1 #include <ATen/cuda/CUDAGeneratorImpl.h>
2 #include <ATen/cuda/CUDAGraph.h>
3 #include <ATen/cuda/Exceptions.h>
4 #include <ATen/Functions.h>
5 #include <c10/cuda/CUDACachingAllocator.h>
6 #include <c10/cuda/CUDAFunctions.h>
7
8 #include <chrono>
9 #include <cstddef>
10 #include <cstdint>
11 #include <thread>
12 #include <vector>
13
14 namespace at::cuda {
15
16 static bool _cuda_graphs_debug = false;
17 constexpr int kSynchronizeBusyWaitMillis = 10;
18
graph_pool_handle()19 MempoolId_t graph_pool_handle() {
20 // Sets just the second value, to distinguish it from MempoolId_ts created from
21 // cudaStreamGetCaptureInfo id_s in capture_begin.
22 auto new_pool = c10::cuda::MemPool();
23 return new_pool.id();
24 }
25
26 /**
27 * Note [CUDA Graph Wrapper Class]
28 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29 * Q: Why do we need graph capture and launch bindings in Pytorch?
30 * Why can't they live in a user extension, for example?
31 *
32 * A1: Convenience.
33 * A2: To ensure valid numerics on replay, some native CUDA ops (like RNG ops with
34 * CPU statefulness) need cooperation from the capture and replay bindings
35 * (see Note [CUDA Graph-safe RNG states] in CUDAGeneratorImpl.h).
36 *
37 * We can't expect users to know about this cooperation. If users write capture
38 * bindings naively in an extension, they likely won't interact with the native
39 * ops properly. Their graphs would yield invalid numerics on replay.
40 */
41
42 /**
43 * Note [Interaction with CUDA graph capture] in CUDACachingAllocator.cpp
44 * describes memory management for captures.
45 */
46
47 std::atomic<int> CUDAGraph::pending_event_queries = 0;
48
49 // Track any outstanding event queries that could happen e.g., in a NCCL watchdog so that they
50 // can be resolved before the capture begins. Note that event queries are not allowed during a
51 // graph capture in the default capture mode.
inc_pending_event_queries()52 void CUDAGraph::inc_pending_event_queries() {
53 pending_event_queries++;
54 }
55
dec_pending_event_queries()56 void CUDAGraph::dec_pending_event_queries() {
57 TORCH_INTERNAL_ASSERT(pending_event_queries > 0,
58 "Attempted to decrement the number of outstanding events to be queried, but it was <= 0.");
59 pending_event_queries--;
60 }
61
num_pending_event_queries()62 int CUDAGraph::num_pending_event_queries() {
63 return pending_event_queries;
64 }
65
CUDAGraph()66 CUDAGraph::CUDAGraph()
67 // CUDAStreams may not be default-constructed.
68 : capture_stream_(at::cuda::getCurrentCUDAStream()) {
69 }
70
register_generator_state(c10::intrusive_ptr<at::CUDAGeneratorState> state)71 void CUDAGraph::register_generator_state(
72 c10::intrusive_ptr<at::CUDAGeneratorState> state) {
73 captured_generator_states_[std::move(state)] = 0;
74 }
75
register_generator_state(const at::Generator & generator)76 void CUDAGraph::register_generator_state(const at::Generator& generator) {
77 c10::intrusive_ptr<CUDAGeneratorImpl> cuda_gen =
78 dynamic_intrusive_pointer_cast<CUDAGeneratorImpl>(
79 generator.getIntrusivePtr());
80 cuda_gen->register_graph(this);
81 }
82
capture_begin(MempoolId_t pool,cudaStreamCaptureMode capture_mode)83 void CUDAGraph::capture_begin(MempoolId_t pool/*=0*/, cudaStreamCaptureMode capture_mode) {
84 TORCH_CHECK(!has_graph_exec_,
85 "This CUDAGraph instance already owns a captured graph. "
86 "To capture a new graph, create a new instance.");
87
88 // default generator is always registered
89 auto* gen = get_generator_or_default<CUDAGeneratorImpl>(
90 std::nullopt, cuda::detail::getDefaultCUDAGenerator());
91 gen->register_graph(this);
92
93 for (auto& [generator_state, wholegraph_increments] :
94 captured_generator_states_) {
95 generator_state->capture_prologue();
96 }
97
98 auto stream = at::cuda::getCurrentCUDAStream();
99
100 TORCH_CHECK(stream != at::cuda::getDefaultCUDAStream(),
101 "CUDA graphs must be captured on a non-default stream. "
102 "(However, after capture, it's ok to replay them on the "
103 "default stream.)");
104
105 capture_stream_ = stream;
106 capture_dev_ = c10::cuda::current_device();
107
108 if (pool.first != 0 || pool.second != 0) {
109 // Either value being nonzero means the user supplied a pool to share.
110 // But only one should be nonzero.
111 // If pool was created by another graph's capture_begin, first should be nonzero.
112 // If pool was created by graph_pool_handle, second should be nonzero.
113 TORCH_INTERNAL_ASSERT(!(pool.first && pool.second));
114 mempool_id_ = pool;
115 } else {
116 // User did not ask us to share a mempool. Create graph pool handle using is_user_created=false.
117 // Sets just the first value, to distinguish it from MempoolId_ts created by graph_pool_handle().
118 auto mempool = c10::cuda::MemPool({}, false);
119 mempool_id_ = mempool.id();
120 TORCH_INTERNAL_ASSERT(mempool_id_.first > 0);
121 }
122
123 // Addendum: beginAllocateStreamToPool is now called before cudaStreamBeginCapture to prevent an
124 // autograd thread's free() call triggering an invalid cudaEventRecord in the caching allocator
125 // due to the capture status being updated _after_ a capture had already started.
126 c10::cuda::CUDACachingAllocator::beginAllocateToPool(capture_dev_, mempool_id_, [this](cudaStream_t stream) {
127 cudaStreamCaptureStatus status;
128 CaptureId_t stream_capture_id;
129 AT_CUDA_CHECK(cudaStreamGetCaptureInfo(stream, &status, &stream_capture_id));
130 return status == cudaStreamCaptureStatus::cudaStreamCaptureStatusActive && stream_capture_id == capture_id_;
131 });
132
133 // At this point, any NCCL watchdogs should be aware that we are in capture mode
134 // and therefore should not enqueue any additional work that could be event-queried.
135 // We still must wait on any existing work that has not been cleaned up.
136 while (num_pending_event_queries()) {
137 TORCH_WARN_ONCE("Waiting for pending NCCL work to finish before starting graph capture.");
138 std::this_thread::sleep_for(
139 std::chrono::milliseconds(kSynchronizeBusyWaitMillis));
140 }
141
142 // cudaStreamCaptureModeGlobal is the most conservative option to
143 // prevent potentially unsafe CUDA API calls during capture. See
144 // https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__STREAM.html#group__CUDART__STREAM_1g9d0535d93a214cbf126835257b16ba85
145 AT_CUDA_CHECK(cudaStreamBeginCapture(capture_stream_, capture_mode));
146
147 cudaStreamCaptureStatus status;
148 AT_CUDA_CHECK(cudaStreamGetCaptureInfo(stream, &status, &capture_id_));
149 TORCH_INTERNAL_ASSERT(status == cudaStreamCaptureStatus::cudaStreamCaptureStatusActive);
150
151 }
152
capture_end()153 void CUDAGraph::capture_end() {
154 auto stream = at::cuda::getCurrentCUDAStream();
155
156 TORCH_CHECK(stream == capture_stream_,
157 "Capture must end on the same stream it began on.");
158
159 AT_CUDA_CHECK(cudaStreamEndCapture(capture_stream_, &graph_));
160
161 c10::cuda::CUDACachingAllocator::endAllocateToPool(capture_dev_, mempool_id_);
162
163 TORCH_CHECK(graph_ != NULL, "Invalid capture.");
164 has_graph_ = true;
165
166 // In typical graph usage some tensors (e.g. the tensors used for graph IO) are not freed
167 // between replays.
168 // If Pytorch compiles and runs with a CUDA 11.4+ toolkit, there's a chance the allocator backend
169 // is cudaMallocAsync.
170 // cudaMallocAsync is generally graph-safe, but if some tensors are not freed between replays,
171 // the graph's internal bookkeeping requires that we instantiate with
172 // cudaGraphInstantiateFlagAutoFreeOnLaunch. See
173 // cudaGraphLaunch
174 // https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__GRAPH.html#group__CUDART__GRAPH_1g1accfe1da0c605a577c22d9751a09597
175 // cudaGraphInstantiateWithFlags
176 // https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__GRAPH.html#group__CUDART__GRAPH_1ga2c652a24ba93e52b99a47bec0888233
177 #if (defined(CUDA_VERSION) && CUDA_VERSION >= 11040)
178 int version;
179 AT_CUDA_CHECK(cudaDriverGetVersion(&version));
180 if (version < 11040) {
181 #endif
182 // Trailing NULL, NULL, 0 arguments were recommended by Cuda driver people,
183 // who prefer not to report error message through these arguments moving forward
184 // (they prefer return value, or errors on api calls internal to the capture)
185 #if (defined(CUDA_VERSION) && CUDA_VERSION >= 12000)
186 AT_CUDA_CHECK(cudaGraphInstantiate(&graph_exec_, graph_, 0));
187 #else
188 AT_CUDA_CHECK(cudaGraphInstantiate(&graph_exec_, graph_, NULL, NULL, 0));
189 #endif
190 #if (defined(CUDA_VERSION) && CUDA_VERSION >= 11040)
191 } else {
192 AT_CUDA_CHECK(cudaGraphInstantiateWithFlags(&graph_exec_,
193 graph_,
194 cudaGraphInstantiateFlagAutoFreeOnLaunch));
195 }
196 #endif
197
198 has_graph_exec_ = true;
199
200 for (auto& [generator_state, wholegraph_increments] :
201 captured_generator_states_) {
202 wholegraph_increments = generator_state->capture_epilogue();
203 }
204
205 size_t numCUDAGraphNodes = 0;
206 AT_CUDA_CHECK(cudaGraphGetNodes(graph_, NULL, &numCUDAGraphNodes));
207 if (numCUDAGraphNodes == 0) {
208 TORCH_WARN("The CUDA Graph is empty. This usually means that the graph was ",
209 "attempted to be captured on wrong device or stream.");
210 }
211
212 // check if debug path is set
213 if (!_cuda_graphs_debug) {
214 // Now that we've instantiated graph_ into graph_exec_,
215 // we don't need graph_ anymore.
216 AT_CUDA_CHECK(cudaGraphDestroy(graph_));
217 has_graph_ = false;
218 } else {
219 TORCH_WARN("DEBUG: TORCH_CUDAGRAPHS_DEBUG_PATH detected. graph_ will not be freed until debug_dump is called.");
220 }
221 }
222
replay()223 void CUDAGraph::replay() {
224 TORCH_CHECK(has_graph_exec_,
225 "Called CUDAGraph::replay without a preceding successful capture.");
226
227 c10::OptionalDeviceGuard device_guard{capture_stream_.device()};
228
229 for (auto& [generator_state, wholegraph_increments] :
230 captured_generator_states_) {
231 generator_state->replay_prologue(wholegraph_increments);
232 }
233 // graph_exec_ may be replayed in any stream.
234 AT_CUDA_CHECK(cudaGraphLaunch(graph_exec_, at::cuda::getCurrentCUDAStream()));
235
236 int version;
237 AT_CUDA_CHECK(cudaDriverGetVersion(&version));
238 if (version < 11040) {
239 // Workaround for bug in libcuda.so that causes replayed graphs with
240 // certain topologies to be corrupted (kernels elided, internal syncs
241 // ignored) when replayed back to back without a sync in between.
242 // The bug is fixed in CUDA 11.4+.
243 AT_CUDA_CHECK(cudaDeviceSynchronize());
244 }
245 }
246
enable_debug_mode()247 void CUDAGraph::enable_debug_mode() {
248 _cuda_graphs_debug = true;
249 }
250
debug_dump(const std::string & debug_path)251 void CUDAGraph::debug_dump(const std::string& debug_path) {
252 #if (defined(CUDA_VERSION) && CUDA_VERSION >= 11030)|| defined(USE_ROCM)
253 if (_cuda_graphs_debug) {
254 TORCH_WARN("DEBUG: calling debug_dump()");
255 if (has_graph_) {
256 TORCH_WARN("DEBUG: calling cudaGraphDebugDotPrint() with ", debug_path);
257 C10_CUDA_CHECK_WARN(cudaGraphDebugDotPrint(graph_, debug_path.c_str(), cudaGraphDebugDotFlagsVerbose)); // most verbose output
258 AT_CUDA_CHECK(cudaGraphDestroy(graph_));
259 has_graph_ = false;
260 }
261 } else {
262 TORCH_WARN("CUDA Graphs debug not enabled, set with torch._C._cuda_enable_graphs_debug_mode");
263 }
264 #else
265 TORCH_CHECK(false, "CUDA graphs may only be used in Pytorch built with CUDA >= 11.3 or ROCM >= 5.6");
266 #endif
267 }
268
reset()269 void CUDAGraph::reset() {
270 // I'd prefer these checks throw exceptions, not print warnings,
271 // but the destructor calls reset(), and at least one CI build
272 // refuses to compile with a throwing destructor.
273 //
274 // Instead of calling reset() in the destructor to clean up, I could
275 // call reset() in the __del__ method of a thin Python wrapper,
276 // in which case reset would be allowed to throw exceptions.
277 // But Stackoverflow does not like user-defined __del__.
278 // __del__ prevents Graph instances from EVER being garbage collected
279 // if they participate in a reference cycle.
280 // And exceptions thrown in __del__ only print a warning anyway.
281 //
282 // Calling reset() in the C++ destructor, with warnings instead of exceptions
283 // if calls fail, is the compromise we chose.
284 //
285 // If capture_begin, the capture, or capture_end failed at some point, this CUDAGraph, the generator,
286 // and the allocator could end up in all kinds of weird states depending where failure occurred.
287 // If the user catches the failure exception in a script, or is running in REPL or (god forbid)
288 // a Jupyter notebook, I don't see an easy way for reset() to gracefully fix all such possible error states.
289 if (has_graph_ || has_graph_exec_) {
290 // notifyCaptureDestroy may throw. How should we handle this?
291 c10::cuda::CUDACachingAllocator::releasePool(capture_dev_, mempool_id_);
292 }
293 if (has_graph_) {
294 C10_CUDA_CHECK_WARN(cudaGraphDestroy(graph_));
295 has_graph_ = false;
296 }
297 if (has_graph_exec_) {
298 C10_CUDA_CHECK_WARN(cudaGraphExecDestroy(graph_exec_));
299 has_graph_exec_ = false;
300 }
301 }
302
303 // Returns an id another graph's capture_begin can use to share the same memory pool as this graph.
pool()304 MempoolId_t CUDAGraph::pool() {
305 TORCH_CHECK(has_graph_exec_,
306 "Called CUDAGraph::pool() without a preceding successful capture.");
307 return mempool_id_;
308 }
309
~CUDAGraph()310 CUDAGraph::~CUDAGraph() {
311 for (auto& [generator_state, wholegraph_increments] :
312 captured_generator_states_) {
313 generator_state->unregister_graph(this);
314 }
315 reset();
316 }
317
318 } // namespace at::cuda
319