1# mypy: allow-untyped-defs 2r""" 3This package enables an interface for accessing MPS (Metal Performance Shaders) backend in Python. 4Metal is Apple's API for programming metal GPU (graphics processor unit). Using MPS means that increased 5performance can be achieved, by running work on the metal GPU(s). 6See https://developer.apple.com/documentation/metalperformanceshaders for more details. 7""" 8from typing import Union 9 10import torch 11from torch import Tensor 12 13 14_is_in_bad_fork = getattr(torch._C, "_mps_is_in_bad_fork", lambda: False) 15_default_mps_generator: torch._C.Generator = None # type: ignore[assignment] 16 17 18# local helper function (not public or exported) 19def _get_default_mps_generator() -> torch._C.Generator: 20 global _default_mps_generator 21 if _default_mps_generator is None: 22 _default_mps_generator = torch._C._mps_get_default_generator() 23 return _default_mps_generator 24 25 26def device_count() -> int: 27 r"""Returns the number of available MPS devices.""" 28 return int(torch._C._has_mps and torch._C._mps_is_available()) 29 30 31def synchronize() -> None: 32 r"""Waits for all kernels in all streams on a MPS device to complete.""" 33 return torch._C._mps_deviceSynchronize() 34 35 36def get_rng_state(device: Union[int, str, torch.device] = "mps") -> Tensor: 37 r"""Returns the random number generator state as a ByteTensor. 38 39 Args: 40 device (torch.device or int, optional): The device to return the RNG state of. 41 Default: ``'mps'`` (i.e., ``torch.device('mps')``, the current MPS device). 42 """ 43 return _get_default_mps_generator().get_state() 44 45 46def set_rng_state( 47 new_state: Tensor, device: Union[int, str, torch.device] = "mps" 48) -> None: 49 r"""Sets the random number generator state. 50 51 Args: 52 new_state (torch.ByteTensor): The desired state 53 device (torch.device or int, optional): The device to set the RNG state. 54 Default: ``'mps'`` (i.e., ``torch.device('mps')``, the current MPS device). 55 """ 56 new_state_copy = new_state.clone(memory_format=torch.contiguous_format) 57 _get_default_mps_generator().set_state(new_state_copy) 58 59 60def manual_seed(seed: int) -> None: 61 r"""Sets the seed for generating random numbers. 62 63 Args: 64 seed (int): The desired seed. 65 """ 66 # the torch.mps.manual_seed() can be called from the global 67 # torch.manual_seed() in torch/random.py. So we need to make 68 # sure mps is available (otherwise we just return without 69 # erroring out) 70 if not torch._C._has_mps: 71 return 72 seed = int(seed) 73 _get_default_mps_generator().manual_seed(seed) 74 75 76def seed() -> None: 77 r"""Sets the seed for generating random numbers to a random number.""" 78 _get_default_mps_generator().seed() 79 80 81def empty_cache() -> None: 82 r"""Releases all unoccupied cached memory currently held by the caching 83 allocator so that those can be used in other GPU applications. 84 """ 85 torch._C._mps_emptyCache() 86 87 88def set_per_process_memory_fraction(fraction) -> None: 89 r"""Set memory fraction for limiting process's memory allocation on MPS device. 90 The allowed value equals the fraction multiplied by recommended maximum device memory 91 (obtained from Metal API device.recommendedMaxWorkingSetSize). 92 If trying to allocate more than the allowed value in a process, it will raise an out of 93 memory error in allocator. 94 95 Args: 96 fraction(float): Range: 0~2. Allowed memory equals total_memory * fraction. 97 98 .. note:: 99 Passing 0 to fraction means unlimited allocations 100 (may cause system failure if out of memory). 101 Passing fraction greater than 1.0 allows limits beyond the value 102 returned from device.recommendedMaxWorkingSetSize. 103 """ 104 105 if not isinstance(fraction, float): 106 raise TypeError("Invalid type for fraction argument, must be `float`") 107 if fraction < 0 or fraction > 2: 108 raise ValueError(f"Invalid fraction value: {fraction}. Allowed range: 0~2") 109 110 torch._C._mps_setMemoryFraction(fraction) 111 112 113def current_allocated_memory() -> int: 114 r"""Returns the current GPU memory occupied by tensors in bytes. 115 116 .. note:: 117 The returned size does not include cached allocations in 118 memory pools of MPSAllocator. 119 """ 120 return torch._C._mps_currentAllocatedMemory() 121 122 123def driver_allocated_memory() -> int: 124 r"""Returns total GPU memory allocated by Metal driver for the process in bytes. 125 126 .. note:: 127 The returned size includes cached allocations in MPSAllocator pools 128 as well as allocations from MPS/MPSGraph frameworks. 129 """ 130 return torch._C._mps_driverAllocatedMemory() 131 132 133def recommended_max_memory() -> int: 134 r"""Returns recommended max Working set size for GPU memory in bytes. 135 136 .. note:: 137 Recommended max working set size for Metal. 138 returned from device.recommendedMaxWorkingSetSize. 139 """ 140 return torch._C._mps_recommendedMaxMemory() 141 142 143def is_available() -> bool: 144 return device_count() > 0 145 146 147from . import profiler 148from .event import Event 149 150 151__all__ = [ 152 "device_count", 153 "get_rng_state", 154 "manual_seed", 155 "seed", 156 "set_rng_state", 157 "synchronize", 158 "empty_cache", 159 "set_per_process_memory_fraction", 160 "current_allocated_memory", 161 "driver_allocated_memory", 162 "Event", 163 "profiler", 164 "recommended_max_memory", 165 "is_available", 166] 167