1 #define TORCH_ASSERT_ONLY_METHOD_OPERATORS
2 #include <ATen/core/Tensor.h>
3
4 #ifndef AT_PER_OPERATOR_HEADERS
5 #include <ATen/Functions.h>
6 #include <ATen/NativeFunctions.h>
7 #else
8 #include <ATen/ops/_pack_padded_sequence_backward_native.h>
9 #include <ATen/ops/_pack_padded_sequence_native.h>
10 #include <ATen/ops/_pad_packed_sequence_native.h>
11 #include <ATen/ops/cat.h>
12 #include <ATen/ops/empty.h>
13 #include <ATen/ops/full.h>
14 #include <ATen/ops/pad_sequence_native.h>
15 #include <ATen/ops/zeros.h>
16 #include <ATen/ops/zeros_like_ops.h>
17 #endif
18
19 #include <c10/util/irange.h>
20
21 namespace at::native {
22
checkLongTensor(const Tensor & tensor)23 static void checkLongTensor(const Tensor& tensor) {
24 TORCH_CHECK(tensor.dim() == 1 && tensor.device().type() == at::kCPU && tensor.scalar_type() == at::kLong,
25 "'lengths' argument should be a 1D CPU int64 tensor, but got ",
26 tensor.dim(), "D ", tensor.device().str(), " ", tensor.scalar_type(), " tensor");
27 }
28
29 // This method returns `(data, batch_sizes)`, which are then passed into a
30 // `PackedSequence` constructor.
31 // `data` can be on arbitrary device and of arbitrary dtype, but `batch_sizes`
32 // must be a CPU int64 tensor.
33 // See NOTE [ device and dtype of a PackedSequence ]
_pack_padded_sequence(const Tensor & _input,const Tensor & _lengths,bool batch_first)34 std::tuple<Tensor, Tensor> _pack_padded_sequence(const Tensor& _input, const Tensor& _lengths, bool batch_first) {
35 TORCH_CHECK(_input.numel() > 0, "Cannot pack empty tensors.");
36 auto input = batch_first ? _input.transpose(0, 1) : _input;
37 auto lengths_t = _lengths.contiguous();
38 checkLongTensor(lengths_t);
39
40 int64_t batch_size = input.size(1);
41 int64_t * lengths = lengths_t.data_ptr<int64_t>();
42
43 TORCH_CHECK(lengths_t.size(0) == batch_size,
44 "Expected `len(lengths)` to be equal to batch_size, but got ", lengths_t.size(0),
45 " (batch_size=", batch_size, ")");
46 TORCH_CHECK(lengths[batch_size - 1] > 0,
47 "Length of all samples has to be greater than 0, but found an element "
48 "in 'lengths' that is <= 0");
49 for (const auto i : c10::irange(batch_size - 1)) {
50 if (lengths[batch_size - 1 - i] > lengths[batch_size - 2 - i]) {
51 // NB: enforce_sorted is implemented at a Python level, but the sortedness
52 // check lives here. If enforce_sorted=False then this error should never
53 // get called.
54 AT_ERROR("`lengths` array must be sorted in decreasing order when "
55 "`enforce_sorted` is True. You can pass `enforce_sorted=False` "
56 "to pack_padded_sequence and/or pack_sequence to sidestep this "
57 "requirement if you do not need ONNX exportability.");
58 }
59 }
60
61 std::vector<at::Tensor> steps;
62 steps.reserve(batch_size);
63 at::Tensor batch_sizes_t = at::empty(lengths[0], _lengths.options());
64 int64_t * batch_sizes = batch_sizes_t.mutable_data_ptr<int64_t>();
65
66 std::vector<int64_t> step_shape; // == [-1, *input.shape[2:]]
67 {
68 auto input_sizes = input.sizes();
69 step_shape.reserve(input_sizes.size());
70 auto s_input_sizes = input_sizes.slice(2);
71 step_shape.push_back(-1);
72 step_shape.insert(step_shape.end(), s_input_sizes.begin(), s_input_sizes.end());
73 }
74
75 // To understand what's going on in this loop imagine that the input is a padded 2D
76 // array that looks like this (x = valid entry, . = padding)
77 //
78 // 1 1 1 1 1
79 // 2 2 2 . .
80 // 2 2 2 . .
81 // 4 . . . .
82 // 4 . . . .
83 //
84 // Where the vertical dimension corresponds to time, and horizontal dim to batch.
85 // In this example, the lengths array will be equal to [5, 3, 3, 1, 1], and we will
86 // iterate over them in reverse order (from the rightmost column to the left).
87 // We want to avoid eager slicing of the input at every time step, and wait for
88 // the moments where the length increases. In this example, that will happen at the
89 // first, second and fourth steps. Then, we slice out the whole block of the input
90 // that corresponds to this length, and hasn't been sliced yet (the steps at which each
91 // element is sliced are annotated in the array above). You can think of this as if we
92 // were scanning the sequences from the shortest one, and every time we realize there's
93 // more elements below in our column, we lower the counter (prev_l), and append the new
94 // block to the output.
95 int64_t prev_l = 0;
96 for (const auto i : c10::irange(batch_size)) {
97 int64_t l = lengths[batch_size - 1 - i];
98 if (l > prev_l) {
99 auto current_batch_size = batch_size - i;
100 steps.push_back(input.slice(0, prev_l, l).slice(1, 0, current_batch_size).contiguous().view(step_shape));
101 for (int64_t j = 0; j < (l - prev_l); ++j) {
102 (*batch_sizes++) = current_batch_size;
103 }
104 prev_l = l;
105 }
106 TORCH_CHECK(l >= prev_l);
107 }
108
109 return std::make_tuple(at::cat(steps), batch_sizes_t);
110 }
111
112 // `grad` could be on arbitrary device and of arbitrary dtype, but `_batch_sizes`
113 // is guaranteed to be a CPU int64 tensor.
114 // See NOTE [ device and dtype of a PackedSequence ]
_pack_padded_sequence_backward_symint(const Tensor & grad,c10::SymIntArrayRef input_size,const Tensor & _batch_sizes,bool batch_first)115 Tensor _pack_padded_sequence_backward_symint(const Tensor& grad, c10::SymIntArrayRef input_size, const Tensor& _batch_sizes, bool batch_first) {
116 std::vector<c10::SymInt> input_size_after_t = input_size.vec();
117 if (batch_first) {
118 TORCH_CHECK(input_size.size() >= 2);
119 std::swap(input_size_after_t[0], input_size_after_t[1]);
120 }
121 auto grad_input = at::zeros_symint(input_size_after_t, grad.options());
122 auto batch_sizes_t = _batch_sizes.contiguous();
123 checkLongTensor(batch_sizes_t);
124
125 int64_t offset = 0;
126 // NOTE: this op advertises as CompositeImplicitAutograd, but uses data_ptr().
127 // we should fix this.
128 auto max_seq_len = batch_sizes_t.size(0);
129 int64_t * batch_sizes = batch_sizes_t.data_ptr<int64_t>();
130 for (const auto i : c10::irange(max_seq_len)) {
131 grad_input[i].slice(0, 0, batch_sizes[i]).copy_(grad.slice(0, offset, offset + batch_sizes[i]));
132 offset += batch_sizes[i];
133 }
134
135 if (batch_first) {
136 grad_input = grad_input.transpose(0, 1);
137 }
138
139 return grad_input;
140 }
141
_pad_packed_sequence(const Tensor & data,const Tensor & _batch_sizes,bool batch_first,const Scalar & padding_value,int64_t total_length)142 std::tuple<Tensor, Tensor> _pad_packed_sequence(const Tensor& data, const Tensor& _batch_sizes, bool batch_first, const Scalar& padding_value, int64_t total_length) {
143 auto batch_sizes_t = _batch_sizes.contiguous();
144 checkLongTensor(batch_sizes_t);
145
146 int64_t * batch_sizes = batch_sizes_t.data_ptr<int64_t>();
147 int64_t max_batch_size = batch_sizes[0];
148 int64_t max_real_seq_length = batch_sizes_t.size(0);
149 int64_t max_seq_length = max_real_seq_length;
150 if (total_length > 0) {
151 TORCH_CHECK(total_length >= max_seq_length,
152 "Expected total_length to be at least the length of the longest "
153 "sequence in input, but got total_length=", total_length, " and "
154 "max sequence length being ", max_seq_length);
155 max_seq_length = total_length;
156 }
157
158 std::vector<int64_t> output_size; // == [max_seq_length, max_batch_size, *var_data.size()[1:]]
159 {
160 output_size.reserve(data.dim() + 1);
161 output_size.push_back(max_seq_length);
162 output_size.push_back(max_batch_size);
163 auto s_data_size = data.sizes().slice(1);
164 output_size.insert(output_size.end(), s_data_size.begin(), s_data_size.end());
165 }
166 auto output = at::full(output_size, padding_value, data.options());
167
168 // This will be modified at every iteration, but we reserve memory for it now.
169 std::vector<int64_t> tmp_view_size = std::move(output_size); // == [-1, -1, *var_data.size()[1:]]
170
171 at::Tensor lengths_t = at::empty(max_batch_size, batch_sizes_t.options());
172 int64_t * lengths = lengths_t.mutable_data_ptr<int64_t>() + max_batch_size - 1;
173 int64_t data_offset = 0;
174 int64_t prev_batch_size = max_batch_size;
175 int64_t prev_i = 0;
176 for (int64_t i = 0; i <= max_real_seq_length; ++i) {
177 int64_t batch_size = i != max_real_seq_length ? batch_sizes[i] : 0;
178 if (batch_size != prev_batch_size) {
179 int64_t l = prev_batch_size * (i - prev_i);
180 // The lines below are equivalent to this:
181 // output[prev_i:i, :prev_batch_size] = tmp.view(i - prev_i, prev_batch_size, *input.shape[2:])
182 auto tmp = data.slice(0, data_offset, data_offset + l);
183 tmp_view_size[0] = i - prev_i;
184 tmp_view_size[1] = prev_batch_size;
185 output.slice(0, prev_i, i).slice(1, 0, prev_batch_size).copy_(tmp.view(tmp_view_size));
186 data_offset += l;
187 prev_i = i;
188 }
189 int64_t dec = prev_batch_size - batch_size;
190 if (dec > 0) {
191 for (C10_UNUSED const auto j : c10::irange(dec)) {
192 (*lengths--) = i;
193 }
194 }
195 prev_batch_size = batch_size;
196 }
197
198 if (batch_first) {
199 output = output.transpose(0, 1);
200 }
201
202 return std::make_tuple(output, lengths_t);
203 }
204
pad_sequence(TensorList sequences,bool batch_first,double padding_value,const c10::string_view padding_side)205 Tensor pad_sequence(TensorList sequences, bool batch_first, double padding_value, const c10::string_view padding_side) {
206 const int64_t sequences_size = sequences.size();
207 TORCH_CHECK(sequences_size > 0, "received an empty list of sequences");
208 TORCH_CHECK(padding_side == "left" || padding_side == "right",
209 "Expected padding_side to be one of left or right, but got ", padding_side, ".");
210 IntArrayRef max_size = sequences[0].sizes();
211 IntArrayRef trailing_dims = max_size.slice(1);
212 int64_t max_len = std::max_element(
213 sequences.begin(),
214 sequences.end(),
215 [](const Tensor &a, const Tensor &b) {
216 return a.size(0) < b.size(0);
217 }
218 )->size(0);
219
220 DimVector out_dims;
221 if (batch_first) {
222 out_dims = {sequences_size, max_len};
223 } else {
224 out_dims = {max_len, sequences_size};
225 }
226 out_dims.insert(out_dims.end(), trailing_dims.begin(), trailing_dims.end());
227
228 Tensor out = at::full(out_dims, padding_value, sequences[0].options());
229 for (const auto i : c10::irange(sequences_size)) {
230 const Tensor& currseq = sequences[i];
231 const int64_t length_i = currseq.size(0);
232 const int64_t start = padding_side == "left" ? max_len - length_i : 0;
233 // use index notation to prevent duplicate references to the tensor
234 if (batch_first) {
235 out.select(0, i).narrow(0, start, length_i).copy_(currseq);
236 } else {
237 out.narrow(0, start, length_i).select(1, i).copy_(currseq);
238 }
239 }
240 return out;
241 }
242
243 } // namespace at::native
244