xref: /aosp_15_r20/external/pytorch/torch/distributions/geometric.py (revision da0073e96a02ea20f0ac840b70461e3646d07c45)
1*da0073e9SAndroid Build Coastguard Worker# mypy: allow-untyped-defs
2*da0073e9SAndroid Build Coastguard Workerfrom numbers import Number
3*da0073e9SAndroid Build Coastguard Worker
4*da0073e9SAndroid Build Coastguard Workerimport torch
5*da0073e9SAndroid Build Coastguard Workerfrom torch.distributions import constraints
6*da0073e9SAndroid Build Coastguard Workerfrom torch.distributions.distribution import Distribution
7*da0073e9SAndroid Build Coastguard Workerfrom torch.distributions.utils import (
8*da0073e9SAndroid Build Coastguard Worker    broadcast_all,
9*da0073e9SAndroid Build Coastguard Worker    lazy_property,
10*da0073e9SAndroid Build Coastguard Worker    logits_to_probs,
11*da0073e9SAndroid Build Coastguard Worker    probs_to_logits,
12*da0073e9SAndroid Build Coastguard Worker)
13*da0073e9SAndroid Build Coastguard Workerfrom torch.nn.functional import binary_cross_entropy_with_logits
14*da0073e9SAndroid Build Coastguard Worker
15*da0073e9SAndroid Build Coastguard Worker
16*da0073e9SAndroid Build Coastguard Worker__all__ = ["Geometric"]
17*da0073e9SAndroid Build Coastguard Worker
18*da0073e9SAndroid Build Coastguard Worker
19*da0073e9SAndroid Build Coastguard Workerclass Geometric(Distribution):
20*da0073e9SAndroid Build Coastguard Worker    r"""
21*da0073e9SAndroid Build Coastguard Worker    Creates a Geometric distribution parameterized by :attr:`probs`,
22*da0073e9SAndroid Build Coastguard Worker    where :attr:`probs` is the probability of success of Bernoulli trials.
23*da0073e9SAndroid Build Coastguard Worker
24*da0073e9SAndroid Build Coastguard Worker    .. math::
25*da0073e9SAndroid Build Coastguard Worker
26*da0073e9SAndroid Build Coastguard Worker        P(X=k) = (1-p)^{k} p, k = 0, 1, ...
27*da0073e9SAndroid Build Coastguard Worker
28*da0073e9SAndroid Build Coastguard Worker    .. note::
29*da0073e9SAndroid Build Coastguard Worker        :func:`torch.distributions.geometric.Geometric` :math:`(k+1)`-th trial is the first success
30*da0073e9SAndroid Build Coastguard Worker        hence draws samples in :math:`\{0, 1, \ldots\}`, whereas
31*da0073e9SAndroid Build Coastguard Worker        :func:`torch.Tensor.geometric_` `k`-th trial is the first success hence draws samples in :math:`\{1, 2, \ldots\}`.
32*da0073e9SAndroid Build Coastguard Worker
33*da0073e9SAndroid Build Coastguard Worker    Example::
34*da0073e9SAndroid Build Coastguard Worker
35*da0073e9SAndroid Build Coastguard Worker        >>> # xdoctest: +IGNORE_WANT("non-deterministic")
36*da0073e9SAndroid Build Coastguard Worker        >>> m = Geometric(torch.tensor([0.3]))
37*da0073e9SAndroid Build Coastguard Worker        >>> m.sample()  # underlying Bernoulli has 30% chance 1; 70% chance 0
38*da0073e9SAndroid Build Coastguard Worker        tensor([ 2.])
39*da0073e9SAndroid Build Coastguard Worker
40*da0073e9SAndroid Build Coastguard Worker    Args:
41*da0073e9SAndroid Build Coastguard Worker        probs (Number, Tensor): the probability of sampling `1`. Must be in range (0, 1]
42*da0073e9SAndroid Build Coastguard Worker        logits (Number, Tensor): the log-odds of sampling `1`.
43*da0073e9SAndroid Build Coastguard Worker    """
44*da0073e9SAndroid Build Coastguard Worker    arg_constraints = {"probs": constraints.unit_interval, "logits": constraints.real}
45*da0073e9SAndroid Build Coastguard Worker    support = constraints.nonnegative_integer
46*da0073e9SAndroid Build Coastguard Worker
47*da0073e9SAndroid Build Coastguard Worker    def __init__(self, probs=None, logits=None, validate_args=None):
48*da0073e9SAndroid Build Coastguard Worker        if (probs is None) == (logits is None):
49*da0073e9SAndroid Build Coastguard Worker            raise ValueError(
50*da0073e9SAndroid Build Coastguard Worker                "Either `probs` or `logits` must be specified, but not both."
51*da0073e9SAndroid Build Coastguard Worker            )
52*da0073e9SAndroid Build Coastguard Worker        if probs is not None:
53*da0073e9SAndroid Build Coastguard Worker            (self.probs,) = broadcast_all(probs)
54*da0073e9SAndroid Build Coastguard Worker        else:
55*da0073e9SAndroid Build Coastguard Worker            (self.logits,) = broadcast_all(logits)
56*da0073e9SAndroid Build Coastguard Worker        probs_or_logits = probs if probs is not None else logits
57*da0073e9SAndroid Build Coastguard Worker        if isinstance(probs_or_logits, Number):
58*da0073e9SAndroid Build Coastguard Worker            batch_shape = torch.Size()
59*da0073e9SAndroid Build Coastguard Worker        else:
60*da0073e9SAndroid Build Coastguard Worker            batch_shape = probs_or_logits.size()
61*da0073e9SAndroid Build Coastguard Worker        super().__init__(batch_shape, validate_args=validate_args)
62*da0073e9SAndroid Build Coastguard Worker        if self._validate_args and probs is not None:
63*da0073e9SAndroid Build Coastguard Worker            # Add an extra check beyond unit_interval
64*da0073e9SAndroid Build Coastguard Worker            value = self.probs
65*da0073e9SAndroid Build Coastguard Worker            valid = value > 0
66*da0073e9SAndroid Build Coastguard Worker            if not valid.all():
67*da0073e9SAndroid Build Coastguard Worker                invalid_value = value.data[~valid]
68*da0073e9SAndroid Build Coastguard Worker                raise ValueError(
69*da0073e9SAndroid Build Coastguard Worker                    "Expected parameter probs "
70*da0073e9SAndroid Build Coastguard Worker                    f"({type(value).__name__} of shape {tuple(value.shape)}) "
71*da0073e9SAndroid Build Coastguard Worker                    f"of distribution {repr(self)} "
72*da0073e9SAndroid Build Coastguard Worker                    f"to be positive but found invalid values:\n{invalid_value}"
73*da0073e9SAndroid Build Coastguard Worker                )
74*da0073e9SAndroid Build Coastguard Worker
75*da0073e9SAndroid Build Coastguard Worker    def expand(self, batch_shape, _instance=None):
76*da0073e9SAndroid Build Coastguard Worker        new = self._get_checked_instance(Geometric, _instance)
77*da0073e9SAndroid Build Coastguard Worker        batch_shape = torch.Size(batch_shape)
78*da0073e9SAndroid Build Coastguard Worker        if "probs" in self.__dict__:
79*da0073e9SAndroid Build Coastguard Worker            new.probs = self.probs.expand(batch_shape)
80*da0073e9SAndroid Build Coastguard Worker        if "logits" in self.__dict__:
81*da0073e9SAndroid Build Coastguard Worker            new.logits = self.logits.expand(batch_shape)
82*da0073e9SAndroid Build Coastguard Worker        super(Geometric, new).__init__(batch_shape, validate_args=False)
83*da0073e9SAndroid Build Coastguard Worker        new._validate_args = self._validate_args
84*da0073e9SAndroid Build Coastguard Worker        return new
85*da0073e9SAndroid Build Coastguard Worker
86*da0073e9SAndroid Build Coastguard Worker    @property
87*da0073e9SAndroid Build Coastguard Worker    def mean(self):
88*da0073e9SAndroid Build Coastguard Worker        return 1.0 / self.probs - 1.0
89*da0073e9SAndroid Build Coastguard Worker
90*da0073e9SAndroid Build Coastguard Worker    @property
91*da0073e9SAndroid Build Coastguard Worker    def mode(self):
92*da0073e9SAndroid Build Coastguard Worker        return torch.zeros_like(self.probs)
93*da0073e9SAndroid Build Coastguard Worker
94*da0073e9SAndroid Build Coastguard Worker    @property
95*da0073e9SAndroid Build Coastguard Worker    def variance(self):
96*da0073e9SAndroid Build Coastguard Worker        return (1.0 / self.probs - 1.0) / self.probs
97*da0073e9SAndroid Build Coastguard Worker
98*da0073e9SAndroid Build Coastguard Worker    @lazy_property
99*da0073e9SAndroid Build Coastguard Worker    def logits(self):
100*da0073e9SAndroid Build Coastguard Worker        return probs_to_logits(self.probs, is_binary=True)
101*da0073e9SAndroid Build Coastguard Worker
102*da0073e9SAndroid Build Coastguard Worker    @lazy_property
103*da0073e9SAndroid Build Coastguard Worker    def probs(self):
104*da0073e9SAndroid Build Coastguard Worker        return logits_to_probs(self.logits, is_binary=True)
105*da0073e9SAndroid Build Coastguard Worker
106*da0073e9SAndroid Build Coastguard Worker    def sample(self, sample_shape=torch.Size()):
107*da0073e9SAndroid Build Coastguard Worker        shape = self._extended_shape(sample_shape)
108*da0073e9SAndroid Build Coastguard Worker        tiny = torch.finfo(self.probs.dtype).tiny
109*da0073e9SAndroid Build Coastguard Worker        with torch.no_grad():
110*da0073e9SAndroid Build Coastguard Worker            if torch._C._get_tracing_state():
111*da0073e9SAndroid Build Coastguard Worker                # [JIT WORKAROUND] lack of support for .uniform_()
112*da0073e9SAndroid Build Coastguard Worker                u = torch.rand(shape, dtype=self.probs.dtype, device=self.probs.device)
113*da0073e9SAndroid Build Coastguard Worker                u = u.clamp(min=tiny)
114*da0073e9SAndroid Build Coastguard Worker            else:
115*da0073e9SAndroid Build Coastguard Worker                u = self.probs.new(shape).uniform_(tiny, 1)
116*da0073e9SAndroid Build Coastguard Worker            return (u.log() / (-self.probs).log1p()).floor()
117*da0073e9SAndroid Build Coastguard Worker
118*da0073e9SAndroid Build Coastguard Worker    def log_prob(self, value):
119*da0073e9SAndroid Build Coastguard Worker        if self._validate_args:
120*da0073e9SAndroid Build Coastguard Worker            self._validate_sample(value)
121*da0073e9SAndroid Build Coastguard Worker        value, probs = broadcast_all(value, self.probs)
122*da0073e9SAndroid Build Coastguard Worker        probs = probs.clone(memory_format=torch.contiguous_format)
123*da0073e9SAndroid Build Coastguard Worker        probs[(probs == 1) & (value == 0)] = 0
124*da0073e9SAndroid Build Coastguard Worker        return value * (-probs).log1p() + self.probs.log()
125*da0073e9SAndroid Build Coastguard Worker
126*da0073e9SAndroid Build Coastguard Worker    def entropy(self):
127*da0073e9SAndroid Build Coastguard Worker        return (
128*da0073e9SAndroid Build Coastguard Worker            binary_cross_entropy_with_logits(self.logits, self.probs, reduction="none")
129*da0073e9SAndroid Build Coastguard Worker            / self.probs
130*da0073e9SAndroid Build Coastguard Worker        )
131