't be collected.
469 */
470 static void
subtract_refs(PyGC_Head * containers)471 subtract_refs(PyGC_Head *containers)
472 {
473 traverseproc traverse;
474 PyGC_Head *gc = GC_NEXT(containers);
475 for (; gc != containers; gc = GC_NEXT(gc)) {
476 PyObject *op = FROM_GC(gc);
477 traverse = Py_TYPE(op)->tp_traverse;
478 (void) traverse(op,
479 (visitproc)visit_decref,
480 op);
481 }
482 }
483
484 /* A traversal callback for move_unreachable. */
485 static int
visit_reachable(PyObject * op,PyGC_Head * reachable)486 visit_reachable(PyObject *op, PyGC_Head *reachable)
487 {
488 if (!_PyObject_IS_GC(op)) {
489 return 0;
490 }
491
492 PyGC_Head *gc = AS_GC(op);
493 const Py_ssize_t gc_refs = gc_get_refs(gc);
494
495 // Ignore objects in other generation.
496 // This also skips objects "to the left" of the current position in
497 // move_unreachable's scan of the 'young' list - they've already been
498 // traversed, and no longer have the PREV_MASK_COLLECTING flag.
499 if (! gc_is_collecting(gc)) {
500 return 0;
501 }
502 // It would be a logic error elsewhere if the collecting flag were set on
503 // an untracked object.
504 assert(gc->_gc_next != 0);
505
506 if (gc->_gc_next & NEXT_MASK_UNREACHABLE) {
507 /* This had gc_refs = 0 when move_unreachable got
508 * to it, but turns out it's reachable after all.
509 * Move it back to move_unreachable's 'young' list,
510 * and move_unreachable will eventually get to it
511 * again.
512 */
513 // Manually unlink gc from unreachable list because the list functions
514 // don't work right in the presence of NEXT_MASK_UNREACHABLE flags.
515 PyGC_Head *prev = GC_PREV(gc);
516 PyGC_Head *next = (PyGC_Head*)(gc->_gc_next & ~NEXT_MASK_UNREACHABLE);
517 _PyObject_ASSERT(FROM_GC(prev),
518 prev->_gc_next & NEXT_MASK_UNREACHABLE);
519 _PyObject_ASSERT(FROM_GC(next),
520 next->_gc_next & NEXT_MASK_UNREACHABLE);
521 prev->_gc_next = gc->_gc_next; // copy NEXT_MASK_UNREACHABLE
522 _PyGCHead_SET_PREV(next, prev);
523
524 gc_list_append(gc, reachable);
525 gc_set_refs(gc, 1);
526 }
527 else if (gc_refs == 0) {
528 /* This is in move_unreachable's 'young' list, but
529 * the traversal hasn't yet gotten to it. All
530 * we need to do is tell move_unreachable that it's
531 * reachable.
532 */
533 gc_set_refs(gc, 1);
534 }
535 /* Else there's nothing to do.
536 * If gc_refs > 0, it must be in move_unreachable's 'young'
537 * list, and move_unreachable will eventually get to it.
538 */
539 else {
540 _PyObject_ASSERT_WITH_MSG(op, gc_refs > 0, "refcount is too small");
541 }
542 return 0;
543 }
544
545 /* Move the unreachable objects from young to unreachable. After this,
546 * all objects in young don't have PREV_MASK_COLLECTING flag and
547 * unreachable have the flag.
548 * All objects in young after this are directly or indirectly reachable
549 * from outside the original young; and all objects in unreachable are
550 * not.
551 *
552 * This function restores _gc_prev pointer. young and unreachable are
553 * doubly linked list after this function.
554 * But _gc_next in unreachable list has NEXT_MASK_UNREACHABLE flag.
555 * So we can not gc_list_* functions for unreachable until we remove the flag.
556 */
557 static void
move_unreachable(PyGC_Head * young,PyGC_Head * unreachable)558 move_unreachable(PyGC_Head *young, PyGC_Head *unreachable)
559 {
560 // previous elem in the young list, used for restore gc_prev.
561 PyGC_Head *prev = young;
562 PyGC_Head *gc = GC_NEXT(young);
563
564 /* Invariants: all objects "to the left" of us in young are reachable
565 * (directly or indirectly) from outside the young list as it was at entry.
566 *
567 * All other objects from the original young "to the left" of us are in
568 * unreachable now, and have NEXT_MASK_UNREACHABLE. All objects to the
569 * left of us in 'young' now have been scanned, and no objects here
570 * or to the right have been scanned yet.
571 */
572
573 while (gc != young) {
574 if (gc_get_refs(gc)) {
575 /* gc is definitely reachable from outside the
576 * original 'young'. Mark it as such, and traverse
577 * its pointers to find any other objects that may
578 * be directly reachable from it. Note that the
579 * call to tp_traverse may append objects to young,
580 * so we have to wait until it returns to determine
581 * the next object to visit.
582 */
583 PyObject *op = FROM_GC(gc);
584 traverseproc traverse = Py_TYPE(op)->tp_traverse;
585 _PyObject_ASSERT_WITH_MSG(op, gc_get_refs(gc) > 0,
586 "refcount is too small");
587 // NOTE: visit_reachable may change gc->_gc_next when
588 // young->_gc_prev == gc. Don't do gc = GC_NEXT(gc) before!
589 (void) traverse(op,
590 (visitproc)visit_reachable,
591 (void *)young);
592 // relink gc_prev to prev element.
593 _PyGCHead_SET_PREV(gc, prev);
594 // gc is not COLLECTING state after here.
595 gc_clear_collecting(gc);
596 prev = gc;
597 }
598 else {
599 /* This *may* be unreachable. To make progress,
600 * assume it is. gc isn't directly reachable from
601 * any object we've already traversed, but may be
602 * reachable from an object we haven't gotten to yet.
603 * visit_reachable will eventually move gc back into
604 * young if that's so, and we'll see it again.
605 */
606 // Move gc to unreachable.
607 // No need to gc->next->prev = prev because it is single linked.
608 prev->_gc_next = gc->_gc_next;
609
610 // We can't use gc_list_append() here because we use
611 // NEXT_MASK_UNREACHABLE here.
612 PyGC_Head *last = GC_PREV(unreachable);
613 // NOTE: Since all objects in unreachable set has
614 // NEXT_MASK_UNREACHABLE flag, we set it unconditionally.
615 // But this may pollute the unreachable list head's 'next' pointer
616 // too. That's semantically senseless but expedient here - the
617 // damage is repaired when this function ends.
618 last->_gc_next = (NEXT_MASK_UNREACHABLE | (uintptr_t)gc);
619 _PyGCHead_SET_PREV(gc, last);
620 gc->_gc_next = (NEXT_MASK_UNREACHABLE | (uintptr_t)unreachable);
621 unreachable->_gc_prev = (uintptr_t)gc;
622 }
623 gc = (PyGC_Head*)prev->_gc_next;
624 }
625 // young->_gc_prev must be last element remained in the list.
626 young->_gc_prev = (uintptr_t)prev;
627 // don't let the pollution of the list head's next pointer leak
628 unreachable->_gc_next &= ~NEXT_MASK_UNREACHABLE;
629 }
630
631 static void
untrack_tuples(PyGC_Head * head)632 untrack_tuples(PyGC_Head *head)
633 {
634 PyGC_Head *next, *gc = GC_NEXT(head);
635 while (gc != head) {
636 PyObject *op = FROM_GC(gc);
637 next = GC_NEXT(gc);
638 if (PyTuple_CheckExact(op)) {
639 _PyTuple_MaybeUntrack(op);
640 }
641 gc = next;
642 }
643 }
644
645 /* Try to untrack all currently tracked dictionaries */
646 static void
untrack_dicts(PyGC_Head * head)647 untrack_dicts(PyGC_Head *head)
648 {
649 PyGC_Head *next, *gc = GC_NEXT(head);
650 while (gc != head) {
651 PyObject *op = FROM_GC(gc);
652 next = GC_NEXT(gc);
653 if (PyDict_CheckExact(op)) {
654 _PyDict_MaybeUntrack(op);
655 }
656 gc = next;
657 }
658 }
659
660 /* Return true if object has a pre-PEP 442 finalization method. */
661 static int
has_legacy_finalizer(PyObject * op)662 has_legacy_finalizer(PyObject *op)
663 {
664 return Py_TYPE(op)->tp_del != NULL;
665 }
666
667 /* Move the objects in unreachable with tp_del slots into `finalizers`.
668 *
669 * This function also removes NEXT_MASK_UNREACHABLE flag
670 * from _gc_next in unreachable.
671 */
672 static void
move_legacy_finalizers(PyGC_Head * unreachable,PyGC_Head * finalizers)673 move_legacy_finalizers(PyGC_Head *unreachable, PyGC_Head *finalizers)
674 {
675 PyGC_Head *gc, *next;
676 assert((unreachable->_gc_next & NEXT_MASK_UNREACHABLE) == 0);
677
678 /* March over unreachable. Move objects with finalizers into
679 * `finalizers`.
680 */
681 for (gc = GC_NEXT(unreachable); gc != unreachable; gc = next) {
682 PyObject *op = FROM_GC(gc);
683
684 _PyObject_ASSERT(op, gc->_gc_next & NEXT_MASK_UNREACHABLE);
685 gc->_gc_next &= ~NEXT_MASK_UNREACHABLE;
686 next = (PyGC_Head*)gc->_gc_next;
687
688 if (has_legacy_finalizer(op)) {
689 gc_clear_collecting(gc);
690 gc_list_move(gc, finalizers);
691 }
692 }
693 }
694
695 static inline void
clear_unreachable_mask(PyGC_Head * unreachable)696 clear_unreachable_mask(PyGC_Head *unreachable)
697 {
698 /* Check that the list head does not have the unreachable bit set */
699 assert(((uintptr_t)unreachable & NEXT_MASK_UNREACHABLE) == 0);
700
701 PyGC_Head *gc, *next;
702 assert((unreachable->_gc_next & NEXT_MASK_UNREACHABLE) == 0);
703 for (gc = GC_NEXT(unreachable); gc != unreachable; gc = next) {
704 _PyObject_ASSERT((PyObject*)FROM_GC(gc), gc->_gc_next & NEXT_MASK_UNREACHABLE);
705 gc->_gc_next &= ~NEXT_MASK_UNREACHABLE;
706 next = (PyGC_Head*)gc->_gc_next;
707 }
708 validate_list(unreachable, collecting_set_unreachable_clear);
709 }
710
711 /* A traversal callback for move_legacy_finalizer_reachable. */
712 static int
visit_move(PyObject * op,PyGC_Head * tolist)713 visit_move(PyObject *op, PyGC_Head *tolist)
714 {
715 if (_PyObject_IS_GC(op)) {
716 PyGC_Head *gc = AS_GC(op);
717 if (gc_is_collecting(gc)) {
718 gc_list_move(gc, tolist);
719 gc_clear_collecting(gc);
720 }
721 }
722 return 0;
723 }
724
725 /* Move objects that are reachable from finalizers, from the unreachable set
726 * into finalizers set.
727 */
728 static void
move_legacy_finalizer_reachable(PyGC_Head * finalizers)729 move_legacy_finalizer_reachable(PyGC_Head *finalizers)
730 {
731 traverseproc traverse;
732 PyGC_Head *gc = GC_NEXT(finalizers);
733 for (; gc != finalizers; gc = GC_NEXT(gc)) {
734 /* Note that the finalizers list may grow during this. */
735 traverse = Py_TYPE(FROM_GC(gc))->tp_traverse;
736 (void) traverse(FROM_GC(gc),
737 (visitproc)visit_move,
738 (void *)finalizers);
739 }
740 }
741
742 /* Clear all weakrefs to unreachable objects, and if such a weakref has a
743 * callback, invoke it if necessary. Note that it's possible for such
744 * weakrefs to be outside the unreachable set -- indeed, those are precisely
745 * the weakrefs whose callbacks must be invoked. See gc_weakref.txt for
746 * overview & some details. Some weakrefs with callbacks may be reclaimed
747 * directly by this routine; the number reclaimed is the return value. Other
748 * weakrefs with callbacks may be moved into the `old` generation. Objects
749 * moved into `old` have gc_refs set to GC_REACHABLE; the objects remaining in
750 * unreachable are left at GC_TENTATIVELY_UNREACHABLE. When this returns,
751 * no object in `unreachable` is weakly referenced anymore.
752 */
753 static int
handle_weakrefs(PyGC_Head * unreachable,PyGC_Head * old)754 handle_weakrefs(PyGC_Head *unreachable, PyGC_Head *old)
755 {
756 PyGC_Head *gc;
757 PyObject *op; /* generally FROM_GC(gc) */
758 PyWeakReference *wr; /* generally a cast of op */
759 PyGC_Head wrcb_to_call; /* weakrefs with callbacks to call */
760 PyGC_Head *next;
761 int num_freed = 0;
762
763 gc_list_init(&wrcb_to_call);
764
765 /* Clear all weakrefs to the objects in unreachable. If such a weakref
766 * also has a callback, move it into `wrcb_to_call` if the callback
767 * needs to be invoked. Note that we cannot invoke any callbacks until
768 * all weakrefs to unreachable objects are cleared, lest the callback
769 * resurrect an unreachable object via a still-active weakref. We
770 * make another pass over wrcb_to_call, invoking callbacks, after this
771 * pass completes.
772 */
773 for (gc = GC_NEXT(unreachable); gc != unreachable; gc = next) {
774 PyWeakReference **wrlist;
775
776 op = FROM_GC(gc);
777 next = GC_NEXT(gc);
778
779 if (PyWeakref_Check(op)) {
780 /* A weakref inside the unreachable set must be cleared. If we
781 * allow its callback to execute inside delete_garbage(), it
782 * could expose objects that have tp_clear already called on
783 * them. Or, it could resurrect unreachable objects. One way
784 * this can happen is if some container objects do not implement
785 * tp_traverse. Then, wr_object can be outside the unreachable
786 * set but can be deallocated as a result of breaking the
787 * reference cycle. If we don't clear the weakref, the callback
788 * will run and potentially cause a crash. See bpo-38006 for
789 * one example.
790 */
791 _PyWeakref_ClearRef((PyWeakReference *)op);
792 }
793
794 if (! _PyType_SUPPORTS_WEAKREFS(Py_TYPE(op)))
795 continue;
796
797 /* It supports weakrefs. Does it have any? */
798 wrlist = (PyWeakReference **)
799 _PyObject_GET_WEAKREFS_LISTPTR(op);
800
801 /* `op` may have some weakrefs. March over the list, clear
802 * all the weakrefs, and move the weakrefs with callbacks
803 * that must be called into wrcb_to_call.
804 */
805 for (wr = *wrlist; wr != NULL; wr = *wrlist) {
806 PyGC_Head *wrasgc; /* AS_GC(wr) */
807
808 /* _PyWeakref_ClearRef clears the weakref but leaves
809 * the callback pointer intact. Obscure: it also
810 * changes *wrlist.
811 */
812 _PyObject_ASSERT((PyObject *)wr, wr->wr_object == op);
813 _PyWeakref_ClearRef(wr);
814 _PyObject_ASSERT((PyObject *)wr, wr->wr_object == Py_None);
815 if (wr->wr_callback == NULL) {
816 /* no callback */
817 continue;
818 }
819
820 /* Headache time. `op` is going away, and is weakly referenced by
821 * `wr`, which has a callback. Should the callback be invoked? If wr
822 * is also trash, no:
823 *
824 * 1. There's no need to call it. The object and the weakref are
825 * both going away, so it's legitimate to pretend the weakref is
826 * going away first. The user has to ensure a weakref outlives its
827 * referent if they want a guarantee that the wr callback will get
828 * invoked.
829 *
830 * 2. It may be catastrophic to call it. If the callback is also in
831 * cyclic trash (CT), then although the CT is unreachable from
832 * outside the current generation, CT may be reachable from the
833 * callback. Then the callback could resurrect insane objects.
834 *
835 * Since the callback is never needed and may be unsafe in this case,
836 * wr is simply left in the unreachable set. Note that because we
837 * already called _PyWeakref_ClearRef(wr), its callback will never
838 * trigger.
839 *
840 * OTOH, if wr isn't part of CT, we should invoke the callback: the
841 * weakref outlived the trash. Note that since wr isn't CT in this
842 * case, its callback can't be CT either -- wr acted as an external
843 * root to this generation, and therefore its callback did too. So
844 * nothing in CT is reachable from the callback either, so it's hard
845 * to imagine how calling it later could create a problem for us. wr
846 * is moved to wrcb_to_call in this case.
847 */
848 if (gc_is_collecting(AS_GC(wr))) {
849 /* it should already have been cleared above */
850 assert(wr->wr_object == Py_None);
851 continue;
852 }
853
854 /* Create a new reference so that wr can't go away
855 * before we can process it again.
856 */
857 Py_INCREF(wr);
858
859 /* Move wr to wrcb_to_call, for the next pass. */
860 wrasgc = AS_GC(wr);
861 assert(wrasgc != next); /* wrasgc is reachable, but
862 next isn't, so they can't
863 be the same */
864 gc_list_move(wrasgc, &wrcb_to_call);
865 }
866 }
867
868 /* Invoke the callbacks we decided to honor. It's safe to invoke them
869 * because they can't reference unreachable objects.
870 */
871 while (! gc_list_is_empty(&wrcb_to_call)) {
872 PyObject *temp;
873 PyObject *callback;
874
875 gc = (PyGC_Head*)wrcb_to_call._gc_next;
876 op = FROM_GC(gc);
877 _PyObject_ASSERT(op, PyWeakref_Check(op));
878 wr = (PyWeakReference *)op;
879 callback = wr->wr_callback;
880 _PyObject_ASSERT(op, callback != NULL);
881
882 /* copy-paste of weakrefobject.c's handle_callback() */
883 temp = PyObject_CallOneArg(callback, (PyObject *)wr);
884 if (temp == NULL)
885 PyErr_WriteUnraisable(callback);
886 else
887 Py_DECREF(temp);
888
889 /* Give up the reference we created in the first pass. When
890 * op's refcount hits 0 (which it may or may not do right now),
891 * op's tp_dealloc will decref op->wr_callback too. Note
892 * that the refcount probably will hit 0 now, and because this
893 * weakref was reachable to begin with, gc didn't already
894 * add it to its count of freed objects. Example: a reachable
895 * weak value dict maps some key to this reachable weakref.
896 * The callback removes this key->weakref mapping from the
897 * dict, leaving no other references to the weakref (excepting
898 * ours).
899 */
900 Py_DECREF(op);
901 if (wrcb_to_call._gc_next == (uintptr_t)gc) {
902 /* object is still alive -- move it */
903 gc_list_move(gc, old);
904 }
905 else {
906 ++num_freed;
907 }
908 }
909
910 return num_freed;
911 }
912
913 static void
debug_cycle(const char * msg,PyObject * op)914 debug_cycle(const char *msg, PyObject *op)
915 {
916 PySys_FormatStderr("gc: %s <%s %p>\n",
917 msg, Py_TYPE(op)->tp_name, op);
918 }
919
920 /* Handle uncollectable garbage (cycles with tp_del slots, and stuff reachable
921 * only from such cycles).
922 * If DEBUG_SAVEALL, all objects in finalizers are appended to the module
923 * garbage list (a Python list), else only the objects in finalizers with
924 * __del__ methods are appended to garbage. All objects in finalizers are
925 * merged into the old list regardless.
926 */
927 static void
handle_legacy_finalizers(PyThreadState * tstate,GCState * gcstate,PyGC_Head * finalizers,PyGC_Head * old)928 handle_legacy_finalizers(PyThreadState *tstate,
929 GCState *gcstate,
930 PyGC_Head *finalizers, PyGC_Head *old)
931 {
932 assert(!_PyErr_Occurred(tstate));
933 assert(gcstate->garbage != NULL);
934
935 PyGC_Head *gc = GC_NEXT(finalizers);
936 for (; gc != finalizers; gc = GC_NEXT(gc)) {
937 PyObject *op = FROM_GC(gc);
938
939 if ((gcstate->debug & DEBUG_SAVEALL) || has_legacy_finalizer(op)) {
940 if (PyList_Append(gcstate->garbage, op) < 0) {
941 _PyErr_Clear(tstate);
942 break;
943 }
944 }
945 }
946
947 gc_list_merge(finalizers, old);
948 }
949
950 /* Run first-time finalizers (if any) on all the objects in collectable.
951 * Note that this may remove some (or even all) of the objects from the
952 * list, due to refcounts falling to 0.
953 */
954 static void
finalize_garbage(PyThreadState * tstate,PyGC_Head * collectable)955 finalize_garbage(PyThreadState *tstate, PyGC_Head *collectable)
956 {
957 destructor finalize;
958 PyGC_Head seen;
959
960 /* While we're going through the loop, `finalize(op)` may cause op, or
961 * other objects, to be reclaimed via refcounts falling to zero. So
962 * there's little we can rely on about the structure of the input
963 * `collectable` list across iterations. For safety, we always take the
964 * first object in that list and move it to a temporary `seen` list.
965 * If objects vanish from the `collectable` and `seen` lists we don't
966 * care.
967 */
968 gc_list_init(&seen);
969
970 while (!gc_list_is_empty(collectable)) {
971 PyGC_Head *gc = GC_NEXT(collectable);
972 PyObject *op = FROM_GC(gc);
973 gc_list_move(gc, &seen);
974 if (!_PyGCHead_FINALIZED(gc) &&
975 (finalize = Py_TYPE(op)->tp_finalize) != NULL) {
976 _PyGCHead_SET_FINALIZED(gc);
977 Py_INCREF(op);
978 finalize(op);
979 assert(!_PyErr_Occurred(tstate));
980 Py_DECREF(op);
981 }
982 }
983 gc_list_merge(&seen, collectable);
984 }
985
986 /* Break reference cycles by clearing the containers involved. This is
987 * tricky business as the lists can be changing and we don't know which
988 * objects may be freed. It is possible I screwed something up here.
989 */
990 static void
delete_garbage(PyThreadState * tstate,GCState * gcstate,PyGC_Head * collectable,PyGC_Head * old)991 delete_garbage(PyThreadState *tstate, GCState *gcstate,
992 PyGC_Head *collectable, PyGC_Head *old)
993 {
994 assert(!_PyErr_Occurred(tstate));
995
996 while (!gc_list_is_empty(collectable)) {
997 PyGC_Head *gc = GC_NEXT(collectable);
998 PyObject *op = FROM_GC(gc);
999
1000 _PyObject_ASSERT_WITH_MSG(op, Py_REFCNT(op) > 0,
1001 "refcount is too small");
1002
1003 if (gcstate->debug & DEBUG_SAVEALL) {
1004 assert(gcstate->garbage != NULL);
1005 if (PyList_Append(gcstate->garbage, op) < 0) {
1006 _PyErr_Clear(tstate);
1007 }
1008 }
1009 else {
1010 inquiry clear;
1011 if ((clear = Py_TYPE(op)->tp_clear) != NULL) {
1012 Py_INCREF(op);
1013 (void) clear(op);
1014 if (_PyErr_Occurred(tstate)) {
1015 _PyErr_WriteUnraisableMsg("in tp_clear of",
1016 (PyObject*)Py_TYPE(op));
1017 }
1018 Py_DECREF(op);
1019 }
1020 }
1021 if (GC_NEXT(collectable) == gc) {
1022 /* object is still alive, move it, it may die later */
1023 gc_clear_collecting(gc);
1024 gc_list_move(gc, old);
1025 }
1026 }
1027 }
1028
1029 /* Clear all free lists
1030 * All free lists are cleared during the collection of the highest generation.
1031 * Allocated items in the free list may keep a pymalloc arena occupied.
1032 * Clearing the free lists may give back memory to the OS earlier.
1033 */
1034 static void
clear_freelists(PyInterpreterState * interp)1035 clear_freelists(PyInterpreterState *interp)
1036 {
1037 _PyTuple_ClearFreeList(interp);
1038 _PyFloat_ClearFreeList(interp);
1039 _PyList_ClearFreeList(interp);
1040 _PyDict_ClearFreeList(interp);
1041 _PyAsyncGen_ClearFreeLists(interp);
1042 _PyContext_ClearFreeList(interp);
1043 }
1044
1045 // Show stats for objects in each generations
1046 static void
show_stats_each_generations(GCState * gcstate)1047 show_stats_each_generations(GCState *gcstate)
1048 {
1049 char buf[100];
1050 size_t pos = 0;
1051
1052 for (int i = 0; i < NUM_GENERATIONS && pos < sizeof(buf); i++) {
1053 pos += PyOS_snprintf(buf+pos, sizeof(buf)-pos,
1054 " %zd",
1055 gc_list_size(GEN_HEAD(gcstate, i)));
1056 }
1057
1058 PySys_FormatStderr(
1059 "gc: objects in each generation:%s\n"
1060 "gc: objects in permanent generation: %zd\n",
1061 buf, gc_list_size(&gcstate->permanent_generation.head));
1062 }
1063
1064 /* Deduce which objects among "base" are unreachable from outside the list
1065 and move them to 'unreachable'. The process consist in the following steps:
1066
1067 1. Copy all reference counts to a different field (gc_prev is used to hold
1068 this copy to save memory).
1069 2. Traverse all objects in "base" and visit all referred objects using
1070 "tp_traverse" and for every visited object, subtract 1 to the reference
1071 count (the one that we copied in the previous step). After this step, all
1072 objects that can be reached directly from outside must have strictly positive
1073 reference count, while all unreachable objects must have a count of exactly 0.
1074 3. Identify all unreachable objects (the ones with 0 reference count) and move
1075 them to the "unreachable" list. This step also needs to move back to "base" all
1076 objects that were initially marked as unreachable but are referred transitively
1077 by the reachable objects (the ones with strictly positive reference count).
1078
1079 Contracts:
1080
1081 * The "base" has to be a valid list with no mask set.
1082
1083 * The "unreachable" list must be uninitialized (this function calls
1084 gc_list_init over 'unreachable').
1085
1086 IMPORTANT: This function leaves 'unreachable' with the NEXT_MASK_UNREACHABLE
1087 flag set but it does not clear it to skip unnecessary iteration. Before the
1088 flag is cleared (for example, by using 'clear_unreachable_mask' function or
1089 by a call to 'move_legacy_finalizers'), the 'unreachable' list is not a normal
1090 list and we can not use most gc_list_* functions for it. */
1091 static inline void
deduce_unreachable(PyGC_Head * base,PyGC_Head * unreachable)1092 deduce_unreachable(PyGC_Head *base, PyGC_Head *unreachable) {
1093 validate_list(base, collecting_clear_unreachable_clear);
1094 /* Using ob_refcnt and gc_refs, calculate which objects in the
1095 * container set are reachable from outside the set (i.e., have a
1096 * refcount greater than 0 when all the references within the
1097 * set are taken into account).
1098 */
1099 update_refs(base); // gc_prev is used for gc_refs
1100 subtract_refs(base);
1101
1102 /* Leave everything reachable from outside base in base, and move
1103 * everything else (in base) to unreachable.
1104 *
1105 * NOTE: This used to move the reachable objects into a reachable
1106 * set instead. But most things usually turn out to be reachable,
1107 * so it's more efficient to move the unreachable things. It "sounds slick"
1108 * to move the unreachable objects, until you think about it - the reason it
1109 * pays isn't actually obvious.
1110 *
1111 * Suppose we create objects A, B, C in that order. They appear in the young
1112 * generation in the same order. If B points to A, and C to B, and C is
1113 * reachable from outside, then the adjusted refcounts will be 0, 0, and 1
1114 * respectively.
1115 *
1116 * When move_unreachable finds A, A is moved to the unreachable list. The
1117 * same for B when it's first encountered. Then C is traversed, B is moved
1118 * _back_ to the reachable list. B is eventually traversed, and then A is
1119 * moved back to the reachable list.
1120 *
1121 * So instead of not moving at all, the reachable objects B and A are moved
1122 * twice each. Why is this a win? A straightforward algorithm to move the
1123 * reachable objects instead would move A, B, and C once each.
1124 *
1125 * The key is that this dance leaves the objects in order C, B, A - it's
1126 * reversed from the original order. On all _subsequent_ scans, none of
1127 * them will move. Since most objects aren't in cycles, this can save an
1128 * unbounded number of moves across an unbounded number of later collections.
1129 * It can cost more only the first time the chain is scanned.
1130 *
1131 * Drawback: move_unreachable is also used to find out what's still trash
1132 * after finalizers may resurrect objects. In _that_ case most unreachable
1133 * objects will remain unreachable, so it would be more efficient to move
1134 * the reachable objects instead. But this is a one-time cost, probably not
1135 * worth complicating the code to speed just a little.
1136 */
1137 gc_list_init(unreachable);
1138 move_unreachable(base, unreachable); // gc_prev is pointer again
1139 validate_list(base, collecting_clear_unreachable_clear);
1140 validate_list(unreachable, collecting_set_unreachable_set);
1141 }
1142
1143 /* Handle objects that may have resurrected after a call to 'finalize_garbage', moving
1144 them to 'old_generation' and placing the rest on 'still_unreachable'.
1145
1146 Contracts:
1147 * After this function 'unreachable' must not be used anymore and 'still_unreachable'
1148 will contain the objects that did not resurrect.
1149
1150 * The "still_unreachable" list must be uninitialized (this function calls
1151 gc_list_init over 'still_unreachable').
1152
1153 IMPORTANT: After a call to this function, the 'still_unreachable' set will have the
1154 PREV_MARK_COLLECTING set, but the objects in this set are going to be removed so
1155 we can skip the expense of clearing the flag to avoid extra iteration. */
1156 static inline void
handle_resurrected_objects(PyGC_Head * unreachable,PyGC_Head * still_unreachable,PyGC_Head * old_generation)1157 handle_resurrected_objects(PyGC_Head *unreachable, PyGC_Head* still_unreachable,
1158 PyGC_Head *old_generation)
1159 {
1160 // Remove the PREV_MASK_COLLECTING from unreachable
1161 // to prepare it for a new call to 'deduce_unreachable'
1162 gc_list_clear_collecting(unreachable);
1163
1164 // After the call to deduce_unreachable, the 'still_unreachable' set will
1165 // have the PREV_MARK_COLLECTING set, but the objects are going to be
1166 // removed so we can skip the expense of clearing the flag.
1167 PyGC_Head* resurrected = unreachable;
1168 deduce_unreachable(resurrected, still_unreachable);
1169 clear_unreachable_mask(still_unreachable);
1170
1171 // Move the resurrected objects to the old generation for future collection.
1172 gc_list_merge(resurrected, old_generation);
1173 }
1174
1175 /* This is the main function. Read this to understand how the
1176 * collection process works. */
1177 static Py_ssize_t
gc_collect_main(PyThreadState * tstate,int generation,Py_ssize_t * n_collected,Py_ssize_t * n_uncollectable,int nofail)1178 gc_collect_main(PyThreadState *tstate, int generation,
1179 Py_ssize_t *n_collected, Py_ssize_t *n_uncollectable,
1180 int nofail)
1181 {
1182 int i;
1183 Py_ssize_t m = 0; /* # objects collected */
1184 Py_ssize_t n = 0; /* # unreachable objects that couldn't be collected */
1185 PyGC_Head *young; /* the generation we are examining */
1186 PyGC_Head *old; /* next older generation */
1187 PyGC_Head unreachable; /* non-problematic unreachable trash */
1188 PyGC_Head finalizers; /* objects with, & reachable from, __del__ */
1189 PyGC_Head *gc;
1190 _PyTime_t t1 = 0; /* initialize to prevent a compiler warning */
1191 GCState *gcstate = &tstate->interp->gc;
1192
1193 // gc_collect_main() must not be called before _PyGC_Init
1194 // or after _PyGC_Fini()
1195 assert(gcstate->garbage != NULL);
1196 assert(!_PyErr_Occurred(tstate));
1197
1198 if (gcstate->debug & DEBUG_STATS) {
1199 PySys_WriteStderr("gc: collecting generation %d...\n", generation);
1200 show_stats_each_generations(gcstate);
1201 t1 = _PyTime_GetPerfCounter();
1202 }
1203
1204 if (PyDTrace_GC_START_ENABLED())
1205 PyDTrace_GC_START(generation);
1206
1207 /* update collection and allocation counters */
1208 if (generation+1 < NUM_GENERATIONS)
1209 gcstate->generations[generation+1].count += 1;
1210 for (i = 0; i <= generation; i++)
1211 gcstate->generations[i].count = 0;
1212
1213 /* merge younger generations with one we are currently collecting */
1214 for (i = 0; i < generation; i++) {
1215 gc_list_merge(GEN_HEAD(gcstate, i), GEN_HEAD(gcstate, generation));
1216 }
1217
1218 /* handy references */
1219 young = GEN_HEAD(gcstate, generation);
1220 if (generation < NUM_GENERATIONS-1)
1221 old = GEN_HEAD(gcstate, generation+1);
1222 else
1223 old = young;
1224 validate_list(old, collecting_clear_unreachable_clear);
1225
1226 deduce_unreachable(young, &unreachable);
1227
1228 untrack_tuples(young);
1229 /* Move reachable objects to next generation. */
1230 if (young != old) {
1231 if (generation == NUM_GENERATIONS - 2) {
1232 gcstate->long_lived_pending += gc_list_size(young);
1233 }
1234 gc_list_merge(young, old);
1235 }
1236 else {
1237 /* We only un-track dicts in full collections, to avoid quadratic
1238 dict build-up. See issue #14775. */
1239 untrack_dicts(young);
1240 gcstate->long_lived_pending = 0;
1241 gcstate->long_lived_total = gc_list_size(young);
1242 }
1243
1244 /* All objects in unreachable are trash, but objects reachable from
1245 * legacy finalizers (e.g. tp_del) can't safely be deleted.
1246 */
1247 gc_list_init(&finalizers);
1248 // NEXT_MASK_UNREACHABLE is cleared here.
1249 // After move_legacy_finalizers(), unreachable is normal list.
1250 move_legacy_finalizers(&unreachable, &finalizers);
1251 /* finalizers contains the unreachable objects with a legacy finalizer;
1252 * unreachable objects reachable *from* those are also uncollectable,
1253 * and we move those into the finalizers list too.
1254 */
1255 move_legacy_finalizer_reachable(&finalizers);
1256
1257 validate_list(&finalizers, collecting_clear_unreachable_clear);
1258 validate_list(&unreachable, collecting_set_unreachable_clear);
1259
1260 /* Print debugging information. */
1261 if (gcstate->debug & DEBUG_COLLECTABLE) {
1262 for (gc = GC_NEXT(&unreachable); gc != &unreachable; gc = GC_NEXT(gc)) {
1263 debug_cycle("collectable", FROM_GC(gc));
1264 }
1265 }
1266
1267 /* Clear weakrefs and invoke callbacks as necessary. */
1268 m += handle_weakrefs(&unreachable, old);
1269
1270 validate_list(old, collecting_clear_unreachable_clear);
1271 validate_list(&unreachable, collecting_set_unreachable_clear);
1272
1273 /* Call tp_finalize on objects which have one. */
1274 finalize_garbage(tstate, &unreachable);
1275
1276 /* Handle any objects that may have resurrected after the call
1277 * to 'finalize_garbage' and continue the collection with the
1278 * objects that are still unreachable */
1279 PyGC_Head final_unreachable;
1280 handle_resurrected_objects(&unreachable, &final_unreachable, old);
1281
1282 /* Call tp_clear on objects in the final_unreachable set. This will cause
1283 * the reference cycles to be broken. It may also cause some objects
1284 * in finalizers to be freed.
1285 */
1286 m += gc_list_size(&final_unreachable);
1287 delete_garbage(tstate, gcstate, &final_unreachable, old);
1288
1289 /* Collect statistics on uncollectable objects found and print
1290 * debugging information. */
1291 for (gc = GC_NEXT(&finalizers); gc != &finalizers; gc = GC_NEXT(gc)) {
1292 n++;
1293 if (gcstate->debug & DEBUG_UNCOLLECTABLE)
1294 debug_cycle("uncollectable", FROM_GC(gc));
1295 }
1296 if (gcstate->debug & DEBUG_STATS) {
1297 double d = _PyTime_AsSecondsDouble(_PyTime_GetPerfCounter() - t1);
1298 PySys_WriteStderr(
1299 "gc: done, %zd unreachable, %zd uncollectable, %.4fs elapsed\n",
1300 n+m, n, d);
1301 }
1302
1303 /* Append instances in the uncollectable set to a Python
1304 * reachable list of garbage. The programmer has to deal with
1305 * this if they insist on creating this type of structure.
1306 */
1307 handle_legacy_finalizers(tstate, gcstate, &finalizers, old);
1308 validate_list(old, collecting_clear_unreachable_clear);
1309
1310 /* Clear free list only during the collection of the highest
1311 * generation */
1312 if (generation == NUM_GENERATIONS-1) {
1313 clear_freelists(tstate->interp);
1314 }
1315
1316 if (_PyErr_Occurred(tstate)) {
1317 if (nofail) {
1318 _PyErr_Clear(tstate);
1319 }
1320 else {
1321 _PyErr_WriteUnraisableMsg("in garbage collection", NULL);
1322 }
1323 }
1324
1325 /* Update stats */
1326 if (n_collected) {
1327 *n_collected = m;
1328 }
1329 if (n_uncollectable) {
1330 *n_uncollectable = n;
1331 }
1332
1333 struct gc_generation_stats *stats = &gcstate->generation_stats[generation];
1334 stats->collections++;
1335 stats->collected += m;
1336 stats->uncollectable += n;
1337
1338 if (PyDTrace_GC_DONE_ENABLED()) {
1339 PyDTrace_GC_DONE(n + m);
1340 }
1341
1342 assert(!_PyErr_Occurred(tstate));
1343 return n + m;
1344 }
1345
1346 /* Invoke progress callbacks to notify clients that garbage collection
1347 * is starting or stopping
1348 */
1349 static void
invoke_gc_callback(PyThreadState * tstate,const char * phase,int generation,Py_ssize_t collected,Py_ssize_t uncollectable)1350 invoke_gc_callback(PyThreadState *tstate, const char *phase,
1351 int generation, Py_ssize_t collected,
1352 Py_ssize_t uncollectable)
1353 {
1354 assert(!_PyErr_Occurred(tstate));
1355
1356 /* we may get called very early */
1357 GCState *gcstate = &tstate->interp->gc;
1358 if (gcstate->callbacks == NULL) {
1359 return;
1360 }
1361
1362 /* The local variable cannot be rebound, check it for sanity */
1363 assert(PyList_CheckExact(gcstate->callbacks));
1364 PyObject *info = NULL;
1365 if (PyList_GET_SIZE(gcstate->callbacks) != 0) {
1366 info = Py_BuildValue("{sisnsn}",
1367 "generation", generation,
1368 "collected", collected,
1369 "uncollectable", uncollectable);
1370 if (info == NULL) {
1371 PyErr_WriteUnraisable(NULL);
1372 return;
1373 }
1374 }
1375 for (Py_ssize_t i=0; i<PyList_GET_SIZE(gcstate->callbacks); i++) {
1376 PyObject *r, *cb = PyList_GET_ITEM(gcstate->callbacks, i);
1377 Py_INCREF(cb); /* make sure cb doesn't go away */
1378 r = PyObject_CallFunction(cb, "sO", phase, info);
1379 if (r == NULL) {
1380 PyErr_WriteUnraisable(cb);
1381 }
1382 else {
1383 Py_DECREF(r);
1384 }
1385 Py_DECREF(cb);
1386 }
1387 Py_XDECREF(info);
1388 assert(!_PyErr_Occurred(tstate));
1389 }
1390
1391 /* Perform garbage collection of a generation and invoke
1392 * progress callbacks.
1393 */
1394 static Py_ssize_t
gc_collect_with_callback(PyThreadState * tstate,int generation)1395 gc_collect_with_callback(PyThreadState *tstate, int generation)
1396 {
1397 assert(!_PyErr_Occurred(tstate));
1398 Py_ssize_t result, collected, uncollectable;
1399 invoke_gc_callback(tstate, "start", generation, 0, 0);
1400 result = gc_collect_main(tstate, generation, &collected, &uncollectable, 0);
1401 invoke_gc_callback(tstate, "stop", generation, collected, uncollectable);
1402 assert(!_PyErr_Occurred(tstate));
1403 return result;
1404 }
1405
1406 static Py_ssize_t
gc_collect_generations(PyThreadState * tstate)1407 gc_collect_generations(PyThreadState *tstate)
1408 {
1409 GCState *gcstate = &tstate->interp->gc;
1410 /* Find the oldest generation (highest numbered) where the count
1411 * exceeds the threshold. Objects in the that generation and
1412 * generations younger than it will be collected. */
1413 Py_ssize_t n = 0;
1414 for (int i = NUM_GENERATIONS-1; i >= 0; i--) {
1415 if (gcstate->generations[i].count > gcstate->generations[i].threshold) {
1416 /* Avoid quadratic performance degradation in number
1417 of tracked objects (see also issue #4074):
1418
1419 To limit the cost of garbage collection, there are two strategies;
1420 - make each collection faster, e.g. by scanning fewer objects
1421 - do less collections
1422 This heuristic is about the latter strategy.
1423
1424 In addition to the various configurable thresholds, we only trigger a
1425 full collection if the ratio
1426
1427 long_lived_pending / long_lived_total
1428
1429 is above a given value (hardwired to 25%).
1430
1431 The reason is that, while "non-full" collections (i.e., collections of
1432 the young and middle generations) will always examine roughly the same
1433 number of objects -- determined by the aforementioned thresholds --,
1434 the cost of a full collection is proportional to the total number of
1435 long-lived objects, which is virtually unbounded.
1436
1437 Indeed, it has been remarked that doing a full collection every
1438 <constant number> of object creations entails a dramatic performance
1439 degradation in workloads which consist in creating and storing lots of
1440 long-lived objects (e.g. building a large list of GC-tracked objects would
1441 show quadratic performance, instead of linear as expected: see issue #4074).
1442
1443 Using the above ratio, instead, yields amortized linear performance in
1444 the total number of objects (the effect of which can be summarized
1445 thusly: "each full garbage collection is more and more costly as the
1446 number of objects grows, but we do fewer and fewer of them").
1447
1448 This heuristic was suggested by Martin von Löwis on python-dev in
1449 June 2008. His original analysis and proposal can be found at:
1450 http://mail.python.org/pipermail/python-dev/2008-June/080579.html
1451 */
1452 if (i == NUM_GENERATIONS - 1
1453 && gcstate->long_lived_pending < gcstate->long_lived_total / 4)
1454 continue;
1455 n = gc_collect_with_callback(tstate, i);
1456 break;
1457 }
1458 }
1459 return n;
1460 }
1461
1462 #include "clinic/gcmodule.c.h"
1463
1464 /*[clinic input]
1465 gc.enable
1466
1467 Enable automatic garbage collection.
1468 [clinic start generated code]*/
1469
1470 static PyObject *
gc_enable_impl(PyObject * module)1471 gc_enable_impl(PyObject *module)
1472 /*[clinic end generated code: output=45a427e9dce9155c input=81ac4940ca579707]*/
1473 {
1474 PyGC_Enable();
1475 Py_RETURN_NONE;
1476 }
1477
1478 /*[clinic input]
1479 gc.disable
1480
1481 Disable automatic garbage collection.
1482 [clinic start generated code]*/
1483
1484 static PyObject *
gc_disable_impl(PyObject * module)1485 gc_disable_impl(PyObject *module)
1486 /*[clinic end generated code: output=97d1030f7aa9d279 input=8c2e5a14e800d83b]*/
1487 {
1488 PyGC_Disable();
1489 Py_RETURN_NONE;
1490 }
1491
1492 /*[clinic input]
1493 gc.isenabled -> bool
1494
1495 Returns true if automatic garbage collection is enabled.
1496 [clinic start generated code]*/
1497
1498 static int
gc_isenabled_impl(PyObject * module)1499 gc_isenabled_impl(PyObject *module)
1500 /*[clinic end generated code: output=1874298331c49130 input=30005e0422373b31]*/
1501 {
1502 return PyGC_IsEnabled();
1503 }
1504
1505 /*[clinic input]
1506 gc.collect -> Py_ssize_t
1507
1508 generation: int(c_default="NUM_GENERATIONS - 1") = 2
1509
1510 Run the garbage collector.
1511
1512 With no arguments, run a full collection. The optional argument
1513 may be an integer specifying which generation to collect. A ValueError
1514 is raised if the generation number is invalid.
1515
1516 The number of unreachable objects is returned.
1517 [clinic start generated code]*/
1518
1519 static Py_ssize_t
gc_collect_impl(PyObject * module,int generation)1520 gc_collect_impl(PyObject *module, int generation)
1521 /*[clinic end generated code: output=b697e633043233c7 input=40720128b682d879]*/
1522 {
1523 PyThreadState *tstate = _PyThreadState_GET();
1524
1525 if (generation < 0 || generation >= NUM_GENERATIONS) {
1526 _PyErr_SetString(tstate, PyExc_ValueError, "invalid generation");
1527 return -1;
1528 }
1529
1530 GCState *gcstate = &tstate->interp->gc;
1531 Py_ssize_t n;
1532 if (gcstate->collecting) {
1533 /* already collecting, don't do anything */
1534 n = 0;
1535 }
1536 else {
1537 gcstate->collecting = 1;
1538 n = gc_collect_with_callback(tstate, generation);
1539 gcstate->collecting = 0;
1540 }
1541 return n;
1542 }
1543
1544 /*[clinic input]
1545 gc.set_debug
1546
1547 flags: int
1548 An integer that can have the following bits turned on:
1549 DEBUG_STATS - Print statistics during collection.
1550 DEBUG_COLLECTABLE - Print collectable objects found.
1551 DEBUG_UNCOLLECTABLE - Print unreachable but uncollectable objects
1552 found.
1553 DEBUG_SAVEALL - Save objects to gc.garbage rather than freeing them.
1554 DEBUG_LEAK - Debug leaking programs (everything but STATS).
1555 /
1556
1557 Set the garbage collection debugging flags.
1558
1559 Debugging information is written to sys.stderr.
1560 [clinic start generated code]*/
1561
1562 static PyObject *
gc_set_debug_impl(PyObject * module,int flags)1563 gc_set_debug_impl(PyObject *module, int flags)
1564 /*[clinic end generated code: output=7c8366575486b228 input=5e5ce15e84fbed15]*/
1565 {
1566 GCState *gcstate = get_gc_state();
1567 gcstate->debug = flags;
1568 Py_RETURN_NONE;
1569 }
1570
1571 /*[clinic input]
1572 gc.get_debug -> int
1573
1574 Get the garbage collection debugging flags.
1575 [clinic start generated code]*/
1576
1577 static int
gc_get_debug_impl(PyObject * module)1578 gc_get_debug_impl(PyObject *module)
1579 /*[clinic end generated code: output=91242f3506cd1e50 input=91a101e1c3b98366]*/
1580 {
1581 GCState *gcstate = get_gc_state();
1582 return gcstate->debug;
1583 }
1584
1585 PyDoc_STRVAR(gc_set_thresh__doc__,
1586 "set_threshold(threshold0, [threshold1, threshold2]) -> None\n"
1587 "\n"
1588 "Sets the collection thresholds. Setting threshold0 to zero disables\n"
1589 "collection.\n");
1590
1591 static PyObject *
gc_set_threshold(PyObject * self,PyObject * args)1592 gc_set_threshold(PyObject *self, PyObject *args)
1593 {
1594 GCState *gcstate = get_gc_state();
1595 if (!PyArg_ParseTuple(args, "i|ii:set_threshold",
1596 &gcstate->generations[0].threshold,
1597 &gcstate->generations[1].threshold,
1598 &gcstate->generations[2].threshold))
1599 return NULL;
1600 for (int i = 3; i < NUM_GENERATIONS; i++) {
1601 /* generations higher than 2 get the same threshold */
1602 gcstate->generations[i].threshold = gcstate->generations[2].threshold;
1603 }
1604 Py_RETURN_NONE;
1605 }
1606
1607 /*[clinic input]
1608 gc.get_threshold
1609
1610 Return the current collection thresholds.
1611 [clinic start generated code]*/
1612
1613 static PyObject *
gc_get_threshold_impl(PyObject * module)1614 gc_get_threshold_impl(PyObject *module)
1615 /*[clinic end generated code: output=7902bc9f41ecbbd8 input=286d79918034d6e6]*/
1616 {
1617 GCState *gcstate = get_gc_state();
1618 return Py_BuildValue("(iii)",
1619 gcstate->generations[0].threshold,
1620 gcstate->generations[1].threshold,
1621 gcstate->generations[2].threshold);
1622 }
1623
1624 /*[clinic input]
1625 gc.get_count
1626
1627 Return a three-tuple of the current collection counts.
1628 [clinic start generated code]*/
1629
1630 static PyObject *
gc_get_count_impl(PyObject * module)1631 gc_get_count_impl(PyObject *module)
1632 /*[clinic end generated code: output=354012e67b16398f input=a392794a08251751]*/
1633 {
1634 GCState *gcstate = get_gc_state();
1635 return Py_BuildValue("(iii)",
1636 gcstate->generations[0].count,
1637 gcstate->generations[1].count,
1638 gcstate->generations[2].count);
1639 }
1640
1641 static int
referrersvisit(PyObject * obj,PyObject * objs)1642 referrersvisit(PyObject* obj, PyObject *objs)
1643 {
1644 Py_ssize_t i;
1645 for (i = 0; i < PyTuple_GET_SIZE(objs); i++)
1646 if (PyTuple_GET_ITEM(objs, i) == obj)
1647 return 1;
1648 return 0;
1649 }
1650
1651 static int
gc_referrers_for(PyObject * objs,PyGC_Head * list,PyObject * resultlist)1652 gc_referrers_for(PyObject *objs, PyGC_Head *list, PyObject *resultlist)
1653 {
1654 PyGC_Head *gc;
1655 PyObject *obj;
1656 traverseproc traverse;
1657 for (gc = GC_NEXT(list); gc != list; gc = GC_NEXT(gc)) {
1658 obj = FROM_GC(gc);
1659 traverse = Py_TYPE(obj)->tp_traverse;
1660 if (obj == objs || obj == resultlist)
1661 continue;
1662 if (traverse(obj, (visitproc)referrersvisit, objs)) {
1663 if (PyList_Append(resultlist, obj) < 0)
1664 return 0; /* error */
1665 }
1666 }
1667 return 1; /* no error */
1668 }
1669
1670 PyDoc_STRVAR(gc_get_referrers__doc__,
1671 "get_referrers(*objs) -> list\n\
1672 Return the list of objects that directly refer to any of objs.");
1673
1674 static PyObject *
gc_get_referrers(PyObject * self,PyObject * args)1675 gc_get_referrers(PyObject *self, PyObject *args)
1676 {
1677 if (PySys_Audit("gc.get_referrers", "(O)", args) < 0) {
1678 return NULL;
1679 }
1680
1681 PyObject *result = PyList_New(0);
1682 if (!result) {
1683 return NULL;
1684 }
1685
1686 GCState *gcstate = get_gc_state();
1687 for (int i = 0; i < NUM_GENERATIONS; i++) {
1688 if (!(gc_referrers_for(args, GEN_HEAD(gcstate, i), result))) {
1689 Py_DECREF(result);
1690 return NULL;
1691 }
1692 }
1693 return result;
1694 }
1695
1696 /* Append obj to list; return true if error (out of memory), false if OK. */
1697 static int
referentsvisit(PyObject * obj,PyObject * list)1698 referentsvisit(PyObject *obj, PyObject *list)
1699 {
1700 return PyList_Append(list, obj) < 0;
1701 }
1702
1703 PyDoc_STRVAR(gc_get_referents__doc__,
1704 "get_referents(*objs) -> list\n\
1705 Return the list of objects that are directly referred to by objs.");
1706
1707 static PyObject *
gc_get_referents(PyObject * self,PyObject * args)1708 gc_get_referents(PyObject *self, PyObject *args)
1709 {
1710 Py_ssize_t i;
1711 if (PySys_Audit("gc.get_referents", "(O)", args) < 0) {
1712 return NULL;
1713 }
1714 PyObject *result = PyList_New(0);
1715
1716 if (result == NULL)
1717 return NULL;
1718
1719 for (i = 0; i < PyTuple_GET_SIZE(args); i++) {
1720 traverseproc traverse;
1721 PyObject *obj = PyTuple_GET_ITEM(args, i);
1722
1723 if (!_PyObject_IS_GC(obj))
1724 continue;
1725 traverse = Py_TYPE(obj)->tp_traverse;
1726 if (! traverse)
1727 continue;
1728 if (traverse(obj, (visitproc)referentsvisit, result)) {
1729 Py_DECREF(result);
1730 return NULL;
1731 }
1732 }
1733 return result;
1734 }
1735
1736 /*[clinic input]
1737 gc.get_objects
1738 generation: Py_ssize_t(accept={int, NoneType}, c_default="-1") = None
1739 Generation to extract the objects from.
1740
1741 Return a list of objects tracked by the collector (excluding the list returned).
1742
1743 If generation is not None, return only the objects tracked by the collector
1744 that are in that generation.
1745 [clinic start generated code]*/
1746
1747 static PyObject *
gc_get_objects_impl(PyObject * module,Py_ssize_t generation)1748 gc_get_objects_impl(PyObject *module, Py_ssize_t generation)
1749 /*[clinic end generated code: output=48b35fea4ba6cb0e input=ef7da9df9806754c]*/
1750 {
1751 PyThreadState *tstate = _PyThreadState_GET();
1752 int i;
1753 PyObject* result;
1754 GCState *gcstate = &tstate->interp->gc;
1755
1756 if (PySys_Audit("gc.get_objects", "n", generation) < 0) {
1757 return NULL;
1758 }
1759
1760 result = PyList_New(0);
1761 if (result == NULL) {
1762 return NULL;
1763 }
1764
1765 /* If generation is passed, we extract only that generation */
1766 if (generation != -1) {
1767 if (generation >= NUM_GENERATIONS) {
1768 _PyErr_Format(tstate, PyExc_ValueError,
1769 "generation parameter must be less than the number of "
1770 "available generations (%i)",
1771 NUM_GENERATIONS);
1772 goto error;
1773 }
1774
1775 if (generation < 0) {
1776 _PyErr_SetString(tstate, PyExc_ValueError,
1777 "generation parameter cannot be negative");
1778 goto error;
1779 }
1780
1781 if (append_objects(result, GEN_HEAD(gcstate, generation))) {
1782 goto error;
1783 }
1784
1785 return result;
1786 }
1787
1788 /* If generation is not passed or None, get all objects from all generations */
1789 for (i = 0; i < NUM_GENERATIONS; i++) {
1790 if (append_objects(result, GEN_HEAD(gcstate, i))) {
1791 goto error;
1792 }
1793 }
1794 return result;
1795
1796 error:
1797 Py_DECREF(result);
1798 return NULL;
1799 }
1800
1801 /*[clinic input]
1802 gc.get_stats
1803
1804 Return a list of dictionaries containing per-generation statistics.
1805 [clinic start generated code]*/
1806
1807 static PyObject *
gc_get_stats_impl(PyObject * module)1808 gc_get_stats_impl(PyObject *module)
1809 /*[clinic end generated code: output=a8ab1d8a5d26f3ab input=1ef4ed9d17b1a470]*/
1810 {
1811 int i;
1812 struct gc_generation_stats stats[NUM_GENERATIONS], *st;
1813
1814 /* To get consistent values despite allocations while constructing
1815 the result list, we use a snapshot of the running stats. */
1816 GCState *gcstate = get_gc_state();
1817 for (i = 0; i < NUM_GENERATIONS; i++) {
1818 stats[i] = gcstate->generation_stats[i];
1819 }
1820
1821 PyObject *result = PyList_New(0);
1822 if (result == NULL)
1823 return NULL;
1824
1825 for (i = 0; i < NUM_GENERATIONS; i++) {
1826 PyObject *dict;
1827 st = &stats[i];
1828 dict = Py_BuildValue("{snsnsn}",
1829 "collections", st->collections,
1830 "collected", st->collected,
1831 "uncollectable", st->uncollectable
1832 );
1833 if (dict == NULL)
1834 goto error;
1835 if (PyList_Append(result, dict)) {
1836 Py_DECREF(dict);
1837 goto error;
1838 }
1839 Py_DECREF(dict);
1840 }
1841 return result;
1842
1843 error:
1844 Py_XDECREF(result);
1845 return NULL;
1846 }
1847
1848
1849 /*[clinic input]
1850 gc.is_tracked
1851
1852 obj: object
1853 /
1854
1855 Returns true if the object is tracked by the garbage collector.
1856
1857 Simple atomic objects will return false.
1858 [clinic start generated code]*/
1859
1860 static PyObject *
gc_is_tracked(PyObject * module,PyObject * obj)1861 gc_is_tracked(PyObject *module, PyObject *obj)
1862 /*[clinic end generated code: output=14f0103423b28e31 input=d83057f170ea2723]*/
1863 {
1864 PyObject *result;
1865
1866 if (_PyObject_IS_GC(obj) && _PyObject_GC_IS_TRACKED(obj))
1867 result = Py_True;
1868 else
1869 result = Py_False;
1870 Py_INCREF(result);
1871 return result;
1872 }
1873
1874 /*[clinic input]
1875 gc.is_finalized
1876
1877 obj: object
1878 /
1879
1880 Returns true if the object has been already finalized by the GC.
1881 [clinic start generated code]*/
1882
1883 static PyObject *
gc_is_finalized(PyObject * module,PyObject * obj)1884 gc_is_finalized(PyObject *module, PyObject *obj)
1885 /*[clinic end generated code: output=e1516ac119a918ed input=201d0c58f69ae390]*/
1886 {
1887 if (_PyObject_IS_GC(obj) && _PyGCHead_FINALIZED(AS_GC(obj))) {
1888 Py_RETURN_TRUE;
1889 }
1890 Py_RETURN_FALSE;
1891 }
1892
1893 /*[clinic input]
1894 gc.freeze
1895
1896 Freeze all current tracked objects and ignore them for future collections.
1897
1898 This can be used before a POSIX fork() call to make the gc copy-on-write friendly.
1899 Note: collection before a POSIX fork() call may free pages for future allocation
1900 which can cause copy-on-write.
1901 [clinic start generated code]*/
1902
1903 static PyObject *
gc_freeze_impl(PyObject * module)1904 gc_freeze_impl(PyObject *module)
1905 /*[clinic end generated code: output=502159d9cdc4c139 input=b602b16ac5febbe5]*/
1906 {
1907 GCState *gcstate = get_gc_state();
1908 for (int i = 0; i < NUM_GENERATIONS; ++i) {
1909 gc_list_merge(GEN_HEAD(gcstate, i), &gcstate->permanent_generation.head);
1910 gcstate->generations[i].count = 0;
1911 }
1912 Py_RETURN_NONE;
1913 }
1914
1915 /*[clinic input]
1916 gc.unfreeze
1917
1918 Unfreeze all objects in the permanent generation.
1919
1920 Put all objects in the permanent generation back into oldest generation.
1921 [clinic start generated code]*/
1922
1923 static PyObject *
gc_unfreeze_impl(PyObject * module)1924 gc_unfreeze_impl(PyObject *module)
1925 /*[clinic end generated code: output=1c15f2043b25e169 input=2dd52b170f4cef6c]*/
1926 {
1927 GCState *gcstate = get_gc_state();
1928 gc_list_merge(&gcstate->permanent_generation.head,
1929 GEN_HEAD(gcstate, NUM_GENERATIONS-1));
1930 Py_RETURN_NONE;
1931 }
1932
1933 /*[clinic input]
1934 gc.get_freeze_count -> Py_ssize_t
1935
1936 Return the number of objects in the permanent generation.
1937 [clinic start generated code]*/
1938
1939 static Py_ssize_t
gc_get_freeze_count_impl(PyObject * module)1940 gc_get_freeze_count_impl(PyObject *module)
1941 /*[clinic end generated code: output=61cbd9f43aa032e1 input=45ffbc65cfe2a6ed]*/
1942 {
1943 GCState *gcstate = get_gc_state();
1944 return gc_list_size(&gcstate->permanent_generation.head);
1945 }
1946
1947
1948 PyDoc_STRVAR(gc__doc__,
1949 "This module provides access to the garbage collector for reference cycles.\n"
1950 "\n"
1951 "enable() -- Enable automatic garbage collection.\n"
1952 "disable() -- Disable automatic garbage collection.\n"
1953 "isenabled() -- Returns true if automatic collection is enabled.\n"
1954 "collect() -- Do a full collection right now.\n"
1955 "get_count() -- Return the current collection counts.\n"
1956 "get_stats() -- Return list of dictionaries containing per-generation stats.\n"
1957 "set_debug() -- Set debugging flags.\n"
1958 "get_debug() -- Get debugging flags.\n"
1959 "set_threshold() -- Set the collection thresholds.\n"
1960 "get_threshold() -- Return the current the collection thresholds.\n"
1961 "get_objects() -- Return a list of all objects tracked by the collector.\n"
1962 "is_tracked() -- Returns true if a given object is tracked.\n"
1963 "is_finalized() -- Returns true if a given object has been already finalized.\n"
1964 "get_referrers() -- Return the list of objects that refer to an object.\n"
1965 "get_referents() -- Return the list of objects that an object refers to.\n"
1966 "freeze() -- Freeze all tracked objects and ignore them for future collections.\n"
1967 "unfreeze() -- Unfreeze all objects in the permanent generation.\n"
1968 "get_freeze_count() -- Return the number of objects in the permanent generation.\n");
1969
1970 static PyMethodDef GcMethods[] = {
1971 GC_ENABLE_METHODDEF
1972 GC_DISABLE_METHODDEF
1973 GC_ISENABLED_METHODDEF
1974 GC_SET_DEBUG_METHODDEF
1975 GC_GET_DEBUG_METHODDEF
1976 GC_GET_COUNT_METHODDEF
1977 {"set_threshold", gc_set_threshold, METH_VARARGS, gc_set_thresh__doc__},
1978 GC_GET_THRESHOLD_METHODDEF
1979 GC_COLLECT_METHODDEF
1980 GC_GET_OBJECTS_METHODDEF
1981 GC_GET_STATS_METHODDEF
1982 GC_IS_TRACKED_METHODDEF
1983 GC_IS_FINALIZED_METHODDEF
1984 {"get_referrers", gc_get_referrers, METH_VARARGS,
1985 gc_get_referrers__doc__},
1986 {"get_referents", gc_get_referents, METH_VARARGS,
1987 gc_get_referents__doc__},
1988 GC_FREEZE_METHODDEF
1989 GC_UNFREEZE_METHODDEF
1990 GC_GET_FREEZE_COUNT_METHODDEF
1991 {NULL, NULL} /* Sentinel */
1992 };
1993
1994 static int
gcmodule_exec(PyObject * module)1995 gcmodule_exec(PyObject *module)
1996 {
1997 GCState *gcstate = get_gc_state();
1998
1999 /* garbage and callbacks are initialized by _PyGC_Init() early in
2000 * interpreter lifecycle. */
2001 assert(gcstate->garbage != NULL);
2002 if (PyModule_AddObjectRef(module, "garbage", gcstate->garbage) < 0) {
2003 return -1;
2004 }
2005 assert(gcstate->callbacks != NULL);
2006 if (PyModule_AddObjectRef(module, "callbacks", gcstate->callbacks) < 0) {
2007 return -1;
2008 }
2009
2010 #define ADD_INT(NAME) if (PyModule_AddIntConstant(module, #NAME, NAME) < 0) { return -1; }
2011 ADD_INT(DEBUG_STATS);
2012 ADD_INT(DEBUG_COLLECTABLE);
2013 ADD_INT(DEBUG_UNCOLLECTABLE);
2014 ADD_INT(DEBUG_SAVEALL);
2015 ADD_INT(DEBUG_LEAK);
2016 #undef ADD_INT
2017 return 0;
2018 }
2019
2020 static PyModuleDef_Slot gcmodule_slots[] = {
2021 {Py_mod_exec, gcmodule_exec},
2022 {0, NULL}
2023 };
2024
2025 static struct PyModuleDef gcmodule = {
2026 PyModuleDef_HEAD_INIT,
2027 .m_name = "gc",
2028 .m_doc = gc__doc__,
2029 .m_size = 0, // per interpreter state, see: get_gc_state()
2030 .m_methods = GcMethods,
2031 .m_slots = gcmodule_slots
2032 };
2033
2034 PyMODINIT_FUNC
PyInit_gc(void)2035 PyInit_gc(void)
2036 {
2037 return PyModuleDef_Init(&gcmodule);
2038 }
2039
2040 /* C API for controlling the state of the garbage collector */
2041 int
PyGC_Enable(void)2042 PyGC_Enable(void)
2043 {
2044 GCState *gcstate = get_gc_state();
2045 int old_state = gcstate->enabled;
2046 gcstate->enabled = 1;
2047 return old_state;
2048 }
2049
2050 int
PyGC_Disable(void)2051 PyGC_Disable(void)
2052 {
2053 GCState *gcstate = get_gc_state();
2054 int old_state = gcstate->enabled;
2055 gcstate->enabled = 0;
2056 return old_state;
2057 }
2058
2059 int
PyGC_IsEnabled(void)2060 PyGC_IsEnabled(void)
2061 {
2062 GCState *gcstate = get_gc_state();
2063 return gcstate->enabled;
2064 }
2065
2066 /* Public API to invoke gc.collect() from C */
2067 Py_ssize_t
PyGC_Collect(void)2068 PyGC_Collect(void)
2069 {
2070 PyThreadState *tstate = _PyThreadState_GET();
2071 GCState *gcstate = &tstate->interp->gc;
2072
2073 if (!gcstate->enabled) {
2074 return 0;
2075 }
2076
2077 Py_ssize_t n;
2078 if (gcstate->collecting) {
2079 /* already collecting, don't do anything */
2080 n = 0;
2081 }
2082 else {
2083 PyObject *exc, *value, *tb;
2084 gcstate->collecting = 1;
2085 _PyErr_Fetch(tstate, &exc, &value, &tb);
2086 n = gc_collect_with_callback(tstate, NUM_GENERATIONS - 1);
2087 _PyErr_Restore(tstate, exc, value, tb);
2088 gcstate->collecting = 0;
2089 }
2090
2091 return n;
2092 }
2093
2094 Py_ssize_t
_PyGC_CollectNoFail(PyThreadState * tstate)2095 _PyGC_CollectNoFail(PyThreadState *tstate)
2096 {
2097 /* Ideally, this function is only called on interpreter shutdown,
2098 and therefore not recursively. Unfortunately, when there are daemon
2099 threads, a daemon thread can start a cyclic garbage collection
2100 during interpreter shutdown (and then never finish it).
2101 See http://bugs.python.org/issue8713#msg195178 for an example.
2102 */
2103 GCState *gcstate = &tstate->interp->gc;
2104 if (gcstate->collecting) {
2105 return 0;
2106 }
2107
2108 Py_ssize_t n;
2109 gcstate->collecting = 1;
2110 n = gc_collect_main(tstate, NUM_GENERATIONS - 1, NULL, NULL, 1);
2111 gcstate->collecting = 0;
2112 return n;
2113 }
2114
2115 void
_PyGC_DumpShutdownStats(PyInterpreterState * interp)2116 _PyGC_DumpShutdownStats(PyInterpreterState *interp)
2117 {
2118 GCState *gcstate = &interp->gc;
2119 if (!(gcstate->debug & DEBUG_SAVEALL)
2120 && gcstate->garbage != NULL && PyList_GET_SIZE(gcstate->garbage) > 0) {
2121 const char *message;
2122 if (gcstate->debug & DEBUG_UNCOLLECTABLE)
2123 message = "gc: %zd uncollectable objects at " \
2124 "shutdown";
2125 else
2126 message = "gc: %zd uncollectable objects at " \
2127 "shutdown; use gc.set_debug(gc.DEBUG_UNCOLLECTABLE) to list them";
2128 /* PyErr_WarnFormat does too many things and we are at shutdown,
2129 the warnings module's dependencies (e.g. linecache) may be gone
2130 already. */
2131 if (PyErr_WarnExplicitFormat(PyExc_ResourceWarning, "gc", 0,
2132 "gc", NULL, message,
2133 PyList_GET_SIZE(gcstate->garbage)))
2134 PyErr_WriteUnraisable(NULL);
2135 if (gcstate->debug & DEBUG_UNCOLLECTABLE) {
2136 PyObject *repr = NULL, *bytes = NULL;
2137 repr = PyObject_Repr(gcstate->garbage);
2138 if (!repr || !(bytes = PyUnicode_EncodeFSDefault(repr)))
2139 PyErr_WriteUnraisable(gcstate->garbage);
2140 else {
2141 PySys_WriteStderr(
2142 " %s\n",
2143 PyBytes_AS_STRING(bytes)
2144 );
2145 }
2146 Py_XDECREF(repr);
2147 Py_XDECREF(bytes);
2148 }
2149 }
2150 }
2151
2152
2153 static void
gc_fini_untrack(PyGC_Head * list)2154 gc_fini_untrack(PyGC_Head *list)
2155 {
2156 PyGC_Head *gc;
2157 for (gc = GC_NEXT(list); gc != list; gc = GC_NEXT(list)) {
2158 PyObject *op = FROM_GC(gc);
2159 _PyObject_GC_UNTRACK(op);
2160 // gh-92036: If a deallocator function expect the object to be tracked
2161 // by the GC (ex: func_dealloc()), it can crash if called on an object
2162 // which is no longer tracked by the GC. Leak one strong reference on
2163 // purpose so the object is never deleted and its deallocator is not
2164 // called.
2165 Py_INCREF(op);
2166 }
2167 }
2168
2169
2170 void
_PyGC_Fini(PyInterpreterState * interp)2171 _PyGC_Fini(PyInterpreterState *interp)
2172 {
2173 GCState *gcstate = &interp->gc;
2174 Py_CLEAR(gcstate->garbage);
2175 Py_CLEAR(gcstate->callbacks);
2176
2177 if (!_Py_IsMainInterpreter(interp)) {
2178 // bpo-46070: Explicitly untrack all objects currently tracked by the
2179 // GC. Otherwise, if an object is used later by another interpreter,
2180 // calling PyObject_GC_UnTrack() on the object crashs if the previous
2181 // or the next object of the PyGC_Head structure became a dangling
2182 // pointer.
2183 for (int i = 0; i < NUM_GENERATIONS; i++) {
2184 PyGC_Head *gen = GEN_HEAD(gcstate, i);
2185 gc_fini_untrack(gen);
2186 }
2187 }
2188 }
2189
2190 /* for debugging */
2191 void
_PyGC_Dump(PyGC_Head * g)2192 _PyGC_Dump(PyGC_Head *g)
2193 {
2194 _PyObject_Dump(FROM_GC(g));
2195 }
2196
2197
2198 #ifdef Py_DEBUG
2199 static int
visit_validate(PyObject * op,void * parent_raw)2200 visit_validate(PyObject *op, void *parent_raw)
2201 {
2202 PyObject *parent = _PyObject_CAST(parent_raw);
2203 if (_PyObject_IsFreed(op)) {
2204 _PyObject_ASSERT_FAILED_MSG(parent,
2205 "PyObject_GC_Track() object is not valid");
2206 }
2207 return 0;
2208 }
2209 #endif
2210
2211
2212 /* extension modules might be compiled with GC support so these
2213 functions must always be available */
2214
2215 void
PyObject_GC_Track(void * op_raw)2216 PyObject_GC_Track(void *op_raw)
2217 {
2218 PyObject *op = _PyObject_CAST(op_raw);
2219 if (_PyObject_GC_IS_TRACKED(op)) {
2220 _PyObject_ASSERT_FAILED_MSG(op,
2221 "object already tracked "
2222 "by the garbage collector");
2223 }
2224 _PyObject_GC_TRACK(op);
2225
2226 #ifdef Py_DEBUG
2227 /* Check that the object is valid: validate objects traversed
2228 by tp_traverse() */
2229 traverseproc traverse = Py_TYPE(op)->tp_traverse;
2230 (void)traverse(op, visit_validate, op);
2231 #endif
2232 }
2233
2234 void
PyObject_GC_UnTrack(void * op_raw)2235 PyObject_GC_UnTrack(void *op_raw)
2236 {
2237 PyObject *op = _PyObject_CAST(op_raw);
2238 /* Obscure: the Py_TRASHCAN mechanism requires that we be able to
2239 * call PyObject_GC_UnTrack twice on an object.
2240 */
2241 if (_PyObject_GC_IS_TRACKED(op)) {
2242 _PyObject_GC_UNTRACK(op);
2243 }
2244 }
2245
2246 int
PyObject_IS_GC(PyObject * obj)2247 PyObject_IS_GC(PyObject *obj)
2248 {
2249 return _PyObject_IS_GC(obj);
2250 }
2251
2252 void
_PyObject_GC_Link(PyObject * op)2253 _PyObject_GC_Link(PyObject *op)
2254 {
2255 PyGC_Head *g = AS_GC(op);
2256 assert(((uintptr_t)g & (sizeof(uintptr_t)-1)) == 0); // g must be correctly aligned
2257
2258 PyThreadState *tstate = _PyThreadState_GET();
2259 GCState *gcstate = &tstate->interp->gc;
2260 g->_gc_next = 0;
2261 g->_gc_prev = 0;
2262 gcstate->generations[0].count++; /* number of allocated GC objects */
2263 if (gcstate->generations[0].count > gcstate->generations[0].threshold &&
2264 gcstate->enabled &&
2265 gcstate->generations[0].threshold &&
2266 !gcstate->collecting &&
2267 !_PyErr_Occurred(tstate))
2268 {
2269 gcstate->collecting = 1;
2270 gc_collect_generations(tstate);
2271 gcstate->collecting = 0;
2272 }
2273 }
2274
2275 static PyObject *
gc_alloc(size_t basicsize,size_t presize)2276 gc_alloc(size_t basicsize, size_t presize)
2277 {
2278 PyThreadState *tstate = _PyThreadState_GET();
2279 if (basicsize > PY_SSIZE_T_MAX - presize) {
2280 return _PyErr_NoMemory(tstate);
2281 }
2282 size_t size = presize + basicsize;
2283 char *mem = PyObject_Malloc(size);
2284 if (mem == NULL) {
2285 return _PyErr_NoMemory(tstate);
2286 }
2287 ((PyObject **)mem)[0] = NULL;
2288 ((PyObject **)mem)[1] = NULL;
2289 PyObject *op = (PyObject *)(mem + presize);
2290 _PyObject_GC_Link(op);
2291 return op;
2292 }
2293
2294 PyObject *
_PyObject_GC_New(PyTypeObject * tp)2295 _PyObject_GC_New(PyTypeObject *tp)
2296 {
2297 size_t presize = _PyType_PreHeaderSize(tp);
2298 PyObject *op = gc_alloc(_PyObject_SIZE(tp), presize);
2299 if (op == NULL) {
2300 return NULL;
2301 }
2302 _PyObject_Init(op, tp);
2303 return op;
2304 }
2305
2306 PyVarObject *
_PyObject_GC_NewVar(PyTypeObject * tp,Py_ssize_t nitems)2307 _PyObject_GC_NewVar(PyTypeObject *tp, Py_ssize_t nitems)
2308 {
2309 size_t size;
2310 PyVarObject *op;
2311
2312 if (nitems < 0) {
2313 PyErr_BadInternalCall();
2314 return NULL;
2315 }
2316 size_t presize = _PyType_PreHeaderSize(tp);
2317 size = _PyObject_VAR_SIZE(tp, nitems);
2318 op = (PyVarObject *)gc_alloc(size, presize);
2319 if (op == NULL) {
2320 return NULL;
2321 }
2322 _PyObject_InitVar(op, tp, nitems);
2323 return op;
2324 }
2325
2326 PyVarObject *
_PyObject_GC_Resize(PyVarObject * op,Py_ssize_t nitems)2327 _PyObject_GC_Resize(PyVarObject *op, Py_ssize_t nitems)
2328 {
2329 const size_t basicsize = _PyObject_VAR_SIZE(Py_TYPE(op), nitems);
2330 _PyObject_ASSERT((PyObject *)op, !_PyObject_GC_IS_TRACKED(op));
2331 if (basicsize > PY_SSIZE_T_MAX - sizeof(PyGC_Head)) {
2332 return (PyVarObject *)PyErr_NoMemory();
2333 }
2334
2335 PyGC_Head *g = AS_GC(op);
2336 g = (PyGC_Head *)PyObject_Realloc(g, sizeof(PyGC_Head) + basicsize);
2337 if (g == NULL)
2338 return (PyVarObject *)PyErr_NoMemory();
2339 op = (PyVarObject *) FROM_GC(g);
2340 Py_SET_SIZE(op, nitems);
2341 return op;
2342 }
2343
2344 void
PyObject_GC_Del(void * op)2345 PyObject_GC_Del(void *op)
2346 {
2347 size_t presize = _PyType_PreHeaderSize(((PyObject *)op)->ob_type);
2348 PyGC_Head *g = AS_GC(op);
2349 if (_PyObject_GC_IS_TRACKED(op)) {
2350 #ifdef Py_DEBUG
2351 if (PyErr_WarnExplicitFormat(PyExc_ResourceWarning, "gc", 0,
2352 "gc", NULL, "Object of type %s is not untracked before destruction",
2353 ((PyObject*)op)->ob_type->tp_name)) {
2354 PyErr_WriteUnraisable(NULL);
2355 }
2356 #endif
2357 gc_list_remove(g);
2358 }
2359 GCState *gcstate = get_gc_state();
2360 if (gcstate->generations[0].count > 0) {
2361 gcstate->generations[0].count--;
2362 }
2363 PyObject_Free(((char *)op)-presize);
2364 }
2365
2366 int
PyObject_GC_IsTracked(PyObject * obj)2367 PyObject_GC_IsTracked(PyObject* obj)
2368 {
2369 if (_PyObject_IS_GC(obj) && _PyObject_GC_IS_TRACKED(obj)) {
2370 return 1;
2371 }
2372 return 0;
2373 }
2374
2375 int
PyObject_GC_IsFinalized(PyObject * obj)2376 PyObject_GC_IsFinalized(PyObject *obj)
2377 {
2378 if (_PyObject_IS_GC(obj) && _PyGCHead_FINALIZED(AS_GC(obj))) {
2379 return 1;
2380 }
2381 return 0;
2382 }
2383