1# mypy: allow-untyped-defs 2import math 3from numbers import Number 4 5import torch 6from torch import inf, nan 7from torch.distributions import constraints 8from torch.distributions.distribution import Distribution 9from torch.distributions.utils import broadcast_all 10from torch.types import _size 11 12 13__all__ = ["Cauchy"] 14 15 16class Cauchy(Distribution): 17 r""" 18 Samples from a Cauchy (Lorentz) distribution. The distribution of the ratio of 19 independent normally distributed random variables with means `0` follows a 20 Cauchy distribution. 21 22 Example:: 23 24 >>> # xdoctest: +IGNORE_WANT("non-deterministic") 25 >>> m = Cauchy(torch.tensor([0.0]), torch.tensor([1.0])) 26 >>> m.sample() # sample from a Cauchy distribution with loc=0 and scale=1 27 tensor([ 2.3214]) 28 29 Args: 30 loc (float or Tensor): mode or median of the distribution. 31 scale (float or Tensor): half width at half maximum. 32 """ 33 arg_constraints = {"loc": constraints.real, "scale": constraints.positive} 34 support = constraints.real 35 has_rsample = True 36 37 def __init__(self, loc, scale, validate_args=None): 38 self.loc, self.scale = broadcast_all(loc, scale) 39 if isinstance(loc, Number) and isinstance(scale, Number): 40 batch_shape = torch.Size() 41 else: 42 batch_shape = self.loc.size() 43 super().__init__(batch_shape, validate_args=validate_args) 44 45 def expand(self, batch_shape, _instance=None): 46 new = self._get_checked_instance(Cauchy, _instance) 47 batch_shape = torch.Size(batch_shape) 48 new.loc = self.loc.expand(batch_shape) 49 new.scale = self.scale.expand(batch_shape) 50 super(Cauchy, new).__init__(batch_shape, validate_args=False) 51 new._validate_args = self._validate_args 52 return new 53 54 @property 55 def mean(self): 56 return torch.full( 57 self._extended_shape(), nan, dtype=self.loc.dtype, device=self.loc.device 58 ) 59 60 @property 61 def mode(self): 62 return self.loc 63 64 @property 65 def variance(self): 66 return torch.full( 67 self._extended_shape(), inf, dtype=self.loc.dtype, device=self.loc.device 68 ) 69 70 def rsample(self, sample_shape: _size = torch.Size()) -> torch.Tensor: 71 shape = self._extended_shape(sample_shape) 72 eps = self.loc.new(shape).cauchy_() 73 return self.loc + eps * self.scale 74 75 def log_prob(self, value): 76 if self._validate_args: 77 self._validate_sample(value) 78 return ( 79 -math.log(math.pi) 80 - self.scale.log() 81 - (((value - self.loc) / self.scale) ** 2).log1p() 82 ) 83 84 def cdf(self, value): 85 if self._validate_args: 86 self._validate_sample(value) 87 return torch.atan((value - self.loc) / self.scale) / math.pi + 0.5 88 89 def icdf(self, value): 90 return torch.tan(math.pi * (value - 0.5)) * self.scale + self.loc 91 92 def entropy(self): 93 return math.log(4 * math.pi) + self.scale.log() 94