xref: /aosp_15_r20/external/pytorch/torch/distributions/studentT.py (revision da0073e96a02ea20f0ac840b70461e3646d07c45)
1# mypy: allow-untyped-defs
2import math
3
4import torch
5from torch import inf, nan
6from torch.distributions import Chi2, constraints
7from torch.distributions.distribution import Distribution
8from torch.distributions.utils import _standard_normal, broadcast_all
9from torch.types import _size
10
11
12__all__ = ["StudentT"]
13
14
15class StudentT(Distribution):
16    r"""
17    Creates a Student's t-distribution parameterized by degree of
18    freedom :attr:`df`, mean :attr:`loc` and scale :attr:`scale`.
19
20    Example::
21
22        >>> # xdoctest: +IGNORE_WANT("non-deterministic")
23        >>> m = StudentT(torch.tensor([2.0]))
24        >>> m.sample()  # Student's t-distributed with degrees of freedom=2
25        tensor([ 0.1046])
26
27    Args:
28        df (float or Tensor): degrees of freedom
29        loc (float or Tensor): mean of the distribution
30        scale (float or Tensor): scale of the distribution
31    """
32    arg_constraints = {
33        "df": constraints.positive,
34        "loc": constraints.real,
35        "scale": constraints.positive,
36    }
37    support = constraints.real
38    has_rsample = True
39
40    @property
41    def mean(self):
42        m = self.loc.clone(memory_format=torch.contiguous_format)
43        m[self.df <= 1] = nan
44        return m
45
46    @property
47    def mode(self):
48        return self.loc
49
50    @property
51    def variance(self):
52        m = self.df.clone(memory_format=torch.contiguous_format)
53        m[self.df > 2] = (
54            self.scale[self.df > 2].pow(2)
55            * self.df[self.df > 2]
56            / (self.df[self.df > 2] - 2)
57        )
58        m[(self.df <= 2) & (self.df > 1)] = inf
59        m[self.df <= 1] = nan
60        return m
61
62    def __init__(self, df, loc=0.0, scale=1.0, validate_args=None):
63        self.df, self.loc, self.scale = broadcast_all(df, loc, scale)
64        self._chi2 = Chi2(self.df)
65        batch_shape = self.df.size()
66        super().__init__(batch_shape, validate_args=validate_args)
67
68    def expand(self, batch_shape, _instance=None):
69        new = self._get_checked_instance(StudentT, _instance)
70        batch_shape = torch.Size(batch_shape)
71        new.df = self.df.expand(batch_shape)
72        new.loc = self.loc.expand(batch_shape)
73        new.scale = self.scale.expand(batch_shape)
74        new._chi2 = self._chi2.expand(batch_shape)
75        super(StudentT, new).__init__(batch_shape, validate_args=False)
76        new._validate_args = self._validate_args
77        return new
78
79    def rsample(self, sample_shape: _size = torch.Size()) -> torch.Tensor:
80        # NOTE: This does not agree with scipy implementation as much as other distributions.
81        # (see https://github.com/fritzo/notebooks/blob/master/debug-student-t.ipynb). Using DoubleTensor
82        # parameters seems to help.
83
84        #   X ~ Normal(0, 1)
85        #   Z ~ Chi2(df)
86        #   Y = X / sqrt(Z / df) ~ StudentT(df)
87        shape = self._extended_shape(sample_shape)
88        X = _standard_normal(shape, dtype=self.df.dtype, device=self.df.device)
89        Z = self._chi2.rsample(sample_shape)
90        Y = X * torch.rsqrt(Z / self.df)
91        return self.loc + self.scale * Y
92
93    def log_prob(self, value):
94        if self._validate_args:
95            self._validate_sample(value)
96        y = (value - self.loc) / self.scale
97        Z = (
98            self.scale.log()
99            + 0.5 * self.df.log()
100            + 0.5 * math.log(math.pi)
101            + torch.lgamma(0.5 * self.df)
102            - torch.lgamma(0.5 * (self.df + 1.0))
103        )
104        return -0.5 * (self.df + 1.0) * torch.log1p(y**2.0 / self.df) - Z
105
106    def entropy(self):
107        lbeta = (
108            torch.lgamma(0.5 * self.df)
109            + math.lgamma(0.5)
110            - torch.lgamma(0.5 * (self.df + 1))
111        )
112        return (
113            self.scale.log()
114            + 0.5
115            * (self.df + 1)
116            * (torch.digamma(0.5 * (self.df + 1)) - torch.digamma(0.5 * self.df))
117            + 0.5 * self.df.log()
118            + lbeta
119        )
120