xref: /aosp_15_r20/external/pytorch/torch/ao/quantization/fx/tracer.py (revision da0073e96a02ea20f0ac840b70461e3646d07c45)
1from typing import Callable, List
2
3import torch
4from torch.ao.nn.intrinsic import _FusedModule
5from torch.fx._symbolic_trace import Tracer
6from torch.fx.proxy import Scope
7
8
9__all__ = [
10    "QuantizationTracer",
11]
12
13
14class ScopeContextManager(torch.fx.proxy.ScopeContextManager):
15    def __init__(
16        self, scope: Scope, current_module: torch.nn.Module, current_module_path: str
17    ):
18        super().__init__(scope, Scope(current_module_path, type(current_module)))
19
20
21class QuantizationTracer(Tracer):
22    def __init__(
23        self, skipped_module_names: List[str], skipped_module_classes: List[Callable]
24    ):
25        super().__init__()
26        self.skipped_module_names = skipped_module_names
27        self.skipped_module_classes = skipped_module_classes
28        # NB: initialized the module_type of top level module to None
29        # we are assuming people won't configure the model with the type of top level
30        # module here, since people can use "" for global config
31        # We can change this if there is a use case that configures
32        # qconfig using top level module type
33        self.scope = Scope("", None)
34        self.record_stack_traces = True
35
36    def is_leaf_module(self, m: torch.nn.Module, module_qualified_name: str) -> bool:
37        return (
38            (
39                (
40                    m.__module__.startswith("torch.nn")
41                    or m.__module__.startswith("torch.ao.nn")
42                )
43                and not isinstance(m, torch.nn.Sequential)
44            )
45            or module_qualified_name in self.skipped_module_names
46            or type(m) in self.skipped_module_classes
47            or isinstance(m, _FusedModule)
48        )
49