xref: /aosp_15_r20/external/pytorch/torch/distributions/logistic_normal.py (revision da0073e96a02ea20f0ac840b70461e3646d07c45)
1# mypy: allow-untyped-defs
2from torch.distributions import constraints
3from torch.distributions.normal import Normal
4from torch.distributions.transformed_distribution import TransformedDistribution
5from torch.distributions.transforms import StickBreakingTransform
6
7
8__all__ = ["LogisticNormal"]
9
10
11class LogisticNormal(TransformedDistribution):
12    r"""
13    Creates a logistic-normal distribution parameterized by :attr:`loc` and :attr:`scale`
14    that define the base `Normal` distribution transformed with the
15    `StickBreakingTransform` such that::
16
17        X ~ LogisticNormal(loc, scale)
18        Y = log(X / (1 - X.cumsum(-1)))[..., :-1] ~ Normal(loc, scale)
19
20    Args:
21        loc (float or Tensor): mean of the base distribution
22        scale (float or Tensor): standard deviation of the base distribution
23
24    Example::
25
26        >>> # logistic-normal distributed with mean=(0, 0, 0) and stddev=(1, 1, 1)
27        >>> # of the base Normal distribution
28        >>> # xdoctest: +IGNORE_WANT("non-deterministic")
29        >>> m = LogisticNormal(torch.tensor([0.0] * 3), torch.tensor([1.0] * 3))
30        >>> m.sample()
31        tensor([ 0.7653,  0.0341,  0.0579,  0.1427])
32
33    """
34    arg_constraints = {"loc": constraints.real, "scale": constraints.positive}
35    support = constraints.simplex
36    has_rsample = True
37
38    def __init__(self, loc, scale, validate_args=None):
39        base_dist = Normal(loc, scale, validate_args=validate_args)
40        if not base_dist.batch_shape:
41            base_dist = base_dist.expand([1])
42        super().__init__(
43            base_dist, StickBreakingTransform(), validate_args=validate_args
44        )
45
46    def expand(self, batch_shape, _instance=None):
47        new = self._get_checked_instance(LogisticNormal, _instance)
48        return super().expand(batch_shape, _instance=new)
49
50    @property
51    def loc(self):
52        return self.base_dist.base_dist.loc
53
54    @property
55    def scale(self):
56        return self.base_dist.base_dist.scale
57