xref: /aosp_15_r20/external/pytorch/torch/distributions/geometric.py (revision da0073e96a02ea20f0ac840b70461e3646d07c45)
1# mypy: allow-untyped-defs
2from numbers import Number
3
4import torch
5from torch.distributions import constraints
6from torch.distributions.distribution import Distribution
7from torch.distributions.utils import (
8    broadcast_all,
9    lazy_property,
10    logits_to_probs,
11    probs_to_logits,
12)
13from torch.nn.functional import binary_cross_entropy_with_logits
14
15
16__all__ = ["Geometric"]
17
18
19class Geometric(Distribution):
20    r"""
21    Creates a Geometric distribution parameterized by :attr:`probs`,
22    where :attr:`probs` is the probability of success of Bernoulli trials.
23
24    .. math::
25
26        P(X=k) = (1-p)^{k} p, k = 0, 1, ...
27
28    .. note::
29        :func:`torch.distributions.geometric.Geometric` :math:`(k+1)`-th trial is the first success
30        hence draws samples in :math:`\{0, 1, \ldots\}`, whereas
31        :func:`torch.Tensor.geometric_` `k`-th trial is the first success hence draws samples in :math:`\{1, 2, \ldots\}`.
32
33    Example::
34
35        >>> # xdoctest: +IGNORE_WANT("non-deterministic")
36        >>> m = Geometric(torch.tensor([0.3]))
37        >>> m.sample()  # underlying Bernoulli has 30% chance 1; 70% chance 0
38        tensor([ 2.])
39
40    Args:
41        probs (Number, Tensor): the probability of sampling `1`. Must be in range (0, 1]
42        logits (Number, Tensor): the log-odds of sampling `1`.
43    """
44    arg_constraints = {"probs": constraints.unit_interval, "logits": constraints.real}
45    support = constraints.nonnegative_integer
46
47    def __init__(self, probs=None, logits=None, validate_args=None):
48        if (probs is None) == (logits is None):
49            raise ValueError(
50                "Either `probs` or `logits` must be specified, but not both."
51            )
52        if probs is not None:
53            (self.probs,) = broadcast_all(probs)
54        else:
55            (self.logits,) = broadcast_all(logits)
56        probs_or_logits = probs if probs is not None else logits
57        if isinstance(probs_or_logits, Number):
58            batch_shape = torch.Size()
59        else:
60            batch_shape = probs_or_logits.size()
61        super().__init__(batch_shape, validate_args=validate_args)
62        if self._validate_args and probs is not None:
63            # Add an extra check beyond unit_interval
64            value = self.probs
65            valid = value > 0
66            if not valid.all():
67                invalid_value = value.data[~valid]
68                raise ValueError(
69                    "Expected parameter probs "
70                    f"({type(value).__name__} of shape {tuple(value.shape)}) "
71                    f"of distribution {repr(self)} "
72                    f"to be positive but found invalid values:\n{invalid_value}"
73                )
74
75    def expand(self, batch_shape, _instance=None):
76        new = self._get_checked_instance(Geometric, _instance)
77        batch_shape = torch.Size(batch_shape)
78        if "probs" in self.__dict__:
79            new.probs = self.probs.expand(batch_shape)
80        if "logits" in self.__dict__:
81            new.logits = self.logits.expand(batch_shape)
82        super(Geometric, new).__init__(batch_shape, validate_args=False)
83        new._validate_args = self._validate_args
84        return new
85
86    @property
87    def mean(self):
88        return 1.0 / self.probs - 1.0
89
90    @property
91    def mode(self):
92        return torch.zeros_like(self.probs)
93
94    @property
95    def variance(self):
96        return (1.0 / self.probs - 1.0) / self.probs
97
98    @lazy_property
99    def logits(self):
100        return probs_to_logits(self.probs, is_binary=True)
101
102    @lazy_property
103    def probs(self):
104        return logits_to_probs(self.logits, is_binary=True)
105
106    def sample(self, sample_shape=torch.Size()):
107        shape = self._extended_shape(sample_shape)
108        tiny = torch.finfo(self.probs.dtype).tiny
109        with torch.no_grad():
110            if torch._C._get_tracing_state():
111                # [JIT WORKAROUND] lack of support for .uniform_()
112                u = torch.rand(shape, dtype=self.probs.dtype, device=self.probs.device)
113                u = u.clamp(min=tiny)
114            else:
115                u = self.probs.new(shape).uniform_(tiny, 1)
116            return (u.log() / (-self.probs).log1p()).floor()
117
118    def log_prob(self, value):
119        if self._validate_args:
120            self._validate_sample(value)
121        value, probs = broadcast_all(value, self.probs)
122        probs = probs.clone(memory_format=torch.contiguous_format)
123        probs[(probs == 1) & (value == 0)] = 0
124        return value * (-probs).log1p() + self.probs.log()
125
126    def entropy(self):
127        return (
128            binary_cross_entropy_with_logits(self.logits, self.probs, reduction="none")
129            / self.probs
130        )
131