xref: /aosp_15_r20/external/pytorch/test/test_jit_fuser.py (revision da0073e96a02ea20f0ac840b70461e3646d07c45)
1# Owner(s): ["oncall: jit"]
2
3import unittest
4import os
5import sys
6import torch
7import torch.nn as nn
8import torch.nn.functional as F
9from torch.testing import FileCheck
10from unittest import skipIf
11
12from torch.testing._internal.common_utils import run_tests, IS_SANDCASTLE, ProfilingMode, GRAPH_EXECUTOR, \
13    enable_profiling_mode_for_profiling_tests, IS_WINDOWS, TemporaryDirectoryName, shell
14from torch.testing._internal.jit_utils import JitTestCase, enable_cpu_fuser, _inline_everything, \
15    RUN_CUDA, RUN_CUDA_HALF, RUN_CUDA_MULTI_GPU, warmup_backward
16from textwrap import dedent
17from itertools import product, permutations
18from torch.testing._internal.common_cuda import with_tf32_off
19
20from test_jit import backward_graph, all_backward_graphs, get_lstm_inputs, get_milstm_inputs, \
21    LSTMCellC, LSTMCellF, LSTMCellS, MiLSTMCell
22
23if GRAPH_EXECUTOR == ProfilingMode.PROFILING:
24    torch._C._jit_set_profiling_executor(True)
25    torch._C._jit_set_profiling_mode(True)
26
27
28def strip_profiling_nodes(nodes):
29    profiling_opcodes = {'prim::BailoutTemplate', 'prim::BailOut'}
30    return [n for n in nodes if n.kind() not in profiling_opcodes]
31
32
33def warmup_forward(f, *args):
34    profiling_count = 2
35    for i in range(profiling_count):
36        results = f(*args)
37
38    return results
39
40
41@skipIf(GRAPH_EXECUTOR == ProfilingMode.LEGACY, "skip due to SIGIOT failures, #67646")
42class TestFuser(JitTestCase):
43    def assertAllFused(self, graph, except_for=()):
44
45        diff_graphs = [n for n in graph.nodes() if n.kind() == 'prim::DifferentiableGraph']
46        if len(diff_graphs) > 0:
47            self.assertEqual(len(diff_graphs), 1)
48            graph = diff_graphs[0].g('Subgraph')
49
50        allowed_nodes = {'prim::Constant', 'prim::FusionGroup', 'prim::BailoutTemplate',
51                         'prim::BailOut', 'prim::TupleConstruct'} | set(except_for)
52        self.assertTrue(all(node.kind() in allowed_nodes for node in graph.nodes()),
53                        f'got {graph}')
54        self.assertTrue([node.kind() for node in graph.nodes()].count('prim::FusionGroup') == 1)
55
56    def _test_fused_abs(self, device='cpu'):
57        def func(x):
58            return x.abs() * 2
59
60        a = torch.randn(5, device=device)
61        scripted = self.checkScript(func, (a,))
62        self.assertAllFused(scripted.graph_for(a))
63
64    @unittest.skipIf(IS_SANDCASTLE, "NYI: fuser CPU support for Sandcastle")
65    @enable_cpu_fuser
66    def test_abs_cpu(self):
67        self._test_fused_abs()
68
69    @unittest.skipIf(not IS_WINDOWS, "This is meant to be Windows-specific")
70    @unittest.skipIf(IS_SANDCASTLE, "NYI: fuser CPU support for Sandcastle")
71    @enable_cpu_fuser
72    def test_abs_cpu_unicode_temp_dir(self):
73        with TemporaryDirectoryName(suffix='\u4e2d\u6587') as dname:
74            shell_env = os.environ.copy()
75            shell_env['TMP'] = dname
76            cmd = [sys.executable, os.path.basename(__file__), type(self).__name__ + '.test_abs_cpu']
77            legacy_jit_flag = '--jit-executor=legacy'
78            for v in sys.argv:
79                if v == legacy_jit_flag:
80                    cmd.append(legacy_jit_flag)
81            return_code = shell(cmd, cwd=os.path.dirname(__file__), env=shell_env)
82            self.assertEqual(return_code, 0)
83
84    @unittest.skipIf(not RUN_CUDA, "requires CUDA")
85    def test_abs_cuda(self):
86        self._test_fused_abs(device="cuda")
87
88    @unittest.skipIf(not RUN_CUDA, "requires CUDA")
89    def test_zero_element_tensors(self):
90        def decode(sin_t, cos_t):
91            theta = torch.atan2(sin_t.float(), cos_t.float())
92            return theta
93
94        sin = torch.zeros(0, device="cuda")
95        cos = torch.zeros(0, device="cuda")
96        inputs = [sin, cos]
97        ge = self.checkScript(decode, inputs)
98
99    @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
100    def test_arg_configurations_smoke_cuda(self):
101        # A smoke test to make sure we won't use the same kernel for contiguous
102        # and non-contiguous arguments.
103        # TODO: add optionally enabled debug counters to the fuser to verify
104        #       that we really can tell the difference between configurations
105        def f(x, y):
106            z1, z2 = (x + y).chunk(2, dim=1)
107            return z1 * z2
108
109        x = torch.randn(4, 4, dtype=torch.float, device='cuda')
110        y = torch.randn(4, 4, dtype=torch.float, device='cuda')
111        traced_f = torch.jit.trace(f, (x, y,))
112        self.assertEqual(traced_f(x.t().contiguous(), y), traced_f(x.t(), y))
113
114    @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
115    def test_broadcast_cuda(self):
116        def scaleshift(x, scale, shift):
117            return x * scale + shift
118
119        inputs = [
120            torch.randn(4, 4, dtype=torch.float, device='cuda'),
121            torch.randn(4, dtype=torch.float, device='cuda'),
122            torch.randn(4, dtype=torch.float, device='cuda'),
123        ]
124        ge = self.checkTrace(scaleshift, inputs)
125        self.assertAllFused(ge.graph_for(*inputs))
126
127    @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
128    @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.LEGACY, "no bfloat support with profiling on")
129    def test_cuda_bfloat16(self):
130        def foo(x, y):
131            return (x + y).relu()
132        m = torch.jit.script(foo)
133        x = torch.randn(65536).cuda().bfloat16()
134        y = torch.randn_like(x)
135        self.assertAllFused(m.graph_for(x, y))
136
137    @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
138    @unittest.skipIf(not RUN_CUDA_HALF, "no half support")
139    @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.LEGACY, "no half support with profiling on")
140    def test_cuda_half(self):
141        x = torch.randn(4, 4, dtype=torch.half, device='cuda')
142        y = torch.randn(4, 4, dtype=torch.half, device='cuda')
143
144        funcs = [
145            self.fn_test_comparison_gt_lt,
146            self.fn_test_relu,
147            self.fn_test_exp
148        ]
149
150        # Note: Non fused inputs must be float to prevent loss of precision
151        inputs = (x.float(), y.float())
152        fusion_inputs = (x, y)
153        for fn in funcs:
154            local_inputs = [t.clone().requires_grad_() for t in inputs]
155            local_fusion_inputs = [t.clone().requires_grad_() for t in fusion_inputs]
156
157            # Verifies outputs
158            fusion = torch.jit.trace(fn, local_fusion_inputs, check_trace=False)
159            outputs = fn(*local_inputs)
160            fusion_outputs = fusion(*local_fusion_inputs)
161            outputs_half = [t.half() for t in outputs]
162            self.assertEqual(outputs_half, fusion_outputs)
163
164            # Verifies gradients
165            for output, fusion_output in zip(outputs_half, fusion_outputs):
166                grads = torch.autograd.grad(
167                    output.float().sum(), local_inputs, allow_unused=True, retain_graph=True)
168                fusion_grads = torch.autograd.grad(
169                    fusion_output.sum(), local_fusion_inputs, allow_unused=True, retain_graph=True)
170                grads_half = [t.half() for t in grads]
171                self.assertEqual(grads_half, fusion_grads)
172
173    @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
174    def test_checks_cat_inputs(self):
175        # We shouldn't treat cat nodes as broadcasting. All their inputs
176        # need to be checked for having the same map size, before we can
177        # run the kernel.
178        def f(x, y):
179            return torch.cat([x + 2 * x + x ** 2, y + 4 * y + y ** 3], dim=0)
180
181        # NOTE: y is broadcastable to x, but output of f(x, y) should have
182        # shape 3x4, and not 4x4.
183        x = torch.randn(2, 4, dtype=torch.float, device='cuda')
184        y = torch.randn(1, 4, dtype=torch.float, device='cuda')
185
186        scripted = self.checkScript(f, (x, y))
187        self.assertAllFused(scripted.graph_for(x, y))
188
189    @unittest.skipIf(not RUN_CUDA, "No CUDA")
190    def test_remainder_cuda(self):
191        def cuda_rem(x, y):
192            return 1 + torch.remainder(x, y) - 1
193
194        a = torch.rand([512], dtype=torch.float).cuda()
195        b = torch.rand([512], dtype=torch.float).cuda()
196        inputs = [a, b]
197        ge = self.checkScript(cuda_rem, inputs)
198        graph = ge.graph_for(*inputs)
199        self.assertAllFused(graph)
200
201    @unittest.skipIf(not RUN_CUDA, "No CUDA")
202    def test_chunk_cuda(self):
203        def fn(x):
204            a, b, c = x.chunk(3, 1)
205            return a * b + c
206
207        inputs = [torch.randn(10, 6, dtype=torch.float, device='cuda')]
208
209        ge = self.checkScript(fn, inputs)
210        graph = ge.graph_for(*inputs)
211        self.assertAllFused(graph)
212        FileCheck().check("prim::ConstantChunk[chunks=3, dim=1]").run(str(graph))
213
214    @staticmethod
215    def _test_chunk_correctness(self, device='cpu'):
216        def chunk_4_0(x):
217            x0, x1, x2, x3 = x.chunk(4, 0)
218            return x0 + x1 + x2 + x3
219
220        def chunk_4_1(x):
221            x0, x1, x2, x3 = x.chunk(4, 1)
222            return x0 + x1 + x2 + x3
223
224        def chunk_4_last(x):
225            x0, x1, x2, x3 = x.chunk(4, 2)
226            return x0 + x1 + x2 + x3
227
228        fns = [chunk_4_0, chunk_4_1, chunk_4_last]
229        tensors = [
230            # splitSize = 1
231            torch.randn(4, 4, 4, dtype=torch.float, device=device),
232
233            # contiguous case
234            torch.randn(12, 8, 16, dtype=torch.float, device=device),
235
236            # non-contiguous case
237            torch.randn(12, 8, 16, dtype=torch.float, device=device).transpose(1, 2),
238        ]
239
240        for tensor in tensors:
241            for fn in fns:
242                self.checkScript(fn, [tensor])
243
244    @unittest.skipIf(IS_SANDCASTLE, "NYI: fuser CPU support for Sandcastle")
245    @enable_cpu_fuser
246    def test_chunk_correctness(self):
247        return self._test_chunk_correctness(self, 'cpu')
248
249    @unittest.skipIf(not RUN_CUDA, "No CUDA")
250    def test_chunk_correctness_cuda(self):
251        return self._test_chunk_correctness(self, 'cuda')
252
253    @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
254    def test_chunk_distributes_cuda(self):
255        def f(x, y):
256            z1, z2 = (x + y).chunk(2, dim=1)
257            return z1 * z2
258
259        x = torch.randn(4, 4, dtype=torch.float, device='cuda')
260        y = torch.randn(4, 4, dtype=torch.float, device='cuda')
261
262        ge = self.checkTrace(f, (x, y))
263        graph = ge.graph_for(x, y)
264        FileCheck().check("broadcast_tensors").check('with prim::FusionGroup_') \
265            .check_count('ConstantChunk', 2, exactly=True).run(str(graph))
266
267    @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
268    def test_chunk_motion_deduplicates_inputs(self):
269        def func1(x):
270            z = x * x
271            z0, z1 = z.chunk(2)
272            return z0 * z1
273
274        def func2(x):
275            z = x * x * x
276            z0, z1 = z.chunk(2)
277            return z0 * z1
278
279        inputs = [
280            torch.tensor([1.1, 1.2], device='cuda', dtype=torch.float),
281        ]
282        for func in [func1, func2]:
283            module = self.checkScript(func, inputs)
284            forward_graph = module.graph_for(*inputs)
285            self.assertGraphContainsExactly(forward_graph, 'prim::FusionGroup', 1)
286            fusion_group = list(forward_graph.nodes())[-1]
287            self.assertEqual(len(list(fusion_group.inputs())), 1)
288
289    @unittest.skipIf(not RUN_CUDA, "No CUDA")
290    def test_chunk_multiple_cuda(self):
291        # The arguments are intentionally used out of order as a test to see
292        # if the fusion compiler adds extra args in the correct order
293        def fn(s, x, y, z):
294            z1, z2 = z.chunk(2, 2)
295            x1, x2, x3 = x.chunk(3, 1)
296            y1, y2 = y.chunk(2, 0)
297            return s + x1 + x2 + x3 + y1 + y2 + z1 + z2
298
299        inputs = [
300            torch.randn(5, 2, 3, dtype=torch.float, device='cuda'),
301            torch.randn(5, 6, 3, dtype=torch.float, device='cuda'),
302            torch.randn(10, 2, 3, dtype=torch.float, device='cuda'),
303            torch.randn(5, 2, 6, dtype=torch.float, device='cuda'),
304        ]
305
306        ge = self.checkScript(fn, inputs)
307        self.assertAllFused(ge.graph_for(*inputs))
308
309    @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
310    def test_minmax(self):
311        def tmax(a, b):
312            return torch.max(2 * a, b)
313
314        def tmin(a, b):
315            return torch.min(2 * a, b)
316
317        a = torch.randn(4, 4, dtype=torch.float, device="cuda")
318        b = torch.randn(4, 4, dtype=torch.float, device="cuda")
319        nan = torch.tensor(float('nan'), dtype=torch.float, device="cuda")
320
321        for f, inputs in product(
322                (tmax, tmin),
323                ([a, b], [a, nan], [b, nan])):
324            s = self.checkScript(f, inputs)
325            self.assertAllFused(s.graph_for(*inputs))
326
327    @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
328    def test_clamp(self):
329        def func2(a, b):
330            return torch.clamp(a + b, min=0, max=2)
331
332        def funcInf(a, b):
333            return torch.clamp(a + b, min=0, max=float('inf'))
334
335        def funcOptMin(a, b):
336            return torch.clamp(a + b, max=2)
337
338        def funcOptMax(a, b):
339            return torch.clamp(a + b, min=0)
340
341        a = torch.randn(4, 4, dtype=torch.float, device='cuda', requires_grad=True)
342        b = torch.randn(4, 4, dtype=torch.float, device='cuda')
343        nan = torch.tensor(float('nan'), dtype=torch.float, device='cuda')
344
345        funcs = (func2, funcInf, funcOptMin, funcOptMax)
346        for f, inputs in product(funcs, [[a, b], [a, nan]]):
347            f.__disable_jit_function_caching__ = True
348            inp1, inp2 = inputs
349            s = self.checkScript(f, (inp1, inp2), profiling=ProfilingMode.PROFILING)
350            self.assertAllFused(s.graph_for(inp1, inp2), except_for={'aten::size', 'aten::_size_if_not_equal'})
351            c = s(inp1, inp2)
352            with enable_profiling_mode_for_profiling_tests():
353                warmup_backward(c.sum())
354            graph = backward_graph(s)
355            self.assertAllFused(graph, except_for={'aten::Float', 'aten::_grad_sum_to_size'})
356
357    @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
358    @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.LEGACY, "no half support with profiling on")
359    def test_dropout(self):
360        def func(x):
361            x = torch.nn.functional.dropout(x)
362            return torch.nn.functional.relu(x)
363
364        a = torch.randn(4, 4, dtype=torch.float, device='cuda', requires_grad=True)
365        s = torch.jit.script(func)
366        c = s(a)
367        c = s(a)
368        warmup_backward(c.sum())
369        # skip_check to skip extra bailout nodes in between
370        graph = backward_graph(s, skip_check=True)
371        self.assertAllFused(graph, except_for={'aten::div', 'prim::Constant'})
372
373    @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
374    def test_comparison_eq_ne(self):
375        def f(x, y):
376            mask = (x == 0).type_as(x)
377            z = x * mask + y
378            mask = (x != 0).type_as(x)
379            z = z * mask + y
380            return z
381
382        x = torch.randn(4, 4, dtype=torch.float, device='cuda')
383        y = torch.randn(4, 4, dtype=torch.float, device='cuda')
384
385        ge = self.checkTrace(f, (x, y))
386        self.assertAllFused(ge.graph_for(x, y))
387
388    @staticmethod
389    def fn_test_comparison_gt_lt(x, y):
390        mask = (x > 0).type_as(x)
391        z = x * mask + y
392        mask = (x < 0).type_as(x)
393        z = z * mask + y
394        return z
395
396    @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
397    def test_comparison_gt_lt_cuda(self):
398        x = torch.randn(4, 4, dtype=torch.float, device='cuda')
399        y = torch.randn(4, 4, dtype=torch.float, device='cuda')
400
401        ge = self.checkTrace(self.fn_test_comparison_gt_lt, (x, y))
402        self.assertAllFused(ge.graph_for(x, y))
403
404    @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
405    def test_comparison_ge_le_cuda(self):
406        def f(x, y):
407            mask = (x >= 0).type_as(x)
408            z = x * mask + y
409            mask = (x <= 0).type_as(x)
410            z = z * mask + y
411            return z
412
413        x = torch.randn(4, 4, dtype=torch.float, device='cuda')
414        y = torch.randn(4, 4, dtype=torch.float, device='cuda')
415
416        ge = self.checkTrace(f, (x, y))
417        self.assertAllFused(ge.graph_for(x, y))
418        x.requires_grad_(True)
419        y.requires_grad_(True)
420        self.assertAllFused(ge.graph_for(x, y), except_for=("aten::size", "prim::BroadcastSizes",
421                                                            "aten::_size_if_not_equal"))
422
423    @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
424    def test_addcmul_cuda(self):
425        t = torch.randn(1, 4, dtype=torch.float, device='cuda')
426        t1 = torch.randn(4, 1, dtype=torch.float, device='cuda')
427        t2 = torch.randn(1, 4, dtype=torch.float, device='cuda')
428
429        def foo(t, t1, t2):
430            return t.addcmul(t + 1, t2, value=0.1)
431
432        ge = self.checkTrace(foo, (t, t1, t2), allow_unused=True)
433        graph = ge.graph_for(t, t1, t2)
434        self.assertAllFused(graph)
435
436    # TODO: We leak CUDA memory here because the traced graph holds onto a
437    # constant-ified tensor. Since the Python-global CompilationUnit is alive
438    # until the end of the process, the memory is effectively leaked.
439    # Removed `_cuda` suffix from this test which disables leak-checking.
440    # If this is a real problem, we'll need to revisit Torchscript Function
441    # lifetimes in Python.
442    @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
443    def test_lerp(self):
444        start = torch.randn(4, 1, dtype=torch.float, device='cuda')
445        end = torch.randn(1, 4, dtype=torch.float, device='cuda')
446        weight = torch.tensor(0.5, dtype=torch.float, device='cuda')
447
448        # scalar weight overload
449        def foo_weight_scalar(start, end):
450            return torch.lerp(start + 1, end, 0.5)
451
452        # tensor weight overload
453        def foo_weight_tensor(start, end):
454            return torch.lerp(start + 1, end, weight)
455
456        ge_weight_scalar = self.checkTrace(foo_weight_scalar, (start, end))
457        graph = ge_weight_scalar.graph_for(start, end)
458        self.assertAllFused(graph)
459
460        ge_weight_tensor = self.checkTrace(foo_weight_tensor, (start, end))
461        graph = ge_weight_tensor.graph_for(start, end)
462        self.assertAllFused(graph)
463
464    @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
465    def test_concat_cuda(self):
466        hx = torch.randn(3, 20, dtype=torch.float, device='cuda')
467        cx = torch.randn(3, 20, dtype=torch.float, device='cuda')
468
469        def foo(hx, cx):
470            return torch.cat((hx + cx, hx * cx))
471
472        ge = self.checkTrace(foo, (hx, cx))
473        graph = ge.graph_for(hx, cx)
474        self.assertAllFused(graph)
475        FileCheck().check("FusedConcat").check_next("return").run(str(graph))
476
477    @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
478    def test_concat_invariant_cuda(self):
479        # Invariant: the output of prim::FusedConcat may
480        # not be an input to any node inside the FusionGroup.
481        def fn(x, y, z):
482            x1 = x + y
483            y1 = x - y
484            w = torch.cat([x1, y1])
485            return w + z
486
487        x = torch.randn(2, 2, dtype=torch.float, device='cuda')
488        y = torch.randn(2, 2, dtype=torch.float, device='cuda')
489        z = torch.randn(4, 2, dtype=torch.float, device='cuda')
490        ge = self.checkTrace(fn, (x, y, z))
491        graph = ge.graph_for(x, y, z)
492        self.assertAllFused(graph, except_for={'aten::add'})
493        FileCheck().check("FusedConcat").check_next("return").run(str(graph))
494
495    @staticmethod
496    def fn_test_exp(x, y):
497        return (x + .5 * y).exp()
498
499    @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
500    def test_exp_cuda(self):
501        x = torch.randn(4, 4, dtype=torch.float, device='cuda')
502        y = torch.randn(4, 4, dtype=torch.float, device='cuda')
503
504        ge = self.checkTrace(self.fn_test_exp, (x, y))
505        self.assertAllFused(ge.graph_for(x, y))
506
507    @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
508    @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.LEGACY, "broken with profiling on")
509    @torch._jit_internal._disable_emit_hooks_decorator
510    @_inline_everything
511    def test_fuse_decompose_normalization(self):
512        class ResLike(torch.jit.ScriptModule):
513            def __init__(self, norm_module):
514                super().__init__()
515                self.nm = norm_module
516
517            @torch.jit.script_method
518            def forward(self, x, y):
519                return y + torch.relu(self.nm(x))
520
521        def test_norm_decompose(nm, in_opt_graph, not_in_opt_graph, in_fusegraph):
522            model = ResLike(nm).cuda()
523            model_noopt = ResLike(nm).cuda()
524            model_noopt.load_state_dict(model.state_dict())
525            x = torch.randn(2, 16, 8, 8, device='cuda')
526            y = torch.randn(2, 16, 8, 8, device='cuda')
527
528            # FIXME: We need differentiation for CNNs for this optimization to trigger
529            with torch.no_grad():
530                out = model(x, y)
531                graph = model.graph_for(x, y)
532                rep = str(graph)
533
534                with torch.jit.optimized_execution(False):
535                    out_noopt = model_noopt(x, y)
536                    rep_noopt = str(model_noopt.graph_for(x, y))
537                self.assertEqual(out, out_noopt, atol=3e-5)
538
539            # Check that normalization op has really been decomposed
540            for node_in_graph in in_opt_graph:
541                self.assertIn(node_in_graph, rep)
542
543            for node_not_in_graph in not_in_opt_graph:
544                self.assertNotIn(node_not_in_graph, rep)
545                self.assertIn(node_not_in_graph, rep_noopt)
546
547            fusion_groups = [node for node in graph.nodes() if node.kind() == 'prim::FusionGroup']
548            self.assertEqual(len(fusion_groups), 1)
549            fused_graph = str(fusion_groups[0].g('Subgraph'))
550            for node_in_fusegraph in in_fusegraph:
551                self.assertIn(node_in_fusegraph, fused_graph)
552
553        # test for batchnorm decompose
554        bm = nn.BatchNorm2d(16)
555        test_norm_decompose(bm, ['aten::batch_norm_update_stats'],
556                            ['aten::batch_norm('], ['aten::sqrt'])
557
558        # test for layernorm decompose
559        lm = nn.LayerNorm(8)
560        test_norm_decompose(lm, ['aten::batch_norm_stats'],
561                            ['aten::layer_norm('], ['aten::sub', 'aten::mul', 'aten::add'])
562
563    @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
564    def test_threshold(self):
565        def f(x):
566            return torch.threshold(x, 0, -10) + x + x + x
567
568        x = torch.tensor([-1, -0.5, 0, 1, 2, 3], device='cuda')
569        scripted = self.checkScript(f, (x,))
570        self.assertAllFused(scripted.graph_for(x))
571
572    @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
573    def test_scalar_arg_cuda(self):
574        def fn_test_scalar_arg(x: torch.Tensor, p: float) -> torch.Tensor:
575            return p * (x * x + x)
576
577        x = torch.randn(4, 4, dtype=torch.float, device='cuda')
578        p = 3
579        scripted = self.checkScript(fn_test_scalar_arg, (x, p))
580        self.assertAllFused(scripted.graph_for(x, p))
581
582        x.requires_grad_(True)
583
584        # use another function otherwise we will bailout
585        # and won't be able to do fused checks
586        def fn_test_scalar_arg_requires_grad(x: torch.Tensor, p: float) -> torch.Tensor:
587            return p * (x * x + x)
588
589        scripted = torch.jit.script(fn_test_scalar_arg_requires_grad)
590        out = scripted(x, p)
591        self.assertAllFused(scripted.graph_for(x, p), except_for=("aten::size", "prim::BroadcastSizes",
592                                                                  "aten::_size_if_not_equal"))
593
594    @unittest.skipIf(IS_SANDCASTLE, "NYI: fuser CPU support for Sandcastle")
595    @unittest.skip("deduplicating introduces aliasing in backward graph's outputs")
596    @enable_cpu_fuser
597    def test_fuser_deduplication(self):
598        # See that fusion kernel outputs are deduplicated when removing  _grad_sum_to_size in the fuser's compilation
599        # see the discussion in PR #14957.
600        def f(x, y):
601            return torch.sigmoid(x + y)
602
603        b = torch.randn(5, 5, requires_grad=True)
604        a = torch.randn(5, 5, requires_grad=True)
605        s = self.checkScript(f, (a, b))
606        self.assertAllFused(s.graph_for(a, b), except_for={
607                            'aten::size', 'aten::_size_if_not_equal', 'prim::BroadcastSizes'})
608
609        c = s(a, b)
610        results = warmup_backward(c.sum(), [a, b])
611        ga2, gb2 = results.pop()
612        graph = backward_graph(s)
613        self.assertAllFused(graph)
614        # check that a, b share storage, i.e. were generated as a single output in the fuser
615        self.assertEqual(ga2.data_ptr(), gb2.data_ptr())
616
617    @unittest.skipIf(IS_SANDCASTLE, "NYI: fuser CPU support for Sandcastle")
618    @enable_cpu_fuser
619    @unittest.skip("temporarily disabled because fusion was restricted in fixing #22833")
620    def test_fuser_iou(self):
621        # This checks if most of Intersection over Union is fused.
622        # In particular, the backward contains many _grad_sum_to_size.
623        def iou(b1x1, b1y1, b1x2, b1y2, b2x1, b2y1, b2x2, b2y2):
624            ltx = torch.max(b1x1, b2x1)  # [N,M]
625            lty = torch.max(b1y1, b2y1)
626            rbx = torch.min(b1x2, b2x2)
627            rby = torch.min(b1y2, b2y2)
628
629            w = (rbx - ltx).clamp(min=0, max=float('inf'))  # [N,M]
630            h = (rby - lty).clamp(min=0, max=float('inf'))  # [N,M]
631            inter = w * h  # [N,M]
632
633            area1 = (b1x2 - b1x1) * (b1y2 - b1y2)  # [N,1]
634            area2 = (b2x2 - b2x1) * (b2y2 - b2y2)  # [1,M]
635            iou = inter / (area1 + area2 - inter)
636            return iou
637
638        box1 = torch.randn(5, 4, requires_grad=True)
639        box2 = torch.randn(5, 4, requires_grad=True)
640        # unsqueezing can currently not be fused
641        b1x1 = box1[:, 0].unsqueeze(1)  # [N,1]
642        b1y1 = box1[:, 1].unsqueeze(1)
643        b1x2 = box1[:, 2].unsqueeze(1)
644        b1y2 = box1[:, 3].unsqueeze(1)
645        b2x1 = box2[:, 0].unsqueeze(0)  # [1,N]
646        b2y1 = box2[:, 1].unsqueeze(0)
647        b2x2 = box2[:, 2].unsqueeze(0)
648        b2y2 = box2[:, 3].unsqueeze(0)
649
650        s = self.checkScript(iou, (b1x1, b1y1, b1x2, b1y2, b2x1, b2y1, b2x2, b2y2))
651        self.assertAllFused(s.graph_for(b1x1, b1y1, b1x2, b1y2, b2x1, b2y1, b2x2, b2y2),
652                            except_for={'aten::size', 'prim::BroadcastSizes', 'aten::_size_if_not_equal'})
653
654        with enable_profiling_mode_for_profiling_tests(True):
655            c = s(b1x1, b1y1, b1x2, b1y2, b2x1, b2y1, b2x2, b2y2)
656            warmup_backward(c.sum(), [b1x1, b1y1, b1x2, b1y2, b2x1, b2y1, b2x2, b2y2])
657            graph = backward_graph(s)
658            self.assertAllFused(graph, except_for={'aten::size', 'prim::BroadcastSizes', 'aten::_size_if_not_equal'})
659
660    @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
661    @unittest.skipIf(not RUN_CUDA_MULTI_GPU, "needs non-zero device")
662    @enable_cpu_fuser
663    def test_fusion_reuse_multi_gpu(self):
664        def fn(x, y):
665            return x * y * x * y
666
667        inputs_cpu = [
668            torch.randn(4, 4, dtype=torch.float),
669            torch.randn(4, 4, dtype=torch.float),
670        ]
671        inputs_cuda0 = [x.cuda(0) for x in inputs_cpu]
672        inputs_cuda1 = [y.cuda(1) for y in inputs_cpu]
673
674        # Should not crash; these should compile different kernels.
675        ge = self.checkScript(fn, inputs_cpu)
676        self.assertAllFused(ge.graph_for(*inputs_cpu))
677        ge(*inputs_cuda0)
678        ge(*inputs_cuda1)
679
680    @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
681    @unittest.skipIf(not RUN_CUDA_MULTI_GPU, "needs non-zero device")
682    @enable_cpu_fuser
683    def test_kernel_cache_multi_gpu(self):
684        def not_fusible(x):
685            return x
686
687        def fn(x, y, z):
688            x_out = x * x * x * x * x  # fusion: lambda x. x * x * x * x * x
689            y_out = y * y * y * y * y
690            z_out = z * z * z * z * z
691            return not_fusible(x_out), not_fusible(y_out), not_fusible(z_out)
692
693        inputs = [
694            torch.randn(4, 4, dtype=torch.float),
695            torch.randn(4, 4, dtype=torch.float, device='cuda:0'),
696            torch.randn(4, 4, dtype=torch.float, device='cuda:1'),
697        ]
698
699        prev_cache_size = torch._C._jit_debug_fuser_num_cached_kernel_specs()
700
701        # There are 3 FusionGroups. Because they have the same graph, they
702        # should reuse the same KernelSpec in the KernelSpec cache.
703        ge = self.checkScript(fn, inputs)
704        self.assertGraphContainsExactly(
705            ge.graph_for(*inputs), 'prim::FusionGroup', 3, True)
706        new_cache_size = torch._C._jit_debug_fuser_num_cached_kernel_specs()
707        # XXX: This assumes that the same kernel isn't already used by another test
708        self.assertEqual(new_cache_size - prev_cache_size, 1)
709
710    @unittest.skipIf(not RUN_CUDA_MULTI_GPU, "needs non-zero device")
711    def test_nonzero_device_cuda(self):
712        device = 'cuda:' + str(1)
713        x = torch.tensor([0.4], dtype=torch.float, device=device)
714        y = torch.tensor([0.7], dtype=torch.float, device=device)
715
716        def doit(x, y):
717            return torch.sigmoid(torch.tanh(x * (x + y) + x))
718
719        ge = self.checkTrace(doit, (x, y))
720        self.assertAllFused(ge.graph_for(x, y))
721
722    @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
723    def test_lstm_cuda(self):
724        inputs = get_lstm_inputs('cuda', training=True)
725        module = self.checkScript(LSTMCellS, inputs)
726        return
727        forward_graph = module.graph_for(*inputs)
728        self.assertGraphContainsExactly(
729            forward_graph, 'prim::FusionGroup', 1, consider_subgraphs=True)
730        self.assertTrue(len(strip_profiling_nodes(forward_graph.nodes())) == 2)
731        # Everything is differentiable but TupleConstruct return
732        FileCheck().check("DifferentiableGraph").check_next("TupleConstruct") \
733            .check_next("return").run(str(forward_graph))
734
735        with enable_profiling_mode_for_profiling_tests(True):
736            hy, cy = module(*inputs)
737            warmup_backward((hy + cy).sum())
738            backward = backward_graph(module)
739        self.assertAllFused(backward, except_for=("aten::t", "aten::mm",
740                                                  "aten::_grad_sum_to_size"))
741
742    @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
743    # By default, on Ampere or later GPUs, LSTM computes float tensors at TF32 precision.
744    # We want float tensors to be computed at full precision in order to use the default precision
745    @with_tf32_off
746    def test_lstm_concat_cuda(self):
747        inputs = get_lstm_inputs('cuda')
748        ge = self.checkTrace(LSTMCellC, inputs)
749        graph = ge.graph_for(*inputs)
750        FileCheck().check("FusedConcat").check_next("return").run(str(graph))
751
752    @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
753    def test_lstm_gates_permutations_cuda(self):
754        # lstm has gates = x.mm(w_ih.t()) + hx.mm(w_hh.t()) + b_ih + b_hh.
755        # Test that any permutation of this will still result in one FusionGroup.
756        choices = ['x.mm(w_ih.t())', 'hx.mm(w_hh.t())', 'b_ih', 'b_hh']
757        template = dedent('''
758        def cell(x, hx, cx, w_ih, w_hh, b_ih, b_hh):
759            gates = {} + {} + {} + {}
760            ingate, forgetgate, cellgate, outgate = gates.chunk(4, 1)
761            return ingate * forgetgate * cellgate * outgate
762        ''')
763        for permutation in permutations(choices, len(choices)):
764            code = template.format(*permutation)
765            scope = {}
766            exec(code, globals(), scope)
767            cu = torch.jit.CompilationUnit(code)
768
769            inputs = get_lstm_inputs('cuda', training=False)
770            self.assertEqual(cu.cell(*inputs), scope['cell'](*inputs))
771            forward_graph = cu.cell.graph_for(*inputs)
772            self.assertGraphContainsExactly(forward_graph, 'prim::FusionGroup', 1)
773
774    # TODO: Fuser doesn't work at all when inputs require grad. Fix that
775    @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
776    # By default, on Ampere or later GPUs, LSTM computes float tensors at TF32 precision.
777    # We want float tensors to be computed at full precision in order to use the default precision
778    @with_tf32_off
779    def test_lstm_traced_cuda(self):
780        inputs = get_lstm_inputs('cuda')
781        ge = self.checkTrace(LSTMCellF, inputs)
782        graph = ge.graph_for(*inputs)
783        # .check_not("aten::add") don't get pulled into FusionGroup because of BailOuts
784        FileCheck().check_not("Chunk").check_not("aten::sigmoid") \
785            .check_not("aten::tanh").check("FusionGroup").check_next("TupleConstruct") \
786            .check_next("return").check_not("FusionGroup_2").run(str(graph))
787
788    @unittest.skipIf(IS_SANDCASTLE, "NYI: fuser CPU support for Sandcastle")
789    @unittest.skip("Test is flaky, see https://github.com/pytorch/pytorch/issues/8746")
790    @enable_cpu_fuser
791    def test_lstm_traced_cpu(self):
792        inputs = get_lstm_inputs('cpu')
793        try:
794            ge = self.checkTrace(LSTMCellF, inputs)
795            graph = ge.graph_for(*inputs)
796            FileCheck.check("FusionGroup").run(str(graph))
797        except RuntimeError as e:
798            if 'Failed to compile' in e.args[0]:
799                warnings.warn('CPU fuser test has failed! This is not a hard failure, '  # noqa: F821
800                              'because the kernels sometimes trigger bugs in compilers '
801                              '(most notably GCC 7.2).')
802                raise unittest.SkipTest('Failed to compile') from e
803            else:
804                raise
805
806    @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
807    def test_milstm_cuda(self):
808        inputs = get_milstm_inputs('cuda', training=True)
809        module = self.checkScript(MiLSTMCell, inputs)
810        forward_graph = module.graph_for(*inputs)
811        self.assertGraphContainsExactly(
812            forward_graph, 'prim::FusionGroup', 1, consider_subgraphs=True)
813        FileCheck().check("DifferentiableGraph").check_next("TupleConstruct") \
814            .check_next("return").check("FusionGroup").run(str(forward_graph))
815        hy, cy = module(*inputs)
816        warmup_backward((hy + cy).sum())
817
818    @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
819    @unittest.skipIf(GRAPH_EXECUTOR == ProfilingMode.LEGACY, "borked on the legacy executor")
820    def test_rand_cuda(self):
821        class M(torch.jit.ScriptModule):
822            __constants__ = ['d']
823
824            def __init__(self) -> None:
825                super().__init__()
826                self.d = torch.device('cuda')
827
828            @torch.jit.script_method
829            def create(self, x):
830                return x * x + x + torch.rand_like(x)
831
832        x = torch.zeros([3, 4, 5], dtype=torch.float, device='cuda')
833        m = M()
834        out1 = m.create(x)
835        out2 = m.create(x)
836        self.assertNotEqual(out1, out2)
837        self.assertTrue(torch.all(out1 >= 0))
838        self.assertTrue(torch.all(out1 < 1))
839        self.assertTrue(torch.all(out2 >= 0))
840        self.assertTrue(torch.all(out2 < 1))
841        self.assertAllFused(m.create.graph_for(x))
842
843    @staticmethod
844    def fn_test_relu(x, y):
845        return F.relu(x + .5 * y)
846
847    @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
848    def test_relu_cuda(self):
849        x = torch.randn(4, 4, dtype=torch.float, device='cuda')
850        y = torch.randn(4, 4, dtype=torch.float, device='cuda')
851
852        ge = self.checkTrace(self.fn_test_relu, (x, y))
853        self.assertAllFused(ge.graph_for(x, y))
854
855    @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
856    def test_erf_cuda(self):
857        def fn_test_erf(x):
858            return F.relu(torch.erf(x) - torch.erfc(x))
859
860        x = torch.randn(4, 4, dtype=torch.float, device='cuda')
861        ge = self.checkTrace(fn_test_erf, (x,))
862        self.assertAllFused(ge.graph_for(x))
863        x.requires_grad_(True)
864        ge = self.checkTrace(fn_test_erf, (x,))
865        self.assertAllFused(ge.graph_for(x), except_for=("aten::size", "prim::BroadcastSizes",
866                                                         "aten::_size_if_not_equal"))
867
868    @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
869    @unittest.skipIf(GRAPH_EXECUTOR == ProfilingMode.LEGACY, "borked on the legacy executor")
870    def test_rand_broadcast_cuda(self):
871        def fn_test_rand(x, y):
872            r = torch.rand_like(y)
873            return r * x + x
874
875        x = torch.randn(4, 4, dtype=torch.float, device='cuda')
876        y = torch.randn(4, 4, dtype=torch.float, device='cuda')
877        script_f = torch.jit.script(fn_test_rand)
878        out = script_f(x, y)
879        self.assertAllFused(script_f.graph_for(x, y))
880        x.requires_grad_(True)
881        out = script_f(x, y)
882        self.assertAllFused(script_f.graph_for(x, y), except_for=("aten::size", "prim::BroadcastSizes",
883                                                                  "aten::_size_if_not_equal"))
884        # test that broadcasting random produces correct results
885        x = torch.ones(4, 4, dtype=torch.float, device='cuda')
886        y = torch.ones(4, dtype=torch.float, device='cuda')
887        out = script_f(x, y)
888        self.assertEqual(out[0], out[1])
889
890    @unittest.skipIf(IS_SANDCASTLE, "NYI: fuser CPU support for Sandcastle")
891    @enable_cpu_fuser
892    def test_scalar(self):
893        def fn(x, y):
894            return 2 * x + y
895
896        x = torch.tensor(0.1, dtype=torch.float, device='cpu')
897        y = torch.tensor(1, dtype=torch.float, device='cpu')
898        ge = self.checkScript(fn, (x, y))
899        self.assertAllFused(ge.graph_for(x, y))
900
901    @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
902    def test_small_constant_cuda(self):
903        def fn_test_small_constant(x, y):
904            return (1e-8 * x + 5e-9 * y) * 1e8
905        x = torch.randn(4, 4, dtype=torch.float, device='cuda')
906        y = torch.randn(4, 4, dtype=torch.float, device='cuda')
907
908        ge = self.checkTrace(fn_test_small_constant, (x, y))
909        self.assertAllFused(ge.graph_for(x, y))
910
911    @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
912    def test_tensor_scalar_ops_cuda(self):
913        def should_fuse(x):
914            z = 3.
915            y = x + z
916            return x * y
917
918        # XXX: right now we only support fusing scalars if
919        # they're constant (#9940)
920        def should_not_fuse(x, z):
921            y = x + int(z)
922            return x * y
923
924        inputs = [torch.randn(2, 2, dtype=torch.float, device='cuda')]
925        ge = self.checkScript(should_fuse, inputs)
926        self.assertAllFused(ge.graph_for(*inputs))
927
928        inputs = [
929            torch.randn(2, 2, dtype=torch.float, device='cuda'),
930            torch.tensor(3., dtype=torch.float, device='cuda'),
931        ]
932        ge = self.checkScript(should_not_fuse, inputs)
933        self.assertGraphContainsExactly(
934            ge.graph_for(*inputs), 'prim::FusionGroup', 0, consider_subgraphs=True)
935
936    @unittest.skipIf(IS_SANDCASTLE, "NYI: fuser CPU support for Sandcastle")
937    @enable_cpu_fuser
938    def test_where_and_typing(self):
939        def f(x, y):
940            mask = x > y
941            res = torch.where(mask, x, y)
942            return mask, res
943
944        x = torch.randn(4, 4, dtype=torch.double)
945        y = torch.randn(4, 4, dtype=torch.double)
946
947        script_f = self.checkScript(f, (x, y))
948        self.assertAllFused(script_f.graph_for(x, y), except_for={'prim::TupleConstruct'})
949
950    @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
951    @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.LEGACY, "no half support with profiling on")
952    def test_grad_sum_to_size_elimination(self):
953
954        def my_broadcasted_cell(a, b, c):
955            return (a + b) + c
956
957        s1 = torch.randn(5, 1, requires_grad=True, device='cuda')
958        s2 = torch.randn(5, 5, requires_grad=True, device='cuda')
959
960        module = self.checkScript(my_broadcasted_cell, (s1, s1, s1), profiling=ProfilingMode.PROFILING)
961        forward_graph = module.graph_for(s1, s1, s1)
962        self.assertAllFused(forward_graph, except_for=("aten::size", "prim::BroadcastSizes",
963                                                       "aten::_size_if_not_equal"))
964
965        old_plans = set()
966        for i in range(3):
967            # if we have s2, then the s1 are _grad_sum_to_size'd
968
969            args = s2 if i < 1 else s1, s2 if i < 2 else s1, s2
970            args = [a.detach_().requires_grad_() for a in args]
971            # recompile, so we don't trigger bailouts
972            module = self.checkScript(my_broadcasted_cell, args, profiling=ProfilingMode.PROFILING)
973            res = module(s2 if i < 1 else s1, s2 if i < 2 else s1, s2)
974            warmup_backward(res.sum(), args)
975            grads = torch.autograd.grad(res.sum(), args)
976            for inp, gr in zip(args, grads):
977                self.assertEqual(inp.shape, gr.shape)
978            backward = None
979            # this is a workaround for the backward graphs not being
980            # in order for Python 2
981            for g in all_backward_graphs(module):
982                if str(g) not in old_plans:
983                    assert backward is None
984                    backward = g
985                    old_plans.add(str(backward))
986            num_grads = 1 if i > 0 else 0
987            self.assertEqual(len([n for n in backward.nodes() if n.kind() == 'aten::_grad_sum_to_size']), num_grads)
988
989
990if __name__ == '__main__':
991    run_tests()
992