xref: /aosp_15_r20/external/regex-re2/re2/dfa.cc (revision ccdc9c3e24c519bfa4832a66aa2e83a52c19f295)
1 // Copyright 2008 The RE2 Authors.  All Rights Reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
4 
5 // A DFA (deterministic finite automaton)-based regular expression search.
6 //
7 // The DFA search has two main parts: the construction of the automaton,
8 // which is represented by a graph of State structures, and the execution
9 // of the automaton over a given input string.
10 //
11 // The basic idea is that the State graph is constructed so that the
12 // execution can simply start with a state s, and then for each byte c in
13 // the input string, execute "s = s->next[c]", checking at each point whether
14 // the current s represents a matching state.
15 //
16 // The simple explanation just given does convey the essence of this code,
17 // but it omits the details of how the State graph gets constructed as well
18 // as some performance-driven optimizations to the execution of the automaton.
19 // All these details are explained in the comments for the code following
20 // the definition of class DFA.
21 //
22 // See http://swtch.com/~rsc/regexp/ for a very bare-bones equivalent.
23 
24 #include <stddef.h>
25 #include <stdint.h>
26 #include <stdio.h>
27 #include <string.h>
28 #include <algorithm>
29 #include <atomic>
30 #include <deque>
31 #include <mutex>
32 #include <new>
33 #include <string>
34 #include <unordered_map>
35 #include <unordered_set>
36 #include <utility>
37 #include <vector>
38 
39 #include "util/logging.h"
40 #include "util/mix.h"
41 #include "util/mutex.h"
42 #include "util/pod_array.h"
43 #include "util/sparse_set.h"
44 #include "util/strutil.h"
45 #include "re2/prog.h"
46 #include "re2/stringpiece.h"
47 
48 // Silence "zero-sized array in struct/union" warning for DFA::State::next_.
49 #ifdef _MSC_VER
50 #pragma warning(disable: 4200)
51 #endif
52 
53 namespace re2 {
54 
55 #if !defined(__linux__)  /* only Linux seems to have memrchr */
memrchr(const void * s,int c,size_t n)56 static void* memrchr(const void* s, int c, size_t n) {
57   const unsigned char* p = (const unsigned char*)s;
58   for (p += n; n > 0; n--)
59     if (*--p == c)
60       return (void*)p;
61 
62   return NULL;
63 }
64 #endif
65 
66 // Controls whether the DFA should bail out early if the NFA would be faster.
67 static bool dfa_should_bail_when_slow = true;
68 
69 // Changing this to true compiles in prints that trace execution of the DFA.
70 // Generates a lot of output -- only useful for debugging.
71 static const bool ExtraDebug = false;
72 
73 // A DFA implementation of a regular expression program.
74 // Since this is entirely a forward declaration mandated by C++,
75 // some of the comments here are better understood after reading
76 // the comments in the sections that follow the DFA definition.
77 class DFA {
78  public:
79   DFA(Prog* prog, Prog::MatchKind kind, int64_t max_mem);
80   ~DFA();
ok() const81   bool ok() const { return !init_failed_; }
kind()82   Prog::MatchKind kind() { return kind_; }
83 
84   // Searches for the regular expression in text, which is considered
85   // as a subsection of context for the purposes of interpreting flags
86   // like ^ and $ and \A and \z.
87   // Returns whether a match was found.
88   // If a match is found, sets *ep to the end point of the best match in text.
89   // If "anchored", the match must begin at the start of text.
90   // If "want_earliest_match", the match that ends first is used, not
91   //   necessarily the best one.
92   // If "run_forward" is true, the DFA runs from text.begin() to text.end().
93   //   If it is false, the DFA runs from text.end() to text.begin(),
94   //   returning the leftmost end of the match instead of the rightmost one.
95   // If the DFA cannot complete the search (for example, if it is out of
96   //   memory), it sets *failed and returns false.
97   bool Search(const StringPiece& text, const StringPiece& context,
98               bool anchored, bool want_earliest_match, bool run_forward,
99               bool* failed, const char** ep, SparseSet* matches);
100 
101   // Builds out all states for the entire DFA.
102   // If cb is not empty, it receives one callback per state built.
103   // Returns the number of states built.
104   // FOR TESTING OR EXPERIMENTAL PURPOSES ONLY.
105   int BuildAllStates(const Prog::DFAStateCallback& cb);
106 
107   // Computes min and max for matching strings.  Won't return strings
108   // bigger than maxlen.
109   bool PossibleMatchRange(string* min, string* max, int maxlen);
110 
111   // These data structures are logically private, but C++ makes it too
112   // difficult to mark them as such.
113   class RWLocker;
114   class StateSaver;
115   class Workq;
116 
117   // A single DFA state.  The DFA is represented as a graph of these
118   // States, linked by the next_ pointers.  If in state s and reading
119   // byte c, the next state should be s->next_[c].
120   struct State {
IsMatchre2::DFA::State121     inline bool IsMatch() const { return (flag_ & kFlagMatch) != 0; }
122     void SaveMatch(std::vector<int>* v);
123 
124     int* inst_;         // Instruction pointers in the state.
125     int ninst_;         // # of inst_ pointers.
126     uint32_t flag_;     // Empty string bitfield flags in effect on the way
127                         // into this state, along with kFlagMatch if this
128                         // is a matching state.
129 
130 // Work around the bug affecting flexible array members in GCC 6.x (for x >= 1).
131 // (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=70932)
132 #if !defined(__clang__) && defined(__GNUC__) && __GNUC__ == 6 && __GNUC_MINOR__ >= 1
133     std::atomic<State*> next_[0];   // Outgoing arrows from State,
134 #else
135     std::atomic<State*> next_[];    // Outgoing arrows from State,
136 #endif
137 
138                         // one per input byte class
139   };
140 
141   enum {
142     kByteEndText = 256,         // imaginary byte at end of text
143 
144     kFlagEmptyMask = 0xFF,      // State.flag_: bits holding kEmptyXXX flags
145     kFlagMatch = 0x0100,        // State.flag_: this is a matching state
146     kFlagLastWord = 0x0200,     // State.flag_: last byte was a word char
147     kFlagNeedShift = 16,        // needed kEmpty bits are or'ed in shifted left
148   };
149 
150   struct StateHash {
operator ()re2::DFA::StateHash151     size_t operator()(const State* a) const {
152       DCHECK(a != NULL);
153       HashMix mix(a->flag_);
154       for (int i = 0; i < a->ninst_; i++)
155         mix.Mix(a->inst_[i]);
156       mix.Mix(0);
157       return mix.get();
158     }
159   };
160 
161   struct StateEqual {
operator ()re2::DFA::StateEqual162     bool operator()(const State* a, const State* b) const {
163       DCHECK(a != NULL);
164       DCHECK(b != NULL);
165       if (a == b)
166         return true;
167       if (a->flag_ != b->flag_)
168         return false;
169       if (a->ninst_ != b->ninst_)
170         return false;
171       for (int i = 0; i < a->ninst_; i++)
172         if (a->inst_[i] != b->inst_[i])
173           return false;
174       return true;
175     }
176   };
177 
178   typedef std::unordered_set<State*, StateHash, StateEqual> StateSet;
179 
180  private:
181   // Special "first_byte" values for a state.  (Values >= 0 denote actual bytes.)
182   enum {
183     kFbUnknown = -1,   // No analysis has been performed.
184     kFbNone = -2,      // The first-byte trick cannot be used.
185   };
186 
187   enum {
188     // Indices into start_ for unanchored searches.
189     // Add kStartAnchored for anchored searches.
190     kStartBeginText = 0,          // text at beginning of context
191     kStartBeginLine = 2,          // text at beginning of line
192     kStartAfterWordChar = 4,      // text follows a word character
193     kStartAfterNonWordChar = 6,   // text follows non-word character
194     kMaxStart = 8,
195 
196     kStartAnchored = 1,
197   };
198 
199   // Resets the DFA State cache, flushing all saved State* information.
200   // Releases and reacquires cache_mutex_ via cache_lock, so any
201   // State* existing before the call are not valid after the call.
202   // Use a StateSaver to preserve important states across the call.
203   // cache_mutex_.r <= L < mutex_
204   // After: cache_mutex_.w <= L < mutex_
205   void ResetCache(RWLocker* cache_lock);
206 
207   // Looks up and returns the State corresponding to a Workq.
208   // L >= mutex_
209   State* WorkqToCachedState(Workq* q, Workq* mq, uint32_t flag);
210 
211   // Looks up and returns a State matching the inst, ninst, and flag.
212   // L >= mutex_
213   State* CachedState(int* inst, int ninst, uint32_t flag);
214 
215   // Clear the cache entirely.
216   // Must hold cache_mutex_.w or be in destructor.
217   void ClearCache();
218 
219   // Converts a State into a Workq: the opposite of WorkqToCachedState.
220   // L >= mutex_
221   void StateToWorkq(State* s, Workq* q);
222 
223   // Runs a State on a given byte, returning the next state.
224   State* RunStateOnByteUnlocked(State*, int);  // cache_mutex_.r <= L < mutex_
225   State* RunStateOnByte(State*, int);          // L >= mutex_
226 
227   // Runs a Workq on a given byte followed by a set of empty-string flags,
228   // producing a new Workq in nq.  If a match instruction is encountered,
229   // sets *ismatch to true.
230   // L >= mutex_
231   void RunWorkqOnByte(Workq* q, Workq* nq,
232                       int c, uint32_t flag, bool* ismatch);
233 
234   // Runs a Workq on a set of empty-string flags, producing a new Workq in nq.
235   // L >= mutex_
236   void RunWorkqOnEmptyString(Workq* q, Workq* nq, uint32_t flag);
237 
238   // Adds the instruction id to the Workq, following empty arrows
239   // according to flag.
240   // L >= mutex_
241   void AddToQueue(Workq* q, int id, uint32_t flag);
242 
243   // For debugging, returns a text representation of State.
244   static string DumpState(State* state);
245 
246   // For debugging, returns a text representation of a Workq.
247   static string DumpWorkq(Workq* q);
248 
249   // Search parameters
250   struct SearchParams {
SearchParamsre2::DFA::SearchParams251     SearchParams(const StringPiece& text, const StringPiece& context,
252                  RWLocker* cache_lock)
253       : text(text), context(context),
254         anchored(false),
255         want_earliest_match(false),
256         run_forward(false),
257         start(NULL),
258         first_byte(kFbUnknown),
259         cache_lock(cache_lock),
260         failed(false),
261         ep(NULL),
262         matches(NULL) { }
263 
264     StringPiece text;
265     StringPiece context;
266     bool anchored;
267     bool want_earliest_match;
268     bool run_forward;
269     State* start;
270     int first_byte;
271     RWLocker *cache_lock;
272     bool failed;     // "out" parameter: whether search gave up
273     const char* ep;  // "out" parameter: end pointer for match
274     SparseSet* matches;
275 
276    private:
277     SearchParams(const SearchParams&) = delete;
278     SearchParams& operator=(const SearchParams&) = delete;
279   };
280 
281   // Before each search, the parameters to Search are analyzed by
282   // AnalyzeSearch to determine the state in which to start and the
283   // "first_byte" for that state, if any.
284   struct StartInfo {
StartInfore2::DFA::StartInfo285     StartInfo() : start(NULL), first_byte(kFbUnknown) {}
286     State* start;
287     std::atomic<int> first_byte;
288   };
289 
290   // Fills in params->start and params->first_byte using
291   // the other search parameters.  Returns true on success,
292   // false on failure.
293   // cache_mutex_.r <= L < mutex_
294   bool AnalyzeSearch(SearchParams* params);
295   bool AnalyzeSearchHelper(SearchParams* params, StartInfo* info,
296                            uint32_t flags);
297 
298   // The generic search loop, inlined to create specialized versions.
299   // cache_mutex_.r <= L < mutex_
300   // Might unlock and relock cache_mutex_ via params->cache_lock.
301   inline bool InlinedSearchLoop(SearchParams* params,
302                                 bool have_first_byte,
303                                 bool want_earliest_match,
304                                 bool run_forward);
305 
306   // The specialized versions of InlinedSearchLoop.  The three letters
307   // at the ends of the name denote the true/false values used as the
308   // last three parameters of InlinedSearchLoop.
309   // cache_mutex_.r <= L < mutex_
310   // Might unlock and relock cache_mutex_ via params->cache_lock.
311   bool SearchFFF(SearchParams* params);
312   bool SearchFFT(SearchParams* params);
313   bool SearchFTF(SearchParams* params);
314   bool SearchFTT(SearchParams* params);
315   bool SearchTFF(SearchParams* params);
316   bool SearchTFT(SearchParams* params);
317   bool SearchTTF(SearchParams* params);
318   bool SearchTTT(SearchParams* params);
319 
320   // The main search loop: calls an appropriate specialized version of
321   // InlinedSearchLoop.
322   // cache_mutex_.r <= L < mutex_
323   // Might unlock and relock cache_mutex_ via params->cache_lock.
324   bool FastSearchLoop(SearchParams* params);
325 
326   // For debugging, a slow search loop that calls InlinedSearchLoop
327   // directly -- because the booleans passed are not constants, the
328   // loop is not specialized like the SearchFFF etc. versions, so it
329   // runs much more slowly.  Useful only for debugging.
330   // cache_mutex_.r <= L < mutex_
331   // Might unlock and relock cache_mutex_ via params->cache_lock.
332   bool SlowSearchLoop(SearchParams* params);
333 
334   // Looks up bytes in bytemap_ but handles case c == kByteEndText too.
ByteMap(int c)335   int ByteMap(int c) {
336     if (c == kByteEndText)
337       return prog_->bytemap_range();
338     return prog_->bytemap()[c];
339   }
340 
341   // Constant after initialization.
342   Prog* prog_;              // The regular expression program to run.
343   Prog::MatchKind kind_;    // The kind of DFA.
344   bool init_failed_;        // initialization failed (out of memory)
345 
346   Mutex mutex_;  // mutex_ >= cache_mutex_.r
347 
348   // Scratch areas, protected by mutex_.
349   Workq* q0_;             // Two pre-allocated work queues.
350   Workq* q1_;
351   PODArray<int> stack_;   // Pre-allocated stack for AddToQueue
352 
353   // State* cache.  Many threads use and add to the cache simultaneously,
354   // holding cache_mutex_ for reading and mutex_ (above) when adding.
355   // If the cache fills and needs to be discarded, the discarding is done
356   // while holding cache_mutex_ for writing, to avoid interrupting other
357   // readers.  Any State* pointers are only valid while cache_mutex_
358   // is held.
359   Mutex cache_mutex_;
360   int64_t mem_budget_;     // Total memory budget for all States.
361   int64_t state_budget_;   // Amount of memory remaining for new States.
362   StateSet state_cache_;   // All States computed so far.
363   StartInfo start_[kMaxStart];
364 };
365 
366 // Shorthand for casting to uint8_t*.
BytePtr(const void * v)367 static inline const uint8_t* BytePtr(const void* v) {
368   return reinterpret_cast<const uint8_t*>(v);
369 }
370 
371 // Work queues
372 
373 // Marks separate thread groups of different priority
374 // in the work queue when in leftmost-longest matching mode.
375 #define Mark (-1)
376 
377 // Separates the match IDs from the instructions in inst_.
378 // Used only for "many match" DFA states.
379 #define MatchSep (-2)
380 
381 // Internally, the DFA uses a sparse array of
382 // program instruction pointers as a work queue.
383 // In leftmost longest mode, marks separate sections
384 // of workq that started executing at different
385 // locations in the string (earlier locations first).
386 class DFA::Workq : public SparseSet {
387  public:
388   // Constructor: n is number of normal slots, maxmark number of mark slots.
Workq(int n,int maxmark)389   Workq(int n, int maxmark) :
390     SparseSet(n+maxmark),
391     n_(n),
392     maxmark_(maxmark),
393     nextmark_(n),
394     last_was_mark_(true) {
395   }
396 
is_mark(int i)397   bool is_mark(int i) { return i >= n_; }
398 
maxmark()399   int maxmark() { return maxmark_; }
400 
clear()401   void clear() {
402     SparseSet::clear();
403     nextmark_ = n_;
404   }
405 
mark()406   void mark() {
407     if (last_was_mark_)
408       return;
409     last_was_mark_ = false;
410     SparseSet::insert_new(nextmark_++);
411   }
412 
size()413   int size() {
414     return n_ + maxmark_;
415   }
416 
insert(int id)417   void insert(int id) {
418     if (contains(id))
419       return;
420     insert_new(id);
421   }
422 
insert_new(int id)423   void insert_new(int id) {
424     last_was_mark_ = false;
425     SparseSet::insert_new(id);
426   }
427 
428  private:
429   int n_;                // size excluding marks
430   int maxmark_;          // maximum number of marks
431   int nextmark_;         // id of next mark
432   bool last_was_mark_;   // last inserted was mark
433 
434   Workq(const Workq&) = delete;
435   Workq& operator=(const Workq&) = delete;
436 };
437 
DFA(Prog * prog,Prog::MatchKind kind,int64_t max_mem)438 DFA::DFA(Prog* prog, Prog::MatchKind kind, int64_t max_mem)
439   : prog_(prog),
440     kind_(kind),
441     init_failed_(false),
442     q0_(NULL),
443     q1_(NULL),
444     mem_budget_(max_mem) {
445   if (ExtraDebug)
446     fprintf(stderr, "\nkind %d\n%s\n", (int)kind_, prog_->DumpUnanchored().c_str());
447   int nmark = 0;
448   if (kind_ == Prog::kLongestMatch)
449     nmark = prog_->size();
450   // See DFA::AddToQueue() for why this is so.
451   int nstack = prog_->inst_count(kInstCapture) +
452                prog_->inst_count(kInstEmptyWidth) +
453                prog_->inst_count(kInstNop) +
454                nmark + 1;  // + 1 for start inst
455 
456   // Account for space needed for DFA, q0, q1, stack.
457   mem_budget_ -= sizeof(DFA);
458   mem_budget_ -= (prog_->size() + nmark) *
459                  (sizeof(int)+sizeof(int)) * 2;  // q0, q1
460   mem_budget_ -= nstack * sizeof(int);  // stack
461   if (mem_budget_ < 0) {
462     init_failed_ = true;
463     return;
464   }
465 
466   state_budget_ = mem_budget_;
467 
468   // Make sure there is a reasonable amount of working room left.
469   // At minimum, the search requires room for two states in order
470   // to limp along, restarting frequently.  We'll get better performance
471   // if there is room for a larger number of states, say 20.
472   // Note that a state stores list heads only, so we use the program
473   // list count for the upper bound, not the program size.
474   int nnext = prog_->bytemap_range() + 1;  // + 1 for kByteEndText slot
475   int64_t one_state = sizeof(State) + nnext*sizeof(std::atomic<State*>) +
476                       (prog_->list_count()+nmark)*sizeof(int);
477   if (state_budget_ < 20*one_state) {
478     init_failed_ = true;
479     return;
480   }
481 
482   q0_ = new Workq(prog_->size(), nmark);
483   q1_ = new Workq(prog_->size(), nmark);
484   stack_ = PODArray<int>(nstack);
485 }
486 
~DFA()487 DFA::~DFA() {
488   delete q0_;
489   delete q1_;
490   ClearCache();
491 }
492 
493 // In the DFA state graph, s->next[c] == NULL means that the
494 // state has not yet been computed and needs to be.  We need
495 // a different special value to signal that s->next[c] is a
496 // state that can never lead to a match (and thus the search
497 // can be called off).  Hence DeadState.
498 #define DeadState reinterpret_cast<State*>(1)
499 
500 // Signals that the rest of the string matches no matter what it is.
501 #define FullMatchState reinterpret_cast<State*>(2)
502 
503 #define SpecialStateMax FullMatchState
504 
505 // Debugging printouts
506 
507 // For debugging, returns a string representation of the work queue.
DumpWorkq(Workq * q)508 string DFA::DumpWorkq(Workq* q) {
509   string s;
510   const char* sep = "";
511   for (Workq::iterator it = q->begin(); it != q->end(); ++it) {
512     if (q->is_mark(*it)) {
513       StringAppendF(&s, "|");
514       sep = "";
515     } else {
516       StringAppendF(&s, "%s%d", sep, *it);
517       sep = ",";
518     }
519   }
520   return s;
521 }
522 
523 // For debugging, returns a string representation of the state.
DumpState(State * state)524 string DFA::DumpState(State* state) {
525   if (state == NULL)
526     return "_";
527   if (state == DeadState)
528     return "X";
529   if (state == FullMatchState)
530     return "*";
531   string s;
532   const char* sep = "";
533   StringAppendF(&s, "(%p)", state);
534   for (int i = 0; i < state->ninst_; i++) {
535     if (state->inst_[i] == Mark) {
536       StringAppendF(&s, "|");
537       sep = "";
538     } else if (state->inst_[i] == MatchSep) {
539       StringAppendF(&s, "||");
540       sep = "";
541     } else {
542       StringAppendF(&s, "%s%d", sep, state->inst_[i]);
543       sep = ",";
544     }
545   }
546   StringAppendF(&s, " flag=%#x", state->flag_);
547   return s;
548 }
549 
550 //////////////////////////////////////////////////////////////////////
551 //
552 // DFA state graph construction.
553 //
554 // The DFA state graph is a heavily-linked collection of State* structures.
555 // The state_cache_ is a set of all the State structures ever allocated,
556 // so that if the same state is reached by two different paths,
557 // the same State structure can be used.  This reduces allocation
558 // requirements and also avoids duplication of effort across the two
559 // identical states.
560 //
561 // A State is defined by an ordered list of instruction ids and a flag word.
562 //
563 // The choice of an ordered list of instructions differs from a typical
564 // textbook DFA implementation, which would use an unordered set.
565 // Textbook descriptions, however, only care about whether
566 // the DFA matches, not where it matches in the text.  To decide where the
567 // DFA matches, we need to mimic the behavior of the dominant backtracking
568 // implementations like PCRE, which try one possible regular expression
569 // execution, then another, then another, stopping when one of them succeeds.
570 // The DFA execution tries these many executions in parallel, representing
571 // each by an instruction id.  These pointers are ordered in the State.inst_
572 // list in the same order that the executions would happen in a backtracking
573 // search: if a match is found during execution of inst_[2], inst_[i] for i>=3
574 // can be discarded.
575 //
576 // Textbooks also typically do not consider context-aware empty string operators
577 // like ^ or $.  These are handled by the flag word, which specifies the set
578 // of empty-string operators that should be matched when executing at the
579 // current text position.  These flag bits are defined in prog.h.
580 // The flag word also contains two DFA-specific bits: kFlagMatch if the state
581 // is a matching state (one that reached a kInstMatch in the program)
582 // and kFlagLastWord if the last processed byte was a word character, for the
583 // implementation of \B and \b.
584 //
585 // The flag word also contains, shifted up 16 bits, the bits looked for by
586 // any kInstEmptyWidth instructions in the state.  These provide a useful
587 // summary indicating when new flags might be useful.
588 //
589 // The permanent representation of a State's instruction ids is just an array,
590 // but while a state is being analyzed, these instruction ids are represented
591 // as a Workq, which is an array that allows iteration in insertion order.
592 
593 // NOTE(rsc): The choice of State construction determines whether the DFA
594 // mimics backtracking implementations (so-called leftmost first matching) or
595 // traditional DFA implementations (so-called leftmost longest matching as
596 // prescribed by POSIX).  This implementation chooses to mimic the
597 // backtracking implementations, because we want to replace PCRE.  To get
598 // POSIX behavior, the states would need to be considered not as a simple
599 // ordered list of instruction ids, but as a list of unordered sets of instruction
600 // ids.  A match by a state in one set would inhibit the running of sets
601 // farther down the list but not other instruction ids in the same set.  Each
602 // set would correspond to matches beginning at a given point in the string.
603 // This is implemented by separating different sets with Mark pointers.
604 
605 // Looks in the State cache for a State matching q, flag.
606 // If one is found, returns it.  If one is not found, allocates one,
607 // inserts it in the cache, and returns it.
608 // If mq is not null, MatchSep and the match IDs in mq will be appended
609 // to the State.
WorkqToCachedState(Workq * q,Workq * mq,uint32_t flag)610 DFA::State* DFA::WorkqToCachedState(Workq* q, Workq* mq, uint32_t flag) {
611   //mutex_.AssertHeld();
612 
613   // Construct array of instruction ids for the new state.
614   // Only ByteRange, EmptyWidth, and Match instructions are useful to keep:
615   // those are the only operators with any effect in
616   // RunWorkqOnEmptyString or RunWorkqOnByte.
617   int* inst = new int[q->size()];
618   int n = 0;
619   uint32_t needflags = 0;  // flags needed by kInstEmptyWidth instructions
620   bool sawmatch = false;   // whether queue contains guaranteed kInstMatch
621   bool sawmark = false;    // whether queue contains a Mark
622   if (ExtraDebug)
623     fprintf(stderr, "WorkqToCachedState %s [%#x]", DumpWorkq(q).c_str(), flag);
624   for (Workq::iterator it = q->begin(); it != q->end(); ++it) {
625     int id = *it;
626     if (sawmatch && (kind_ == Prog::kFirstMatch || q->is_mark(id)))
627       break;
628     if (q->is_mark(id)) {
629       if (n > 0 && inst[n-1] != Mark) {
630         sawmark = true;
631         inst[n++] = Mark;
632       }
633       continue;
634     }
635     Prog::Inst* ip = prog_->inst(id);
636     switch (ip->opcode()) {
637       case kInstAltMatch:
638         // This state will continue to a match no matter what
639         // the rest of the input is.  If it is the highest priority match
640         // being considered, return the special FullMatchState
641         // to indicate that it's all matches from here out.
642         if (kind_ != Prog::kManyMatch &&
643             (kind_ != Prog::kFirstMatch ||
644              (it == q->begin() && ip->greedy(prog_))) &&
645             (kind_ != Prog::kLongestMatch || !sawmark) &&
646             (flag & kFlagMatch)) {
647           delete[] inst;
648           if (ExtraDebug)
649             fprintf(stderr, " -> FullMatchState\n");
650           return FullMatchState;
651         }
652         FALLTHROUGH_INTENDED;
653       default:
654         // Record iff id is the head of its list, which must
655         // be the case if id-1 is the last of *its* list. :)
656         if (prog_->inst(id-1)->last())
657           inst[n++] = *it;
658         if (ip->opcode() == kInstEmptyWidth)
659           needflags |= ip->empty();
660         if (ip->opcode() == kInstMatch && !prog_->anchor_end())
661           sawmatch = true;
662         break;
663     }
664   }
665   DCHECK_LE(n, q->size());
666   if (n > 0 && inst[n-1] == Mark)
667     n--;
668 
669   // If there are no empty-width instructions waiting to execute,
670   // then the extra flag bits will not be used, so there is no
671   // point in saving them.  (Discarding them reduces the number
672   // of distinct states.)
673   if (needflags == 0)
674     flag &= kFlagMatch;
675 
676   // NOTE(rsc): The code above cannot do flag &= needflags,
677   // because if the right flags were present to pass the current
678   // kInstEmptyWidth instructions, new kInstEmptyWidth instructions
679   // might be reached that in turn need different flags.
680   // The only sure thing is that if there are no kInstEmptyWidth
681   // instructions at all, no flags will be needed.
682   // We could do the extra work to figure out the full set of
683   // possibly needed flags by exploring past the kInstEmptyWidth
684   // instructions, but the check above -- are any flags needed
685   // at all? -- handles the most common case.  More fine-grained
686   // analysis can only be justified by measurements showing that
687   // too many redundant states are being allocated.
688 
689   // If there are no Insts in the list, it's a dead state,
690   // which is useful to signal with a special pointer so that
691   // the execution loop can stop early.  This is only okay
692   // if the state is *not* a matching state.
693   if (n == 0 && flag == 0) {
694     delete[] inst;
695     if (ExtraDebug)
696       fprintf(stderr, " -> DeadState\n");
697     return DeadState;
698   }
699 
700   // If we're in longest match mode, the state is a sequence of
701   // unordered state sets separated by Marks.  Sort each set
702   // to canonicalize, to reduce the number of distinct sets stored.
703   if (kind_ == Prog::kLongestMatch) {
704     int* ip = inst;
705     int* ep = ip + n;
706     while (ip < ep) {
707       int* markp = ip;
708       while (markp < ep && *markp != Mark)
709         markp++;
710       std::sort(ip, markp);
711       if (markp < ep)
712         markp++;
713       ip = markp;
714     }
715   }
716 
717   // Append MatchSep and the match IDs in mq if necessary.
718   if (mq != NULL) {
719     inst[n++] = MatchSep;
720     for (Workq::iterator i = mq->begin(); i != mq->end(); ++i) {
721       int id = *i;
722       Prog::Inst* ip = prog_->inst(id);
723       if (ip->opcode() == kInstMatch)
724         inst[n++] = ip->match_id();
725     }
726   }
727 
728   // Save the needed empty-width flags in the top bits for use later.
729   flag |= needflags << kFlagNeedShift;
730 
731   State* state = CachedState(inst, n, flag);
732   delete[] inst;
733   return state;
734 }
735 
736 // Looks in the State cache for a State matching inst, ninst, flag.
737 // If one is found, returns it.  If one is not found, allocates one,
738 // inserts it in the cache, and returns it.
CachedState(int * inst,int ninst,uint32_t flag)739 DFA::State* DFA::CachedState(int* inst, int ninst, uint32_t flag) {
740   //mutex_.AssertHeld();
741 
742   // Look in the cache for a pre-existing state.
743   // We have to initialise the struct like this because otherwise
744   // MSVC will complain about the flexible array member. :(
745   State state;
746   state.inst_ = inst;
747   state.ninst_ = ninst;
748   state.flag_ = flag;
749   StateSet::iterator it = state_cache_.find(&state);
750   if (it != state_cache_.end()) {
751     if (ExtraDebug)
752       fprintf(stderr, " -cached-> %s\n", DumpState(*it).c_str());
753     return *it;
754   }
755 
756   // Must have enough memory for new state.
757   // In addition to what we're going to allocate,
758   // the state cache hash table seems to incur about 40 bytes per
759   // State*, empirically.
760   const int kStateCacheOverhead = 40;
761   int nnext = prog_->bytemap_range() + 1;  // + 1 for kByteEndText slot
762   int mem = sizeof(State) + nnext*sizeof(std::atomic<State*>) +
763             ninst*sizeof(int);
764   if (mem_budget_ < mem + kStateCacheOverhead) {
765     mem_budget_ = -1;
766     return NULL;
767   }
768   mem_budget_ -= mem + kStateCacheOverhead;
769 
770   // Allocate new state along with room for next_ and inst_.
771   char* space = std::allocator<char>().allocate(mem);
772   State* s = new (space) State;
773   (void) new (s->next_) std::atomic<State*>[nnext];
774   // Work around a unfortunate bug in older versions of libstdc++.
775   // (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=64658)
776   for (int i = 0; i < nnext; i++)
777     (void) new (s->next_ + i) std::atomic<State*>(NULL);
778   s->inst_ = new (s->next_ + nnext) int[ninst];
779   memmove(s->inst_, inst, ninst*sizeof s->inst_[0]);
780   s->ninst_ = ninst;
781   s->flag_ = flag;
782   if (ExtraDebug)
783     fprintf(stderr, " -> %s\n", DumpState(s).c_str());
784 
785   // Put state in cache and return it.
786   state_cache_.insert(s);
787   return s;
788 }
789 
790 // Clear the cache.  Must hold cache_mutex_.w or be in destructor.
ClearCache()791 void DFA::ClearCache() {
792   StateSet::iterator begin = state_cache_.begin();
793   StateSet::iterator end = state_cache_.end();
794   while (begin != end) {
795     StateSet::iterator tmp = begin;
796     ++begin;
797     // Deallocate the blob of memory that we allocated in DFA::CachedState().
798     // We recompute mem in order to benefit from sized delete where possible.
799     int ninst = (*tmp)->ninst_;
800     int nnext = prog_->bytemap_range() + 1;  // + 1 for kByteEndText slot
801     int mem = sizeof(State) + nnext*sizeof(std::atomic<State*>) +
802               ninst*sizeof(int);
803     std::allocator<char>().deallocate(reinterpret_cast<char*>(*tmp), mem);
804   }
805   state_cache_.clear();
806 }
807 
808 // Copies insts in state s to the work queue q.
StateToWorkq(State * s,Workq * q)809 void DFA::StateToWorkq(State* s, Workq* q) {
810   q->clear();
811   for (int i = 0; i < s->ninst_; i++) {
812     if (s->inst_[i] == Mark) {
813       q->mark();
814     } else if (s->inst_[i] == MatchSep) {
815       // Nothing after this is an instruction!
816       break;
817     } else {
818       // Explore from the head of the list.
819       AddToQueue(q, s->inst_[i], s->flag_ & kFlagEmptyMask);
820     }
821   }
822 }
823 
824 // Adds ip to the work queue, following empty arrows according to flag.
AddToQueue(Workq * q,int id,uint32_t flag)825 void DFA::AddToQueue(Workq* q, int id, uint32_t flag) {
826 
827   // Use stack_ to hold our stack of instructions yet to process.
828   // It was preallocated as follows:
829   //   one entry per Capture;
830   //   one entry per EmptyWidth; and
831   //   one entry per Nop.
832   // This reflects the maximum number of stack pushes that each can
833   // perform. (Each instruction can be processed at most once.)
834   // When using marks, we also added nmark == prog_->size().
835   // (Otherwise, nmark == 0.)
836   int* stk = stack_.data();
837   int nstk = 0;
838 
839   stk[nstk++] = id;
840   while (nstk > 0) {
841     DCHECK_LE(nstk, stack_.size());
842     id = stk[--nstk];
843 
844   Loop:
845     if (id == Mark) {
846       q->mark();
847       continue;
848     }
849 
850     if (id == 0)
851       continue;
852 
853     // If ip is already on the queue, nothing to do.
854     // Otherwise add it.  We don't actually keep all the
855     // ones that get added, but adding all of them here
856     // increases the likelihood of q->contains(id),
857     // reducing the amount of duplicated work.
858     if (q->contains(id))
859       continue;
860     q->insert_new(id);
861 
862     // Process instruction.
863     Prog::Inst* ip = prog_->inst(id);
864     switch (ip->opcode()) {
865       default:
866         LOG(DFATAL) << "unhandled opcode: " << ip->opcode();
867         break;
868 
869       case kInstByteRange:  // just save these on the queue
870       case kInstMatch:
871         if (ip->last())
872           break;
873         id = id+1;
874         goto Loop;
875 
876       case kInstCapture:    // DFA treats captures as no-ops.
877       case kInstNop:
878         if (!ip->last())
879           stk[nstk++] = id+1;
880 
881         // If this instruction is the [00-FF]* loop at the beginning of
882         // a leftmost-longest unanchored search, separate with a Mark so
883         // that future threads (which will start farther to the right in
884         // the input string) are lower priority than current threads.
885         if (ip->opcode() == kInstNop && q->maxmark() > 0 &&
886             id == prog_->start_unanchored() && id != prog_->start())
887           stk[nstk++] = Mark;
888         id = ip->out();
889         goto Loop;
890 
891       case kInstAltMatch:
892         DCHECK(!ip->last());
893         id = id+1;
894         goto Loop;
895 
896       case kInstEmptyWidth:
897         if (!ip->last())
898           stk[nstk++] = id+1;
899 
900         // Continue on if we have all the right flag bits.
901         if (ip->empty() & ~flag)
902           break;
903         id = ip->out();
904         goto Loop;
905     }
906   }
907 }
908 
909 // Running of work queues.  In the work queue, order matters:
910 // the queue is sorted in priority order.  If instruction i comes before j,
911 // then the instructions that i produces during the run must come before
912 // the ones that j produces.  In order to keep this invariant, all the
913 // work queue runners have to take an old queue to process and then
914 // also a new queue to fill in.  It's not acceptable to add to the end of
915 // an existing queue, because new instructions will not end up in the
916 // correct position.
917 
918 // Runs the work queue, processing the empty strings indicated by flag.
919 // For example, flag == kEmptyBeginLine|kEmptyEndLine means to match
920 // both ^ and $.  It is important that callers pass all flags at once:
921 // processing both ^ and $ is not the same as first processing only ^
922 // and then processing only $.  Doing the two-step sequence won't match
923 // ^$^$^$ but processing ^ and $ simultaneously will (and is the behavior
924 // exhibited by existing implementations).
RunWorkqOnEmptyString(Workq * oldq,Workq * newq,uint32_t flag)925 void DFA::RunWorkqOnEmptyString(Workq* oldq, Workq* newq, uint32_t flag) {
926   newq->clear();
927   for (Workq::iterator i = oldq->begin(); i != oldq->end(); ++i) {
928     if (oldq->is_mark(*i))
929       AddToQueue(newq, Mark, flag);
930     else
931       AddToQueue(newq, *i, flag);
932   }
933 }
934 
935 // Runs the work queue, processing the single byte c followed by any empty
936 // strings indicated by flag.  For example, c == 'a' and flag == kEmptyEndLine,
937 // means to match c$.  Sets the bool *ismatch to true if the end of the
938 // regular expression program has been reached (the regexp has matched).
RunWorkqOnByte(Workq * oldq,Workq * newq,int c,uint32_t flag,bool * ismatch)939 void DFA::RunWorkqOnByte(Workq* oldq, Workq* newq,
940                          int c, uint32_t flag, bool* ismatch) {
941   //mutex_.AssertHeld();
942 
943   newq->clear();
944   for (Workq::iterator i = oldq->begin(); i != oldq->end(); ++i) {
945     if (oldq->is_mark(*i)) {
946       if (*ismatch)
947         return;
948       newq->mark();
949       continue;
950     }
951     int id = *i;
952     Prog::Inst* ip = prog_->inst(id);
953     switch (ip->opcode()) {
954       default:
955         LOG(DFATAL) << "unhandled opcode: " << ip->opcode();
956         break;
957 
958       case kInstFail:        // never succeeds
959       case kInstCapture:     // already followed
960       case kInstNop:         // already followed
961       case kInstAltMatch:    // already followed
962       case kInstEmptyWidth:  // already followed
963         break;
964 
965       case kInstByteRange:   // can follow if c is in range
966         if (ip->Matches(c))
967           AddToQueue(newq, ip->out(), flag);
968         break;
969 
970       case kInstMatch:
971         if (prog_->anchor_end() && c != kByteEndText &&
972             kind_ != Prog::kManyMatch)
973           break;
974         *ismatch = true;
975         if (kind_ == Prog::kFirstMatch) {
976           // Can stop processing work queue since we found a match.
977           return;
978         }
979         break;
980     }
981   }
982 
983   if (ExtraDebug)
984     fprintf(stderr, "%s on %d[%#x] -> %s [%d]\n", DumpWorkq(oldq).c_str(),
985             c, flag, DumpWorkq(newq).c_str(), *ismatch);
986 }
987 
988 // Processes input byte c in state, returning new state.
989 // Caller does not hold mutex.
RunStateOnByteUnlocked(State * state,int c)990 DFA::State* DFA::RunStateOnByteUnlocked(State* state, int c) {
991   // Keep only one RunStateOnByte going
992   // even if the DFA is being run by multiple threads.
993   MutexLock l(&mutex_);
994   return RunStateOnByte(state, c);
995 }
996 
997 // Processes input byte c in state, returning new state.
RunStateOnByte(State * state,int c)998 DFA::State* DFA::RunStateOnByte(State* state, int c) {
999   //mutex_.AssertHeld();
1000 
1001   if (state <= SpecialStateMax) {
1002     if (state == FullMatchState) {
1003       // It is convenient for routines like PossibleMatchRange
1004       // if we implement RunStateOnByte for FullMatchState:
1005       // once you get into this state you never get out,
1006       // so it's pretty easy.
1007       return FullMatchState;
1008     }
1009     if (state == DeadState) {
1010       LOG(DFATAL) << "DeadState in RunStateOnByte";
1011       return NULL;
1012     }
1013     if (state == NULL) {
1014       LOG(DFATAL) << "NULL state in RunStateOnByte";
1015       return NULL;
1016     }
1017     LOG(DFATAL) << "Unexpected special state in RunStateOnByte";
1018     return NULL;
1019   }
1020 
1021   // If someone else already computed this, return it.
1022   State* ns = state->next_[ByteMap(c)].load(std::memory_order_relaxed);
1023   if (ns != NULL)
1024     return ns;
1025 
1026   // Convert state into Workq.
1027   StateToWorkq(state, q0_);
1028 
1029   // Flags marking the kinds of empty-width things (^ $ etc)
1030   // around this byte.  Before the byte we have the flags recorded
1031   // in the State structure itself.  After the byte we have
1032   // nothing yet (but that will change: read on).
1033   uint32_t needflag = state->flag_ >> kFlagNeedShift;
1034   uint32_t beforeflag = state->flag_ & kFlagEmptyMask;
1035   uint32_t oldbeforeflag = beforeflag;
1036   uint32_t afterflag = 0;
1037 
1038   if (c == '\n') {
1039     // Insert implicit $ and ^ around \n
1040     beforeflag |= kEmptyEndLine;
1041     afterflag |= kEmptyBeginLine;
1042   }
1043 
1044   if (c == kByteEndText) {
1045     // Insert implicit $ and \z before the fake "end text" byte.
1046     beforeflag |= kEmptyEndLine | kEmptyEndText;
1047   }
1048 
1049   // The state flag kFlagLastWord says whether the last
1050   // byte processed was a word character.  Use that info to
1051   // insert empty-width (non-)word boundaries.
1052   bool islastword = (state->flag_ & kFlagLastWord) != 0;
1053   bool isword = c != kByteEndText && Prog::IsWordChar(static_cast<uint8_t>(c));
1054   if (isword == islastword)
1055     beforeflag |= kEmptyNonWordBoundary;
1056   else
1057     beforeflag |= kEmptyWordBoundary;
1058 
1059   // Okay, finally ready to run.
1060   // Only useful to rerun on empty string if there are new, useful flags.
1061   if (beforeflag & ~oldbeforeflag & needflag) {
1062     RunWorkqOnEmptyString(q0_, q1_, beforeflag);
1063     using std::swap;
1064     swap(q0_, q1_);
1065   }
1066   bool ismatch = false;
1067   RunWorkqOnByte(q0_, q1_, c, afterflag, &ismatch);
1068   using std::swap;
1069   swap(q0_, q1_);
1070 
1071   // Save afterflag along with ismatch and isword in new state.
1072   uint32_t flag = afterflag;
1073   if (ismatch)
1074     flag |= kFlagMatch;
1075   if (isword)
1076     flag |= kFlagLastWord;
1077 
1078   if (ismatch && kind_ == Prog::kManyMatch)
1079     ns = WorkqToCachedState(q0_, q1_, flag);
1080   else
1081     ns = WorkqToCachedState(q0_, NULL, flag);
1082 
1083   // Flush ns before linking to it.
1084   // Write barrier before updating state->next_ so that the
1085   // main search loop can proceed without any locking, for speed.
1086   // (Otherwise it would need one mutex operation per input byte.)
1087   state->next_[ByteMap(c)].store(ns, std::memory_order_release);
1088   return ns;
1089 }
1090 
1091 
1092 //////////////////////////////////////////////////////////////////////
1093 // DFA cache reset.
1094 
1095 // Reader-writer lock helper.
1096 //
1097 // The DFA uses a reader-writer mutex to protect the state graph itself.
1098 // Traversing the state graph requires holding the mutex for reading,
1099 // and discarding the state graph and starting over requires holding the
1100 // lock for writing.  If a search needs to expand the graph but is out
1101 // of memory, it will need to drop its read lock and then acquire the
1102 // write lock.  Since it cannot then atomically downgrade from write lock
1103 // to read lock, it runs the rest of the search holding the write lock.
1104 // (This probably helps avoid repeated contention, but really the decision
1105 // is forced by the Mutex interface.)  It's a bit complicated to keep
1106 // track of whether the lock is held for reading or writing and thread
1107 // that through the search, so instead we encapsulate it in the RWLocker
1108 // and pass that around.
1109 
1110 class DFA::RWLocker {
1111  public:
1112   explicit RWLocker(Mutex* mu);
1113   ~RWLocker();
1114 
1115   // If the lock is only held for reading right now,
1116   // drop the read lock and re-acquire for writing.
1117   // Subsequent calls to LockForWriting are no-ops.
1118   // Notice that the lock is *released* temporarily.
1119   void LockForWriting();
1120 
1121  private:
1122   Mutex* mu_;
1123   bool writing_;
1124 
1125   RWLocker(const RWLocker&) = delete;
1126   RWLocker& operator=(const RWLocker&) = delete;
1127 };
1128 
RWLocker(Mutex * mu)1129 DFA::RWLocker::RWLocker(Mutex* mu) : mu_(mu), writing_(false) {
1130   mu_->ReaderLock();
1131 }
1132 
1133 // This function is marked as NO_THREAD_SAFETY_ANALYSIS because the annotations
1134 // does not support lock upgrade.
LockForWriting()1135 void DFA::RWLocker::LockForWriting() NO_THREAD_SAFETY_ANALYSIS {
1136   if (!writing_) {
1137     mu_->ReaderUnlock();
1138     mu_->WriterLock();
1139     writing_ = true;
1140   }
1141 }
1142 
~RWLocker()1143 DFA::RWLocker::~RWLocker() {
1144   if (!writing_)
1145     mu_->ReaderUnlock();
1146   else
1147     mu_->WriterUnlock();
1148 }
1149 
1150 
1151 // When the DFA's State cache fills, we discard all the states in the
1152 // cache and start over.  Many threads can be using and adding to the
1153 // cache at the same time, so we synchronize using the cache_mutex_
1154 // to keep from stepping on other threads.  Specifically, all the
1155 // threads using the current cache hold cache_mutex_ for reading.
1156 // When a thread decides to flush the cache, it drops cache_mutex_
1157 // and then re-acquires it for writing.  That ensures there are no
1158 // other threads accessing the cache anymore.  The rest of the search
1159 // runs holding cache_mutex_ for writing, avoiding any contention
1160 // with or cache pollution caused by other threads.
1161 
ResetCache(RWLocker * cache_lock)1162 void DFA::ResetCache(RWLocker* cache_lock) {
1163   // Re-acquire the cache_mutex_ for writing (exclusive use).
1164   cache_lock->LockForWriting();
1165 
1166   // Clear the cache, reset the memory budget.
1167   for (int i = 0; i < kMaxStart; i++) {
1168     start_[i].start = NULL;
1169     start_[i].first_byte.store(kFbUnknown, std::memory_order_relaxed);
1170   }
1171   ClearCache();
1172   mem_budget_ = state_budget_;
1173 }
1174 
1175 // Typically, a couple States do need to be preserved across a cache
1176 // reset, like the State at the current point in the search.
1177 // The StateSaver class helps keep States across cache resets.
1178 // It makes a copy of the state's guts outside the cache (before the reset)
1179 // and then can be asked, after the reset, to recreate the State
1180 // in the new cache.  For example, in a DFA method ("this" is a DFA):
1181 //
1182 //   StateSaver saver(this, s);
1183 //   ResetCache(cache_lock);
1184 //   s = saver.Restore();
1185 //
1186 // The saver should always have room in the cache to re-create the state,
1187 // because resetting the cache locks out all other threads, and the cache
1188 // is known to have room for at least a couple states (otherwise the DFA
1189 // constructor fails).
1190 
1191 class DFA::StateSaver {
1192  public:
1193   explicit StateSaver(DFA* dfa, State* state);
1194   ~StateSaver();
1195 
1196   // Recreates and returns a state equivalent to the
1197   // original state passed to the constructor.
1198   // Returns NULL if the cache has filled, but
1199   // since the DFA guarantees to have room in the cache
1200   // for a couple states, should never return NULL
1201   // if used right after ResetCache.
1202   State* Restore();
1203 
1204  private:
1205   DFA* dfa_;         // the DFA to use
1206   int* inst_;        // saved info from State
1207   int ninst_;
1208   uint32_t flag_;
1209   bool is_special_;  // whether original state was special
1210   State* special_;   // if is_special_, the original state
1211 
1212   StateSaver(const StateSaver&) = delete;
1213   StateSaver& operator=(const StateSaver&) = delete;
1214 };
1215 
StateSaver(DFA * dfa,State * state)1216 DFA::StateSaver::StateSaver(DFA* dfa, State* state) {
1217   dfa_ = dfa;
1218   if (state <= SpecialStateMax) {
1219     inst_ = NULL;
1220     ninst_ = 0;
1221     flag_ = 0;
1222     is_special_ = true;
1223     special_ = state;
1224     return;
1225   }
1226   is_special_ = false;
1227   special_ = NULL;
1228   flag_ = state->flag_;
1229   ninst_ = state->ninst_;
1230   inst_ = new int[ninst_];
1231   memmove(inst_, state->inst_, ninst_*sizeof inst_[0]);
1232 }
1233 
~StateSaver()1234 DFA::StateSaver::~StateSaver() {
1235   if (!is_special_)
1236     delete[] inst_;
1237 }
1238 
Restore()1239 DFA::State* DFA::StateSaver::Restore() {
1240   if (is_special_)
1241     return special_;
1242   MutexLock l(&dfa_->mutex_);
1243   State* s = dfa_->CachedState(inst_, ninst_, flag_);
1244   if (s == NULL)
1245     LOG(DFATAL) << "StateSaver failed to restore state.";
1246   return s;
1247 }
1248 
1249 
1250 //////////////////////////////////////////////////////////////////////
1251 //
1252 // DFA execution.
1253 //
1254 // The basic search loop is easy: start in a state s and then for each
1255 // byte c in the input, s = s->next[c].
1256 //
1257 // This simple description omits a few efficiency-driven complications.
1258 //
1259 // First, the State graph is constructed incrementally: it is possible
1260 // that s->next[c] is null, indicating that that state has not been
1261 // fully explored.  In this case, RunStateOnByte must be invoked to
1262 // determine the next state, which is cached in s->next[c] to save
1263 // future effort.  An alternative reason for s->next[c] to be null is
1264 // that the DFA has reached a so-called "dead state", in which any match
1265 // is no longer possible.  In this case RunStateOnByte will return NULL
1266 // and the processing of the string can stop early.
1267 //
1268 // Second, a 256-element pointer array for s->next_ makes each State
1269 // quite large (2kB on 64-bit machines).  Instead, dfa->bytemap_[]
1270 // maps from bytes to "byte classes" and then next_ only needs to have
1271 // as many pointers as there are byte classes.  A byte class is simply a
1272 // range of bytes that the regexp never distinguishes between.
1273 // A regexp looking for a[abc] would have four byte ranges -- 0 to 'a'-1,
1274 // 'a', 'b' to 'c', and 'c' to 0xFF.  The bytemap slows us a little bit
1275 // but in exchange we typically cut the size of a State (and thus our
1276 // memory footprint) by about 5-10x.  The comments still refer to
1277 // s->next[c] for simplicity, but code should refer to s->next_[bytemap_[c]].
1278 //
1279 // Third, it is common for a DFA for an unanchored match to begin in a
1280 // state in which only one particular byte value can take the DFA to a
1281 // different state.  That is, s->next[c] != s for only one c.  In this
1282 // situation, the DFA can do better than executing the simple loop.
1283 // Instead, it can call memchr to search very quickly for the byte c.
1284 // Whether the start state has this property is determined during a
1285 // pre-compilation pass, and if so, the byte b is passed to the search
1286 // loop as the "first_byte" argument, along with a boolean "have_first_byte".
1287 //
1288 // Fourth, the desired behavior is to search for the leftmost-best match
1289 // (approximately, the same one that Perl would find), which is not
1290 // necessarily the match ending earliest in the string.  Each time a
1291 // match is found, it must be noted, but the DFA must continue on in
1292 // hope of finding a higher-priority match.  In some cases, the caller only
1293 // cares whether there is any match at all, not which one is found.
1294 // The "want_earliest_match" flag causes the search to stop at the first
1295 // match found.
1296 //
1297 // Fifth, one algorithm that uses the DFA needs it to run over the
1298 // input string backward, beginning at the end and ending at the beginning.
1299 // Passing false for the "run_forward" flag causes the DFA to run backward.
1300 //
1301 // The checks for these last three cases, which in a naive implementation
1302 // would be performed once per input byte, slow the general loop enough
1303 // to merit specialized versions of the search loop for each of the
1304 // eight possible settings of the three booleans.  Rather than write
1305 // eight different functions, we write one general implementation and then
1306 // inline it to create the specialized ones.
1307 //
1308 // Note that matches are delayed by one byte, to make it easier to
1309 // accomodate match conditions depending on the next input byte (like $ and \b).
1310 // When s->next[c]->IsMatch(), it means that there is a match ending just
1311 // *before* byte c.
1312 
1313 // The generic search loop.  Searches text for a match, returning
1314 // the pointer to the end of the chosen match, or NULL if no match.
1315 // The bools are equal to the same-named variables in params, but
1316 // making them function arguments lets the inliner specialize
1317 // this function to each combination (see two paragraphs above).
InlinedSearchLoop(SearchParams * params,bool have_first_byte,bool want_earliest_match,bool run_forward)1318 inline bool DFA::InlinedSearchLoop(SearchParams* params,
1319                                    bool have_first_byte,
1320                                    bool want_earliest_match,
1321                                    bool run_forward) {
1322   State* start = params->start;
1323   const uint8_t* bp = BytePtr(params->text.begin());  // start of text
1324   const uint8_t* p = bp;                              // text scanning point
1325   const uint8_t* ep = BytePtr(params->text.end());    // end of text
1326   const uint8_t* resetp = NULL;                       // p at last cache reset
1327   if (!run_forward) {
1328     using std::swap;
1329     swap(p, ep);
1330   }
1331 
1332   const uint8_t* bytemap = prog_->bytemap();
1333   const uint8_t* lastmatch = NULL;   // most recent matching position in text
1334   bool matched = false;
1335 
1336   State* s = start;
1337   if (ExtraDebug)
1338     fprintf(stderr, "@stx: %s\n", DumpState(s).c_str());
1339 
1340   if (s->IsMatch()) {
1341     matched = true;
1342     lastmatch = p;
1343     if (ExtraDebug)
1344       fprintf(stderr, "match @stx! [%s]\n", DumpState(s).c_str());
1345     if (params->matches != NULL && kind_ == Prog::kManyMatch) {
1346       for (int i = s->ninst_ - 1; i >= 0; i--) {
1347         int id = s->inst_[i];
1348         if (id == MatchSep)
1349           break;
1350         params->matches->insert(id);
1351       }
1352     }
1353     if (want_earliest_match) {
1354       params->ep = reinterpret_cast<const char*>(lastmatch);
1355       return true;
1356     }
1357   }
1358 
1359   while (p != ep) {
1360     if (ExtraDebug)
1361       fprintf(stderr, "@%td: %s\n",
1362               p - bp, DumpState(s).c_str());
1363 
1364     if (have_first_byte && s == start) {
1365       // In start state, only way out is to find first_byte,
1366       // so use optimized assembly in memchr to skip ahead.
1367       // If first_byte isn't found, we can skip to the end
1368       // of the string.
1369       if (run_forward) {
1370         if ((p = BytePtr(memchr(p, params->first_byte, ep - p))) == NULL) {
1371           p = ep;
1372           break;
1373         }
1374       } else {
1375         if ((p = BytePtr(memrchr(ep, params->first_byte, p - ep))) == NULL) {
1376           p = ep;
1377           break;
1378         }
1379         p++;
1380       }
1381     }
1382 
1383     int c;
1384     if (run_forward)
1385       c = *p++;
1386     else
1387       c = *--p;
1388 
1389     // Note that multiple threads might be consulting
1390     // s->next_[bytemap[c]] simultaneously.
1391     // RunStateOnByte takes care of the appropriate locking,
1392     // including a memory barrier so that the unlocked access
1393     // (sometimes known as "double-checked locking") is safe.
1394     // The alternative would be either one DFA per thread
1395     // or one mutex operation per input byte.
1396     //
1397     // ns == DeadState means the state is known to be dead
1398     // (no more matches are possible).
1399     // ns == NULL means the state has not yet been computed
1400     // (need to call RunStateOnByteUnlocked).
1401     // RunStateOnByte returns ns == NULL if it is out of memory.
1402     // ns == FullMatchState means the rest of the string matches.
1403     //
1404     // Okay to use bytemap[] not ByteMap() here, because
1405     // c is known to be an actual byte and not kByteEndText.
1406 
1407     State* ns = s->next_[bytemap[c]].load(std::memory_order_acquire);
1408     if (ns == NULL) {
1409       ns = RunStateOnByteUnlocked(s, c);
1410       if (ns == NULL) {
1411         // After we reset the cache, we hold cache_mutex exclusively,
1412         // so if resetp != NULL, it means we filled the DFA state
1413         // cache with this search alone (without any other threads).
1414         // Benchmarks show that doing a state computation on every
1415         // byte runs at about 0.2 MB/s, while the NFA (nfa.cc) can do the
1416         // same at about 2 MB/s.  Unless we're processing an average
1417         // of 10 bytes per state computation, fail so that RE2 can
1418         // fall back to the NFA.
1419         if (dfa_should_bail_when_slow && resetp != NULL &&
1420             static_cast<size_t>(p - resetp) < 10*state_cache_.size()) {
1421           params->failed = true;
1422           return false;
1423         }
1424         resetp = p;
1425 
1426         // Prepare to save start and s across the reset.
1427         StateSaver save_start(this, start);
1428         StateSaver save_s(this, s);
1429 
1430         // Discard all the States in the cache.
1431         ResetCache(params->cache_lock);
1432 
1433         // Restore start and s so we can continue.
1434         if ((start = save_start.Restore()) == NULL ||
1435             (s = save_s.Restore()) == NULL) {
1436           // Restore already did LOG(DFATAL).
1437           params->failed = true;
1438           return false;
1439         }
1440         ns = RunStateOnByteUnlocked(s, c);
1441         if (ns == NULL) {
1442           LOG(DFATAL) << "RunStateOnByteUnlocked failed after ResetCache";
1443           params->failed = true;
1444           return false;
1445         }
1446       }
1447     }
1448     if (ns <= SpecialStateMax) {
1449       if (ns == DeadState) {
1450         params->ep = reinterpret_cast<const char*>(lastmatch);
1451         return matched;
1452       }
1453       // FullMatchState
1454       params->ep = reinterpret_cast<const char*>(ep);
1455       return true;
1456     }
1457 
1458     s = ns;
1459     if (s->IsMatch()) {
1460       matched = true;
1461       // The DFA notices the match one byte late,
1462       // so adjust p before using it in the match.
1463       if (run_forward)
1464         lastmatch = p - 1;
1465       else
1466         lastmatch = p + 1;
1467       if (ExtraDebug)
1468         fprintf(stderr, "match @%td! [%s]\n",
1469                 lastmatch - bp, DumpState(s).c_str());
1470       if (params->matches != NULL && kind_ == Prog::kManyMatch) {
1471         for (int i = s->ninst_ - 1; i >= 0; i--) {
1472           int id = s->inst_[i];
1473           if (id == MatchSep)
1474             break;
1475           params->matches->insert(id);
1476         }
1477       }
1478       if (want_earliest_match) {
1479         params->ep = reinterpret_cast<const char*>(lastmatch);
1480         return true;
1481       }
1482     }
1483   }
1484 
1485   // Process one more byte to see if it triggers a match.
1486   // (Remember, matches are delayed one byte.)
1487   if (ExtraDebug)
1488     fprintf(stderr, "@etx: %s\n", DumpState(s).c_str());
1489 
1490   int lastbyte;
1491   if (run_forward) {
1492     if (params->text.end() == params->context.end())
1493       lastbyte = kByteEndText;
1494     else
1495       lastbyte = params->text.end()[0] & 0xFF;
1496   } else {
1497     if (params->text.begin() == params->context.begin())
1498       lastbyte = kByteEndText;
1499     else
1500       lastbyte = params->text.begin()[-1] & 0xFF;
1501   }
1502 
1503   State* ns = s->next_[ByteMap(lastbyte)].load(std::memory_order_acquire);
1504   if (ns == NULL) {
1505     ns = RunStateOnByteUnlocked(s, lastbyte);
1506     if (ns == NULL) {
1507       StateSaver save_s(this, s);
1508       ResetCache(params->cache_lock);
1509       if ((s = save_s.Restore()) == NULL) {
1510         params->failed = true;
1511         return false;
1512       }
1513       ns = RunStateOnByteUnlocked(s, lastbyte);
1514       if (ns == NULL) {
1515         LOG(DFATAL) << "RunStateOnByteUnlocked failed after Reset";
1516         params->failed = true;
1517         return false;
1518       }
1519     }
1520   }
1521   if (ns <= SpecialStateMax) {
1522     if (ns == DeadState) {
1523       params->ep = reinterpret_cast<const char*>(lastmatch);
1524       return matched;
1525     }
1526     // FullMatchState
1527     params->ep = reinterpret_cast<const char*>(ep);
1528     return true;
1529   }
1530 
1531   s = ns;
1532   if (s->IsMatch()) {
1533     matched = true;
1534     lastmatch = p;
1535     if (ExtraDebug)
1536       fprintf(stderr, "match @etx! [%s]\n", DumpState(s).c_str());
1537     if (params->matches != NULL && kind_ == Prog::kManyMatch) {
1538       for (int i = s->ninst_ - 1; i >= 0; i--) {
1539         int id = s->inst_[i];
1540         if (id == MatchSep)
1541           break;
1542         params->matches->insert(id);
1543       }
1544     }
1545   }
1546 
1547   params->ep = reinterpret_cast<const char*>(lastmatch);
1548   return matched;
1549 }
1550 
1551 // Inline specializations of the general loop.
SearchFFF(SearchParams * params)1552 bool DFA::SearchFFF(SearchParams* params) {
1553   return InlinedSearchLoop(params, 0, 0, 0);
1554 }
SearchFFT(SearchParams * params)1555 bool DFA::SearchFFT(SearchParams* params) {
1556   return InlinedSearchLoop(params, 0, 0, 1);
1557 }
SearchFTF(SearchParams * params)1558 bool DFA::SearchFTF(SearchParams* params) {
1559   return InlinedSearchLoop(params, 0, 1, 0);
1560 }
SearchFTT(SearchParams * params)1561 bool DFA::SearchFTT(SearchParams* params) {
1562   return InlinedSearchLoop(params, 0, 1, 1);
1563 }
SearchTFF(SearchParams * params)1564 bool DFA::SearchTFF(SearchParams* params) {
1565   return InlinedSearchLoop(params, 1, 0, 0);
1566 }
SearchTFT(SearchParams * params)1567 bool DFA::SearchTFT(SearchParams* params) {
1568   return InlinedSearchLoop(params, 1, 0, 1);
1569 }
SearchTTF(SearchParams * params)1570 bool DFA::SearchTTF(SearchParams* params) {
1571   return InlinedSearchLoop(params, 1, 1, 0);
1572 }
SearchTTT(SearchParams * params)1573 bool DFA::SearchTTT(SearchParams* params) {
1574   return InlinedSearchLoop(params, 1, 1, 1);
1575 }
1576 
1577 // For debugging, calls the general code directly.
SlowSearchLoop(SearchParams * params)1578 bool DFA::SlowSearchLoop(SearchParams* params) {
1579   return InlinedSearchLoop(params,
1580                            params->first_byte >= 0,
1581                            params->want_earliest_match,
1582                            params->run_forward);
1583 }
1584 
1585 // For performance, calls the appropriate specialized version
1586 // of InlinedSearchLoop.
FastSearchLoop(SearchParams * params)1587 bool DFA::FastSearchLoop(SearchParams* params) {
1588   // Because the methods are private, the Searches array
1589   // cannot be declared at top level.
1590   static bool (DFA::*Searches[])(SearchParams*) = {
1591     &DFA::SearchFFF,
1592     &DFA::SearchFFT,
1593     &DFA::SearchFTF,
1594     &DFA::SearchFTT,
1595     &DFA::SearchTFF,
1596     &DFA::SearchTFT,
1597     &DFA::SearchTTF,
1598     &DFA::SearchTTT,
1599   };
1600 
1601   bool have_first_byte = params->first_byte >= 0;
1602   int index = 4 * have_first_byte +
1603               2 * params->want_earliest_match +
1604               1 * params->run_forward;
1605   return (this->*Searches[index])(params);
1606 }
1607 
1608 
1609 // The discussion of DFA execution above ignored the question of how
1610 // to determine the initial state for the search loop.  There are two
1611 // factors that influence the choice of start state.
1612 //
1613 // The first factor is whether the search is anchored or not.
1614 // The regexp program (Prog*) itself has
1615 // two different entry points: one for anchored searches and one for
1616 // unanchored searches.  (The unanchored version starts with a leading ".*?"
1617 // and then jumps to the anchored one.)
1618 //
1619 // The second factor is where text appears in the larger context, which
1620 // determines which empty-string operators can be matched at the beginning
1621 // of execution.  If text is at the very beginning of context, \A and ^ match.
1622 // Otherwise if text is at the beginning of a line, then ^ matches.
1623 // Otherwise it matters whether the character before text is a word character
1624 // or a non-word character.
1625 //
1626 // The two cases (unanchored vs not) and four cases (empty-string flags)
1627 // combine to make the eight cases recorded in the DFA's begin_text_[2],
1628 // begin_line_[2], after_wordchar_[2], and after_nonwordchar_[2] cached
1629 // StartInfos.  The start state for each is filled in the first time it
1630 // is used for an actual search.
1631 
1632 // Examines text, context, and anchored to determine the right start
1633 // state for the DFA search loop.  Fills in params and returns true on success.
1634 // Returns false on failure.
AnalyzeSearch(SearchParams * params)1635 bool DFA::AnalyzeSearch(SearchParams* params) {
1636   const StringPiece& text = params->text;
1637   const StringPiece& context = params->context;
1638 
1639   // Sanity check: make sure that text lies within context.
1640   if (text.begin() < context.begin() || text.end() > context.end()) {
1641     LOG(DFATAL) << "context does not contain text";
1642     params->start = DeadState;
1643     return true;
1644   }
1645 
1646   // Determine correct search type.
1647   int start;
1648   uint32_t flags;
1649   if (params->run_forward) {
1650     if (text.begin() == context.begin()) {
1651       start = kStartBeginText;
1652       flags = kEmptyBeginText|kEmptyBeginLine;
1653     } else if (text.begin()[-1] == '\n') {
1654       start = kStartBeginLine;
1655       flags = kEmptyBeginLine;
1656     } else if (Prog::IsWordChar(text.begin()[-1] & 0xFF)) {
1657       start = kStartAfterWordChar;
1658       flags = kFlagLastWord;
1659     } else {
1660       start = kStartAfterNonWordChar;
1661       flags = 0;
1662     }
1663   } else {
1664     if (text.end() == context.end()) {
1665       start = kStartBeginText;
1666       flags = kEmptyBeginText|kEmptyBeginLine;
1667     } else if (text.end()[0] == '\n') {
1668       start = kStartBeginLine;
1669       flags = kEmptyBeginLine;
1670     } else if (Prog::IsWordChar(text.end()[0] & 0xFF)) {
1671       start = kStartAfterWordChar;
1672       flags = kFlagLastWord;
1673     } else {
1674       start = kStartAfterNonWordChar;
1675       flags = 0;
1676     }
1677   }
1678   if (params->anchored)
1679     start |= kStartAnchored;
1680   StartInfo* info = &start_[start];
1681 
1682   // Try once without cache_lock for writing.
1683   // Try again after resetting the cache
1684   // (ResetCache will relock cache_lock for writing).
1685   if (!AnalyzeSearchHelper(params, info, flags)) {
1686     ResetCache(params->cache_lock);
1687     if (!AnalyzeSearchHelper(params, info, flags)) {
1688       LOG(DFATAL) << "Failed to analyze start state.";
1689       params->failed = true;
1690       return false;
1691     }
1692   }
1693 
1694   if (ExtraDebug)
1695     fprintf(stderr, "anchored=%d fwd=%d flags=%#x state=%s first_byte=%d\n",
1696             params->anchored, params->run_forward, flags,
1697             DumpState(info->start).c_str(), info->first_byte.load());
1698 
1699   params->start = info->start;
1700   params->first_byte = info->first_byte.load(std::memory_order_acquire);
1701 
1702   return true;
1703 }
1704 
1705 // Fills in info if needed.  Returns true on success, false on failure.
AnalyzeSearchHelper(SearchParams * params,StartInfo * info,uint32_t flags)1706 bool DFA::AnalyzeSearchHelper(SearchParams* params, StartInfo* info,
1707                               uint32_t flags) {
1708   // Quick check.
1709   int fb = info->first_byte.load(std::memory_order_acquire);
1710   if (fb != kFbUnknown)
1711     return true;
1712 
1713   MutexLock l(&mutex_);
1714   fb = info->first_byte.load(std::memory_order_relaxed);
1715   if (fb != kFbUnknown)
1716     return true;
1717 
1718   q0_->clear();
1719   AddToQueue(q0_,
1720              params->anchored ? prog_->start() : prog_->start_unanchored(),
1721              flags);
1722   info->start = WorkqToCachedState(q0_, NULL, flags);
1723   if (info->start == NULL)
1724     return false;
1725 
1726   if (info->start == DeadState) {
1727     // Synchronize with "quick check" above.
1728     info->first_byte.store(kFbNone, std::memory_order_release);
1729     return true;
1730   }
1731 
1732   if (info->start == FullMatchState) {
1733     // Synchronize with "quick check" above.
1734     info->first_byte.store(kFbNone, std::memory_order_release);  // will be ignored
1735     return true;
1736   }
1737 
1738   // Even if we have a first_byte, we cannot use it when anchored and,
1739   // less obviously, we cannot use it when we are going to need flags.
1740   // This trick works only when there is a single byte that leads to a
1741   // different state!
1742   int first_byte = prog_->first_byte();
1743   if (first_byte == -1 ||
1744       params->anchored ||
1745       info->start->flag_ >> kFlagNeedShift != 0)
1746     first_byte = kFbNone;
1747 
1748   // Synchronize with "quick check" above.
1749   info->first_byte.store(first_byte, std::memory_order_release);
1750   return true;
1751 }
1752 
1753 // The actual DFA search: calls AnalyzeSearch and then FastSearchLoop.
Search(const StringPiece & text,const StringPiece & context,bool anchored,bool want_earliest_match,bool run_forward,bool * failed,const char ** epp,SparseSet * matches)1754 bool DFA::Search(const StringPiece& text,
1755                  const StringPiece& context,
1756                  bool anchored,
1757                  bool want_earliest_match,
1758                  bool run_forward,
1759                  bool* failed,
1760                  const char** epp,
1761                  SparseSet* matches) {
1762   *epp = NULL;
1763   if (!ok()) {
1764     *failed = true;
1765     return false;
1766   }
1767   *failed = false;
1768 
1769   if (ExtraDebug) {
1770     fprintf(stderr, "\nprogram:\n%s\n", prog_->DumpUnanchored().c_str());
1771     fprintf(stderr, "text %s anchored=%d earliest=%d fwd=%d kind %d\n",
1772             string(text).c_str(), anchored, want_earliest_match,
1773             run_forward, kind_);
1774   }
1775 
1776   RWLocker l(&cache_mutex_);
1777   SearchParams params(text, context, &l);
1778   params.anchored = anchored;
1779   params.want_earliest_match = want_earliest_match;
1780   params.run_forward = run_forward;
1781   params.matches = matches;
1782 
1783   if (!AnalyzeSearch(&params)) {
1784     *failed = true;
1785     return false;
1786   }
1787   if (params.start == DeadState)
1788     return false;
1789   if (params.start == FullMatchState) {
1790     if (run_forward == want_earliest_match)
1791       *epp = text.begin();
1792     else
1793       *epp = text.end();
1794     return true;
1795   }
1796   if (ExtraDebug)
1797     fprintf(stderr, "start %s\n", DumpState(params.start).c_str());
1798   bool ret = FastSearchLoop(&params);
1799   if (params.failed) {
1800     *failed = true;
1801     return false;
1802   }
1803   *epp = params.ep;
1804   return ret;
1805 }
1806 
GetDFA(MatchKind kind)1807 DFA* Prog::GetDFA(MatchKind kind) {
1808   // For a forward DFA, half the memory goes to each DFA.
1809   // However, if it is a "many match" DFA, then there is
1810   // no counterpart with which the memory must be shared.
1811   //
1812   // For a reverse DFA, all the memory goes to the
1813   // "longest match" DFA, because RE2 never does reverse
1814   // "first match" searches.
1815   if (kind == kFirstMatch) {
1816     std::call_once(dfa_first_once_, [](Prog* prog) {
1817       prog->dfa_first_ = new DFA(prog, kFirstMatch, prog->dfa_mem_ / 2);
1818     }, this);
1819     return dfa_first_;
1820   } else if (kind == kManyMatch) {
1821     std::call_once(dfa_first_once_, [](Prog* prog) {
1822       prog->dfa_first_ = new DFA(prog, kManyMatch, prog->dfa_mem_);
1823     }, this);
1824     return dfa_first_;
1825   } else {
1826     std::call_once(dfa_longest_once_, [](Prog* prog) {
1827       if (!prog->reversed_)
1828         prog->dfa_longest_ = new DFA(prog, kLongestMatch, prog->dfa_mem_ / 2);
1829       else
1830         prog->dfa_longest_ = new DFA(prog, kLongestMatch, prog->dfa_mem_);
1831     }, this);
1832     return dfa_longest_;
1833   }
1834 }
1835 
DeleteDFA(DFA * dfa)1836 void Prog::DeleteDFA(DFA* dfa) {
1837   delete dfa;
1838 }
1839 
1840 // Executes the regexp program to search in text,
1841 // which itself is inside the larger context.  (As a convenience,
1842 // passing a NULL context is equivalent to passing text.)
1843 // Returns true if a match is found, false if not.
1844 // If a match is found, fills in match0->end() to point at the end of the match
1845 // and sets match0->begin() to text.begin(), since the DFA can't track
1846 // where the match actually began.
1847 //
1848 // This is the only external interface (class DFA only exists in this file).
1849 //
SearchDFA(const StringPiece & text,const StringPiece & const_context,Anchor anchor,MatchKind kind,StringPiece * match0,bool * failed,SparseSet * matches)1850 bool Prog::SearchDFA(const StringPiece& text, const StringPiece& const_context,
1851                      Anchor anchor, MatchKind kind, StringPiece* match0,
1852                      bool* failed, SparseSet* matches) {
1853   *failed = false;
1854 
1855   StringPiece context = const_context;
1856   if (context.begin() == NULL)
1857     context = text;
1858   bool carat = anchor_start();
1859   bool dollar = anchor_end();
1860   if (reversed_) {
1861     using std::swap;
1862     swap(carat, dollar);
1863   }
1864   if (carat && context.begin() != text.begin())
1865     return false;
1866   if (dollar && context.end() != text.end())
1867     return false;
1868 
1869   // Handle full match by running an anchored longest match
1870   // and then checking if it covers all of text.
1871   bool anchored = anchor == kAnchored || anchor_start() || kind == kFullMatch;
1872   bool endmatch = false;
1873   if (kind == kManyMatch) {
1874     // This is split out in order to avoid clobbering kind.
1875   } else if (kind == kFullMatch || anchor_end()) {
1876     endmatch = true;
1877     kind = kLongestMatch;
1878   }
1879 
1880   // If the caller doesn't care where the match is (just whether one exists),
1881   // then we can stop at the very first match we find, the so-called
1882   // "earliest match".
1883   bool want_earliest_match = false;
1884   if (kind == kManyMatch) {
1885     // This is split out in order to avoid clobbering kind.
1886     if (matches == NULL) {
1887       want_earliest_match = true;
1888     }
1889   } else if (match0 == NULL && !endmatch) {
1890     want_earliest_match = true;
1891     kind = kLongestMatch;
1892   }
1893 
1894   DFA* dfa = GetDFA(kind);
1895   const char* ep;
1896   bool matched = dfa->Search(text, context, anchored,
1897                              want_earliest_match, !reversed_,
1898                              failed, &ep, matches);
1899   if (*failed)
1900     return false;
1901   if (!matched)
1902     return false;
1903   if (endmatch && ep != (reversed_ ? text.begin() : text.end()))
1904     return false;
1905 
1906   // If caller cares, record the boundary of the match.
1907   // We only know where it ends, so use the boundary of text
1908   // as the beginning.
1909   if (match0) {
1910     if (reversed_)
1911       *match0 = StringPiece(ep, static_cast<size_t>(text.end() - ep));
1912     else
1913       *match0 =
1914           StringPiece(text.begin(), static_cast<size_t>(ep - text.begin()));
1915   }
1916   return true;
1917 }
1918 
1919 // Build out all states in DFA.  Returns number of states.
BuildAllStates(const Prog::DFAStateCallback & cb)1920 int DFA::BuildAllStates(const Prog::DFAStateCallback& cb) {
1921   if (!ok())
1922     return 0;
1923 
1924   // Pick out start state for unanchored search
1925   // at beginning of text.
1926   RWLocker l(&cache_mutex_);
1927   SearchParams params(StringPiece(), StringPiece(), &l);
1928   params.anchored = false;
1929   if (!AnalyzeSearch(&params) ||
1930       params.start == NULL ||
1931       params.start == DeadState)
1932     return 0;
1933 
1934   // Add start state to work queue.
1935   // Note that any State* that we handle here must point into the cache,
1936   // so we can simply depend on pointer-as-a-number hashing and equality.
1937   std::unordered_map<State*, int> m;
1938   std::deque<State*> q;
1939   m.emplace(params.start, static_cast<int>(m.size()));
1940   q.push_back(params.start);
1941 
1942   // Compute the input bytes needed to cover all of the next pointers.
1943   int nnext = prog_->bytemap_range() + 1;  // + 1 for kByteEndText slot
1944   std::vector<int> input(nnext);
1945   for (int c = 0; c < 256; c++) {
1946     int b = prog_->bytemap()[c];
1947     while (c < 256-1 && prog_->bytemap()[c+1] == b)
1948       c++;
1949     input[b] = c;
1950   }
1951   input[prog_->bytemap_range()] = kByteEndText;
1952 
1953   // Scratch space for the output.
1954   std::vector<int> output(nnext);
1955 
1956   // Flood to expand every state.
1957   bool oom = false;
1958   while (!q.empty()) {
1959     State* s = q.front();
1960     q.pop_front();
1961     for (int c : input) {
1962       State* ns = RunStateOnByteUnlocked(s, c);
1963       if (ns == NULL) {
1964         oom = true;
1965         break;
1966       }
1967       if (ns == DeadState) {
1968         output[ByteMap(c)] = -1;
1969         continue;
1970       }
1971       if (m.find(ns) == m.end()) {
1972         m.emplace(ns, static_cast<int>(m.size()));
1973         q.push_back(ns);
1974       }
1975       output[ByteMap(c)] = m[ns];
1976     }
1977     if (cb)
1978       cb(oom ? NULL : output.data(),
1979          s == FullMatchState || s->IsMatch());
1980     if (oom)
1981       break;
1982   }
1983 
1984   return static_cast<int>(m.size());
1985 }
1986 
1987 // Build out all states in DFA for kind.  Returns number of states.
BuildEntireDFA(MatchKind kind,const DFAStateCallback & cb)1988 int Prog::BuildEntireDFA(MatchKind kind, const DFAStateCallback& cb) {
1989   return GetDFA(kind)->BuildAllStates(cb);
1990 }
1991 
TEST_dfa_should_bail_when_slow(bool b)1992 void Prog::TEST_dfa_should_bail_when_slow(bool b) {
1993   dfa_should_bail_when_slow = b;
1994 }
1995 
1996 // Computes min and max for matching string.
1997 // Won't return strings bigger than maxlen.
PossibleMatchRange(string * min,string * max,int maxlen)1998 bool DFA::PossibleMatchRange(string* min, string* max, int maxlen) {
1999   if (!ok())
2000     return false;
2001 
2002   // NOTE: if future users of PossibleMatchRange want more precision when
2003   // presented with infinitely repeated elements, consider making this a
2004   // parameter to PossibleMatchRange.
2005   static int kMaxEltRepetitions = 0;
2006 
2007   // Keep track of the number of times we've visited states previously. We only
2008   // revisit a given state if it's part of a repeated group, so if the value
2009   // portion of the map tuple exceeds kMaxEltRepetitions we bail out and set
2010   // |*max| to |PrefixSuccessor(*max)|.
2011   //
2012   // Also note that previously_visited_states[UnseenStatePtr] will, in the STL
2013   // tradition, implicitly insert a '0' value at first use. We take advantage
2014   // of that property below.
2015   std::unordered_map<State*, int> previously_visited_states;
2016 
2017   // Pick out start state for anchored search at beginning of text.
2018   RWLocker l(&cache_mutex_);
2019   SearchParams params(StringPiece(), StringPiece(), &l);
2020   params.anchored = true;
2021   if (!AnalyzeSearch(&params))
2022     return false;
2023   if (params.start == DeadState) {  // No matching strings
2024     *min = "";
2025     *max = "";
2026     return true;
2027   }
2028   if (params.start == FullMatchState)  // Every string matches: no max
2029     return false;
2030 
2031   // The DFA is essentially a big graph rooted at params.start,
2032   // and paths in the graph correspond to accepted strings.
2033   // Each node in the graph has potentially 256+1 arrows
2034   // coming out, one for each byte plus the magic end of
2035   // text character kByteEndText.
2036 
2037   // To find the smallest possible prefix of an accepted
2038   // string, we just walk the graph preferring to follow
2039   // arrows with the lowest bytes possible.  To find the
2040   // largest possible prefix, we follow the largest bytes
2041   // possible.
2042 
2043   // The test for whether there is an arrow from s on byte j is
2044   //    ns = RunStateOnByteUnlocked(s, j);
2045   //    if (ns == NULL)
2046   //      return false;
2047   //    if (ns != DeadState && ns->ninst > 0)
2048   // The RunStateOnByteUnlocked call asks the DFA to build out the graph.
2049   // It returns NULL only if the DFA has run out of memory,
2050   // in which case we can't be sure of anything.
2051   // The second check sees whether there was graph built
2052   // and whether it is interesting graph.  Nodes might have
2053   // ns->ninst == 0 if they exist only to represent the fact
2054   // that a match was found on the previous byte.
2055 
2056   // Build minimum prefix.
2057   State* s = params.start;
2058   min->clear();
2059   MutexLock lock(&mutex_);
2060   for (int i = 0; i < maxlen; i++) {
2061     if (previously_visited_states[s] > kMaxEltRepetitions)
2062       break;
2063     previously_visited_states[s]++;
2064 
2065     // Stop if min is a match.
2066     State* ns = RunStateOnByte(s, kByteEndText);
2067     if (ns == NULL)  // DFA out of memory
2068       return false;
2069     if (ns != DeadState && (ns == FullMatchState || ns->IsMatch()))
2070       break;
2071 
2072     // Try to extend the string with low bytes.
2073     bool extended = false;
2074     for (int j = 0; j < 256; j++) {
2075       ns = RunStateOnByte(s, j);
2076       if (ns == NULL)  // DFA out of memory
2077         return false;
2078       if (ns == FullMatchState ||
2079           (ns > SpecialStateMax && ns->ninst_ > 0)) {
2080         extended = true;
2081         min->append(1, static_cast<char>(j));
2082         s = ns;
2083         break;
2084       }
2085     }
2086     if (!extended)
2087       break;
2088   }
2089 
2090   // Build maximum prefix.
2091   previously_visited_states.clear();
2092   s = params.start;
2093   max->clear();
2094   for (int i = 0; i < maxlen; i++) {
2095     if (previously_visited_states[s] > kMaxEltRepetitions)
2096       break;
2097     previously_visited_states[s] += 1;
2098 
2099     // Try to extend the string with high bytes.
2100     bool extended = false;
2101     for (int j = 255; j >= 0; j--) {
2102       State* ns = RunStateOnByte(s, j);
2103       if (ns == NULL)
2104         return false;
2105       if (ns == FullMatchState ||
2106           (ns > SpecialStateMax && ns->ninst_ > 0)) {
2107         extended = true;
2108         max->append(1, static_cast<char>(j));
2109         s = ns;
2110         break;
2111       }
2112     }
2113     if (!extended) {
2114       // Done, no need for PrefixSuccessor.
2115       return true;
2116     }
2117   }
2118 
2119   // Stopped while still adding to *max - round aaaaaaaaaa... to aaaa...b
2120   PrefixSuccessor(max);
2121 
2122   // If there are no bytes left, we have no way to say "there is no maximum
2123   // string".  We could make the interface more complicated and be able to
2124   // return "there is no maximum but here is a minimum", but that seems like
2125   // overkill -- the most common no-max case is all possible strings, so not
2126   // telling the caller that the empty string is the minimum match isn't a
2127   // great loss.
2128   if (max->empty())
2129     return false;
2130 
2131   return true;
2132 }
2133 
2134 // PossibleMatchRange for a Prog.
PossibleMatchRange(string * min,string * max,int maxlen)2135 bool Prog::PossibleMatchRange(string* min, string* max, int maxlen) {
2136   // Have to use dfa_longest_ to get all strings for full matches.
2137   // For example, (a|aa) never matches aa in first-match mode.
2138   return GetDFA(kLongestMatch)->PossibleMatchRange(min, max, maxlen);
2139 }
2140 
2141 }  // namespace re2
2142