xref: /aosp_15_r20/external/pytorch/binaries/load_benchmark_torch.cc (revision da0073e96a02ea20f0ac840b70461e3646d07c45)
1 /**
2  * Copyright (c) 2016-present, Facebook, Inc.
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *     http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include <string>
18 #include <vector>
19 
20 #include <ATen/ATen.h>
21 #include "caffe2/core/timer.h"
22 #include "caffe2/utils/string_utils.h"
23 #include <torch/csrc/autograd/grad_mode.h>
24 #include <torch/csrc/jit/mobile/module.h>
25 #include <torch/csrc/jit/mobile/import.h>
26 #include <torch/csrc/jit/serialization/import.h>
27 #include <torch/script.h>
28 
29 #include <c10/mobile/CPUCachingAllocator.h>
30 
31 #include <chrono>
32 using namespace std::chrono;
33 
34 C10_DEFINE_string(model, "", "The given torch script model to benchmark.");
35 C10_DEFINE_int(iter, 10, "The number of iterations to run.");
36 C10_DEFINE_bool(
37   report_pep,
38   true,
39   "Whether to print performance stats for AI-PEP.");
40 
main(int argc,char ** argv)41 int main(int argc, char** argv) {
42   c10::SetUsageMessage(
43     "Run model load time benchmark for pytorch model.\n"
44     "Example usage:\n"
45     "./load_benchmark_torch"
46     " --model=<model_file>"
47     " --iter=20");
48   if (!c10::ParseCommandLineFlags(&argc, &argv)) {
49     std::cerr << "Failed to parse command line flags!" << std::endl;
50     return 1;
51   }
52 
53   std::cout << "Starting benchmark." << std::endl;
54   CAFFE_ENFORCE(
55       FLAGS_iter >= 0,
56       "Number of main runs should be non negative, provided ",
57       FLAGS_iter,
58       ".");
59 
60   caffe2::Timer timer;
61   std::vector<long> times;
62 
63   for (int i = 0; i < FLAGS_iter; ++i) {
64     auto start = high_resolution_clock::now();
65 
66 #if BUILD_LITE_INTERPRETER
67     auto module = torch::jit::_load_for_mobile(FLAGS_model);
68 #else
69     auto module = torch::jit::load(FLAGS_model);
70 #endif
71 
72     auto stop = high_resolution_clock::now();
73     auto duration = duration_cast<microseconds>(stop - start);
74     times.push_back(duration.count());
75   }
76 
77   const double micros = static_cast<double>(timer.MicroSeconds());
78   if (FLAGS_report_pep) {
79     for (auto t : times) {
80       std::cout << R"(PyTorchObserver {"type": "NET", "unit": "us", )"
81                 << R"("metric": "latency", "value": ")"
82                 << t << R"("})" << std::endl;
83     }
84   }
85 
86   const double iters = static_cast<double>(FLAGS_iter);
87   std::cout << "Main run finished. Microseconds per iter: "
88             << micros / iters
89             << ". Iters per second: " << 1000.0 * 1000 * iters / micros
90             << std::endl;
91 
92   return 0;
93 }
94