1 #![doc(test(attr(deny(warnings))))]
2 #![warn(missing_docs)]
3 #![cfg_attr(docsrs, feature(doc_cfg))]
4 #![allow(deprecated)]
5
6 //! Making [`Arc`][Arc] itself atomic
7 //!
8 //! The [`ArcSwap`] type is a container for an `Arc` that can be changed atomically. Semantically,
9 //! it is similar to something like `Atomic<Arc<T>>` (if there was such a thing) or
10 //! `RwLock<Arc<T>>` (but without the need for the locking). It is optimized for read-mostly
11 //! scenarios, with consistent performance characteristics.
12 //!
13 //! # Motivation
14 //!
15 //! There are many situations in which one might want to have some data structure that is often
16 //! read and seldom updated. Some examples might be a configuration of a service, routing tables,
17 //! snapshot of some data that is renewed every few minutes, etc.
18 //!
19 //! In all these cases one needs:
20 //! * Being able to read the current value of the data structure, fast, often and concurrently from
21 //! many threads.
22 //! * Using the same version of the data structure over longer period of time ‒ a query should be
23 //! answered by a consistent version of data, a packet should be routed either by an old or by a
24 //! new version of the routing table but not by a combination, etc.
25 //! * Perform an update without disrupting the processing.
26 //!
27 //! The first idea would be to use [`RwLock<T>`][RwLock] and keep a read-lock for the whole time of
28 //! processing. Update would, however, pause all processing until done.
29 //!
30 //! Better option would be to have [`RwLock<Arc<T>>`][RwLock]. Then one would lock, clone the [Arc]
31 //! and unlock. This suffers from CPU-level contention (on the lock and on the reference count of
32 //! the [Arc]) which makes it relatively slow. Depending on the implementation, an update may be
33 //! blocked for arbitrary long time by a steady inflow of readers.
34 //!
35 //! ```rust
36 //! # use std::sync::{Arc, RwLock};
37 //! # use once_cell::sync::Lazy;
38 //! # struct RoutingTable; struct Packet; impl RoutingTable { fn route(&self, _: Packet) {} }
39 //! static ROUTING_TABLE: Lazy<RwLock<Arc<RoutingTable>>> = Lazy::new(|| {
40 //! RwLock::new(Arc::new(RoutingTable))
41 //! });
42 //!
43 //! fn process_packet(packet: Packet) {
44 //! let table = Arc::clone(&ROUTING_TABLE.read().unwrap());
45 //! table.route(packet);
46 //! }
47 //! # fn main() { process_packet(Packet); }
48 //! ```
49 //!
50 //! The [ArcSwap] can be used instead, which solves the above problems and has better performance
51 //! characteristics than the [RwLock], both in contended and non-contended scenarios.
52 //!
53 //! ```rust
54 //! # use arc_swap::ArcSwap;
55 //! # use once_cell::sync::Lazy;
56 //! # struct RoutingTable; struct Packet; impl RoutingTable { fn route(&self, _: Packet) {} }
57 //! static ROUTING_TABLE: Lazy<ArcSwap<RoutingTable>> = Lazy::new(|| {
58 //! ArcSwap::from_pointee(RoutingTable)
59 //! });
60 //!
61 //! fn process_packet(packet: Packet) {
62 //! let table = ROUTING_TABLE.load();
63 //! table.route(packet);
64 //! }
65 //! # fn main() { process_packet(Packet); }
66 //! ```
67 //!
68 //! # Crate contents
69 //!
70 //! At the heart of the crate there are [`ArcSwap`] and [`ArcSwapOption`] types, containers for an
71 //! [`Arc`] and [`Option<Arc>`][Option].
72 //!
73 //! Technically, these are type aliases for partial instantiations of the [`ArcSwapAny`] type. The
74 //! [`ArcSwapAny`] is more flexible and allows tweaking of many things (can store other things than
75 //! [`Arc`]s, can configure the locking [`Strategy`]). For details about the tweaking, see the
76 //! documentation of the [`strategy`] module and the [`RefCnt`] trait.
77 //!
78 //! The [`cache`] module provides means for speeding up read access of the contained data at the
79 //! cost of delayed reclamation.
80 //!
81 //! The [`access`] module can be used to do projections into the contained data to separate parts
82 //! of application from each other (eg. giving a component access to only its own part of
83 //! configuration while still having it reloaded as a whole).
84 //!
85 //! # Before using
86 //!
87 //! The data structure is a bit niche. Before using, please check the
88 //! [limitations and common pitfalls][docs::limitations] and the [performance
89 //! characteristics][docs::performance], including choosing the right [read
90 //! operation][docs::performance#read-operations].
91 //!
92 //! You can also get an inspiration about what's possible in the [common patterns][docs::patterns]
93 //! section.
94 //!
95 //! # Examples
96 //!
97 //! ```rust
98 //! use std::sync::Arc;
99 //!
100 //! use arc_swap::ArcSwap;
101 //! use crossbeam_utils::thread;
102 //!
103 //! fn main() {
104 //! let config = ArcSwap::from(Arc::new(String::default()));
105 //! thread::scope(|scope| {
106 //! scope.spawn(|_| {
107 //! let new_conf = Arc::new("New configuration".to_owned());
108 //! config.store(new_conf);
109 //! });
110 //! for _ in 0..10 {
111 //! scope.spawn(|_| {
112 //! loop {
113 //! let cfg = config.load();
114 //! if !cfg.is_empty() {
115 //! assert_eq!(**cfg, "New configuration");
116 //! return;
117 //! }
118 //! }
119 //! });
120 //! }
121 //! }).unwrap();
122 //! }
123 //! ```
124 //!
125 //! [RwLock]: https://doc.rust-lang.org/std/sync/struct.RwLock.html
126
127 pub mod access;
128 mod as_raw;
129 pub mod cache;
130 mod compile_fail_tests;
131 mod debt;
132 pub mod docs;
133 mod ref_cnt;
134 #[cfg(feature = "serde")]
135 mod serde;
136 pub mod strategy;
137 #[cfg(feature = "weak")]
138 mod weak;
139
140 use std::borrow::Borrow;
141 use std::fmt::{Debug, Display, Formatter, Result as FmtResult};
142 use std::marker::PhantomData;
143 use std::mem;
144 use std::ops::Deref;
145 use std::ptr;
146 use std::sync::atomic::{AtomicPtr, Ordering};
147 use std::sync::Arc;
148
149 use crate::access::{Access, Map};
150 pub use crate::as_raw::AsRaw;
151 pub use crate::cache::Cache;
152 pub use crate::ref_cnt::RefCnt;
153 use crate::strategy::hybrid::{DefaultConfig, HybridStrategy};
154 use crate::strategy::sealed::Protected;
155 use crate::strategy::{CaS, Strategy};
156 pub use crate::strategy::{DefaultStrategy, IndependentStrategy};
157
158 /// A temporary storage of the pointer.
159 ///
160 /// This guard object is returned from most loading methods (with the notable exception of
161 /// [`load_full`](struct.ArcSwapAny.html#method.load_full)). It dereferences to the smart pointer
162 /// loaded, so most operations are to be done using that.
163 pub struct Guard<T: RefCnt, S: Strategy<T> = DefaultStrategy> {
164 inner: S::Protected,
165 }
166
167 impl<T: RefCnt, S: Strategy<T>> Guard<T, S> {
168 /// Converts it into the held value.
169 ///
170 /// This, on occasion, may be a tiny bit faster than cloning the Arc or whatever is being held
171 /// inside.
172 // Associated function on purpose, because of deref
173 #[allow(clippy::wrong_self_convention)]
174 #[inline]
into_inner(lease: Self) -> T175 pub fn into_inner(lease: Self) -> T {
176 lease.inner.into_inner()
177 }
178
179 /// Create a guard for a given value `inner`.
180 ///
181 /// This can be useful on occasion to pass a specific object to code that expects or
182 /// wants to store a Guard.
183 ///
184 /// # Example
185 ///
186 /// ```rust
187 /// # use arc_swap::{ArcSwap, DefaultStrategy, Guard};
188 /// # use std::sync::Arc;
189 /// # let p = ArcSwap::from_pointee(42);
190 /// // Create two guards pointing to the same object
191 /// let g1 = p.load();
192 /// let g2 = Guard::<_, DefaultStrategy>::from_inner(Arc::clone(&*g1));
193 /// # drop(g2);
194 /// ```
from_inner(inner: T) -> Self195 pub fn from_inner(inner: T) -> Self {
196 Guard {
197 inner: S::Protected::from_inner(inner),
198 }
199 }
200 }
201
202 impl<T: RefCnt, S: Strategy<T>> Deref for Guard<T, S> {
203 type Target = T;
204 #[inline]
deref(&self) -> &T205 fn deref(&self) -> &T {
206 self.inner.borrow()
207 }
208 }
209
210 impl<T: RefCnt, S: Strategy<T>> From<T> for Guard<T, S> {
from(inner: T) -> Self211 fn from(inner: T) -> Self {
212 Self::from_inner(inner)
213 }
214 }
215
216 impl<T: Default + RefCnt, S: Strategy<T>> Default for Guard<T, S> {
default() -> Self217 fn default() -> Self {
218 Self::from(T::default())
219 }
220 }
221
222 impl<T: Debug + RefCnt, S: Strategy<T>> Debug for Guard<T, S> {
fmt(&self, formatter: &mut Formatter) -> FmtResult223 fn fmt(&self, formatter: &mut Formatter) -> FmtResult {
224 self.deref().fmt(formatter)
225 }
226 }
227
228 impl<T: Display + RefCnt, S: Strategy<T>> Display for Guard<T, S> {
fmt(&self, formatter: &mut Formatter) -> FmtResult229 fn fmt(&self, formatter: &mut Formatter) -> FmtResult {
230 self.deref().fmt(formatter)
231 }
232 }
233
234 /// Comparison of two pointer-like things.
235 // A and B are likely to *be* references, or thin wrappers around that. Calling that with extra
236 // reference is just annoying.
237 #[allow(clippy::needless_pass_by_value)]
ptr_eq<Base, A, B>(a: A, b: B) -> bool where A: AsRaw<Base>, B: AsRaw<Base>,238 fn ptr_eq<Base, A, B>(a: A, b: B) -> bool
239 where
240 A: AsRaw<Base>,
241 B: AsRaw<Base>,
242 {
243 let a = a.as_raw();
244 let b = b.as_raw();
245 ptr::eq(a, b)
246 }
247
248 /// An atomic storage for a reference counted smart pointer like [`Arc`] or `Option<Arc>`.
249 ///
250 /// This is a storage where a smart pointer may live. It can be read and written atomically from
251 /// several threads, but doesn't act like a pointer itself.
252 ///
253 /// One can be created [`from`] an [`Arc`]. To get the pointer back, use the
254 /// [`load`](#method.load).
255 ///
256 /// # Note
257 ///
258 /// This is the common generic implementation. This allows sharing the same code for storing
259 /// both `Arc` and `Option<Arc>` (and possibly other similar types).
260 ///
261 /// In your code, you most probably want to interact with it through the
262 /// [`ArcSwap`](type.ArcSwap.html) and [`ArcSwapOption`](type.ArcSwapOption.html) aliases. However,
263 /// the methods they share are described here and are applicable to both of them. That's why the
264 /// examples here use `ArcSwap` ‒ but they could as well be written with `ArcSwapOption` or
265 /// `ArcSwapAny`.
266 ///
267 /// # Type parameters
268 ///
269 /// * `T`: The smart pointer to be kept inside. This crate provides implementation for `Arc<_>` and
270 /// `Option<Arc<_>>` (`Rc` too, but that one is not practically useful). But third party could
271 /// provide implementations of the [`RefCnt`] trait and plug in others.
272 /// * `S`: Chooses the [strategy] used to protect the data inside. They come with various
273 /// performance trade offs, the default [`DefaultStrategy`] is good rule of thumb for most use
274 /// cases.
275 ///
276 /// # Examples
277 ///
278 /// ```rust
279 /// # use std::sync::Arc;
280 /// # use arc_swap::ArcSwap;
281 /// let arc = Arc::new(42);
282 /// let arc_swap = ArcSwap::from(arc);
283 /// assert_eq!(42, **arc_swap.load());
284 /// // It can be read multiple times
285 /// assert_eq!(42, **arc_swap.load());
286 ///
287 /// // Put a new one in there
288 /// let new_arc = Arc::new(0);
289 /// assert_eq!(42, *arc_swap.swap(new_arc));
290 /// assert_eq!(0, **arc_swap.load());
291 /// ```
292 ///
293 /// # Known bugs
294 ///
295 /// Currently, things like `ArcSwapAny<Option<Option<Arc<_>>>>` (notice the double Option) don't
296 /// work properly. A proper solution is being looked into
297 /// ([#81](https://github.com/vorner/arc-swap/issues)).
298 ///
299 /// [`Arc`]: https://doc.rust-lang.org/std/sync/struct.Arc.html
300 /// [`from`]: https://doc.rust-lang.org/nightly/std/convert/trait.From.html#tymethod.from
301 /// [`RefCnt`]: trait.RefCnt.html
302 pub struct ArcSwapAny<T: RefCnt, S: Strategy<T> = DefaultStrategy> {
303 // Notes: AtomicPtr needs Sized
304 /// The actual pointer, extracted from the Arc.
305 ptr: AtomicPtr<T::Base>,
306
307 /// We are basically an Arc in disguise. Inherit parameters from Arc by pretending to contain
308 /// it.
309 _phantom_arc: PhantomData<T>,
310
311 /// Strategy to protect the data.
312 strategy: S,
313 }
314
315 impl<T: RefCnt, S: Default + Strategy<T>> From<T> for ArcSwapAny<T, S> {
from(val: T) -> Self316 fn from(val: T) -> Self {
317 Self::with_strategy(val, S::default())
318 }
319 }
320
321 impl<T: RefCnt, S: Strategy<T>> Drop for ArcSwapAny<T, S> {
drop(&mut self)322 fn drop(&mut self) {
323 let ptr = *self.ptr.get_mut();
324 unsafe {
325 // To pay any possible debts
326 self.strategy.wait_for_readers(ptr, &self.ptr);
327 // We are getting rid of the one stored ref count
328 T::dec(ptr);
329 }
330 }
331 }
332
333 impl<T, S: Strategy<T>> Debug for ArcSwapAny<T, S>
334 where
335 T: Debug + RefCnt,
336 {
fmt(&self, formatter: &mut Formatter) -> FmtResult337 fn fmt(&self, formatter: &mut Formatter) -> FmtResult {
338 formatter
339 .debug_tuple("ArcSwapAny")
340 .field(&self.load())
341 .finish()
342 }
343 }
344
345 impl<T, S: Strategy<T>> Display for ArcSwapAny<T, S>
346 where
347 T: Display + RefCnt,
348 {
fmt(&self, formatter: &mut Formatter) -> FmtResult349 fn fmt(&self, formatter: &mut Formatter) -> FmtResult {
350 self.load().fmt(formatter)
351 }
352 }
353
354 impl<T: RefCnt + Default, S: Default + Strategy<T>> Default for ArcSwapAny<T, S> {
default() -> Self355 fn default() -> Self {
356 Self::new(T::default())
357 }
358 }
359
360 impl<T: RefCnt, S: Strategy<T>> ArcSwapAny<T, S> {
361 /// Constructs a new storage.
new(val: T) -> Self where S: Default,362 pub fn new(val: T) -> Self
363 where
364 S: Default,
365 {
366 Self::from(val)
367 }
368
369 /// Constructs a new storage while customizing the protection strategy.
with_strategy(val: T, strategy: S) -> Self370 pub fn with_strategy(val: T, strategy: S) -> Self {
371 // The AtomicPtr requires *mut in its interface. We are more like *const, so we cast it.
372 // However, we always go back to *const right away when we get the pointer on the other
373 // side, so it should be fine.
374 let ptr = T::into_ptr(val);
375 Self {
376 ptr: AtomicPtr::new(ptr),
377 _phantom_arc: PhantomData,
378 strategy,
379 }
380 }
381
382 /// Extracts the value inside.
into_inner(mut self) -> T383 pub fn into_inner(mut self) -> T {
384 let ptr = *self.ptr.get_mut();
385 // To pay all the debts
386 unsafe { self.strategy.wait_for_readers(ptr, &self.ptr) };
387 mem::forget(self);
388 unsafe { T::from_ptr(ptr) }
389 }
390
391 /// Loads the value.
392 ///
393 /// This makes another copy of the held pointer and returns it, atomically (it is
394 /// safe even when other thread stores into the same instance at the same time).
395 ///
396 /// The method is lock-free and wait-free, but usually more expensive than
397 /// [`load`](#method.load).
load_full(&self) -> T398 pub fn load_full(&self) -> T {
399 Guard::into_inner(self.load())
400 }
401
402 /// Provides a temporary borrow of the object inside.
403 ///
404 /// This returns a proxy object allowing access to the thing held inside. However, there's
405 /// only limited amount of possible cheap proxies in existence for each thread ‒ if more are
406 /// created, it falls back to equivalent of [`load_full`](#method.load_full) internally.
407 ///
408 /// This is therefore a good choice to use for eg. searching a data structure or juggling the
409 /// pointers around a bit, but not as something to store in larger amounts. The rule of thumb
410 /// is this is suited for local variables on stack, but not in long-living data structures.
411 ///
412 /// # Consistency
413 ///
414 /// In case multiple related operations are to be done on the loaded value, it is generally
415 /// recommended to call `load` just once and keep the result over calling it multiple times.
416 /// First, keeping it is usually faster. But more importantly, the value can change between the
417 /// calls to load, returning different objects, which could lead to logical inconsistency.
418 /// Keeping the result makes sure the same object is used.
419 ///
420 /// ```rust
421 /// # use arc_swap::ArcSwap;
422 /// struct Point {
423 /// x: usize,
424 /// y: usize,
425 /// }
426 ///
427 /// fn print_broken(p: &ArcSwap<Point>) {
428 /// // This is broken, because the x and y may come from different points,
429 /// // combining into an invalid point that never existed.
430 /// println!("X: {}", p.load().x);
431 /// // If someone changes the content now, between these two loads, we
432 /// // have a problem
433 /// println!("Y: {}", p.load().y);
434 /// }
435 ///
436 /// fn print_correct(p: &ArcSwap<Point>) {
437 /// // Here we take a snapshot of one specific point so both x and y come
438 /// // from the same one.
439 /// let point = p.load();
440 /// println!("X: {}", point.x);
441 /// println!("Y: {}", point.y);
442 /// }
443 /// # let p = ArcSwap::from_pointee(Point { x: 10, y: 20 });
444 /// # print_correct(&p);
445 /// # print_broken(&p);
446 /// ```
447 #[inline]
load(&self) -> Guard<T, S>448 pub fn load(&self) -> Guard<T, S> {
449 let protected = unsafe { self.strategy.load(&self.ptr) };
450 Guard { inner: protected }
451 }
452
453 /// Replaces the value inside this instance.
454 ///
455 /// Further loads will yield the new value. Uses [`swap`](#method.swap) internally.
store(&self, val: T)456 pub fn store(&self, val: T) {
457 drop(self.swap(val));
458 }
459
460 /// Exchanges the value inside this instance.
swap(&self, new: T) -> T461 pub fn swap(&self, new: T) -> T {
462 let new = T::into_ptr(new);
463 // AcqRel needed to publish the target of the new pointer and get the target of the old
464 // one.
465 //
466 // SeqCst to synchronize the time lines with the group counters.
467 let old = self.ptr.swap(new, Ordering::SeqCst);
468 unsafe {
469 self.strategy.wait_for_readers(old, &self.ptr);
470 T::from_ptr(old)
471 }
472 }
473
474 /// Swaps the stored Arc if it equals to `current`.
475 ///
476 /// If the current value of the `ArcSwapAny` equals to `current`, the `new` is stored inside.
477 /// If not, nothing happens.
478 ///
479 /// The previous value (no matter if the swap happened or not) is returned. Therefore, if the
480 /// returned value is equal to `current`, the swap happened. You want to do a pointer-based
481 /// comparison to determine it.
482 ///
483 /// In other words, if the caller „guesses“ the value of current correctly, it acts like
484 /// [`swap`](#method.swap), otherwise it acts like [`load_full`](#method.load_full) (including
485 /// the limitations).
486 ///
487 /// The `current` can be specified as `&Arc`, [`Guard`](struct.Guard.html),
488 /// [`&Guards`](struct.Guards.html) or as a raw pointer (but _not_ owned `Arc`). See the
489 /// [`AsRaw`] trait.
compare_and_swap<C>(&self, current: C, new: T) -> Guard<T, S> where C: AsRaw<T::Base>, S: CaS<T>,490 pub fn compare_and_swap<C>(&self, current: C, new: T) -> Guard<T, S>
491 where
492 C: AsRaw<T::Base>,
493 S: CaS<T>,
494 {
495 let protected = unsafe { self.strategy.compare_and_swap(&self.ptr, current, new) };
496 Guard { inner: protected }
497 }
498
499 /// Read-Copy-Update of the pointer inside.
500 ///
501 /// This is useful in read-heavy situations with several threads that sometimes update the data
502 /// pointed to. The readers can just repeatedly use [`load`](#method.load) without any locking.
503 /// The writer uses this method to perform the update.
504 ///
505 /// In case there's only one thread that does updates or in case the next version is
506 /// independent of the previous one, simple [`swap`](#method.swap) or [`store`](#method.store)
507 /// is enough. Otherwise, it may be needed to retry the update operation if some other thread
508 /// made an update in between. This is what this method does.
509 ///
510 /// # Examples
511 ///
512 /// This will *not* work as expected, because between loading and storing, some other thread
513 /// might have updated the value.
514 ///
515 /// ```rust
516 /// # use std::sync::Arc;
517 /// #
518 /// # use arc_swap::ArcSwap;
519 /// # use crossbeam_utils::thread;
520 /// #
521 /// let cnt = ArcSwap::from_pointee(0);
522 /// thread::scope(|scope| {
523 /// for _ in 0..10 {
524 /// scope.spawn(|_| {
525 /// let inner = cnt.load_full();
526 /// // Another thread might have stored some other number than what we have
527 /// // between the load and store.
528 /// cnt.store(Arc::new(*inner + 1));
529 /// });
530 /// }
531 /// }).unwrap();
532 /// // This will likely fail:
533 /// // assert_eq!(10, *cnt.load_full());
534 /// ```
535 ///
536 /// This will, but it can call the closure multiple times to retry:
537 ///
538 /// ```rust
539 /// # use arc_swap::ArcSwap;
540 /// # use crossbeam_utils::thread;
541 /// #
542 /// let cnt = ArcSwap::from_pointee(0);
543 /// thread::scope(|scope| {
544 /// for _ in 0..10 {
545 /// scope.spawn(|_| cnt.rcu(|inner| **inner + 1));
546 /// }
547 /// }).unwrap();
548 /// assert_eq!(10, *cnt.load_full());
549 /// ```
550 ///
551 /// Due to the retries, you might want to perform all the expensive operations *before* the
552 /// rcu. As an example, if there's a cache of some computations as a map, and the map is cheap
553 /// to clone but the computations are not, you could do something like this:
554 ///
555 /// ```rust
556 /// # use std::collections::HashMap;
557 /// #
558 /// # use arc_swap::ArcSwap;
559 /// # use once_cell::sync::Lazy;
560 /// #
561 /// fn expensive_computation(x: usize) -> usize {
562 /// x * 2 // Let's pretend multiplication is *really expensive expensive*
563 /// }
564 ///
565 /// type Cache = HashMap<usize, usize>;
566 ///
567 /// static CACHE: Lazy<ArcSwap<Cache>> = Lazy::new(|| ArcSwap::default());
568 ///
569 /// fn cached_computation(x: usize) -> usize {
570 /// let cache = CACHE.load();
571 /// if let Some(result) = cache.get(&x) {
572 /// return *result;
573 /// }
574 /// // Not in cache. Compute and store.
575 /// // The expensive computation goes outside, so it is not retried.
576 /// let result = expensive_computation(x);
577 /// CACHE.rcu(|cache| {
578 /// // The cheaper clone of the cache can be retried if need be.
579 /// let mut cache = HashMap::clone(&cache);
580 /// cache.insert(x, result);
581 /// cache
582 /// });
583 /// result
584 /// }
585 ///
586 /// assert_eq!(42, cached_computation(21));
587 /// assert_eq!(42, cached_computation(21));
588 /// ```
589 ///
590 /// # The cost of cloning
591 ///
592 /// Depending on the size of cache above, the cloning might not be as cheap. You can however
593 /// use persistent data structures ‒ each modification creates a new data structure, but it
594 /// shares most of the data with the old one (which is usually accomplished by using `Arc`s
595 /// inside to share the unchanged values). Something like
596 /// [`rpds`](https://crates.io/crates/rpds) or [`im`](https://crates.io/crates/im) might do
597 /// what you need.
rcu<R, F>(&self, mut f: F) -> T where F: FnMut(&T) -> R, R: Into<T>, S: CaS<T>,598 pub fn rcu<R, F>(&self, mut f: F) -> T
599 where
600 F: FnMut(&T) -> R,
601 R: Into<T>,
602 S: CaS<T>,
603 {
604 let mut cur = self.load();
605 loop {
606 let new = f(&cur).into();
607 let prev = self.compare_and_swap(&*cur, new);
608 let swapped = ptr_eq(&*cur, &*prev);
609 if swapped {
610 return Guard::into_inner(prev);
611 } else {
612 cur = prev;
613 }
614 }
615 }
616
617 /// Provides an access to an up to date projection of the carried data.
618 ///
619 /// # Motivation
620 ///
621 /// Sometimes, an application consists of components. Each component has its own configuration
622 /// structure. The whole configuration contains all the smaller config parts.
623 ///
624 /// For the sake of separation and abstraction, it is not desirable to pass the whole
625 /// configuration to each of the components. This allows the component to take only access to
626 /// its own part.
627 ///
628 /// # Lifetimes & flexibility
629 ///
630 /// This method is not the most flexible way, as the returned type borrows into the `ArcSwap`.
631 /// To provide access into eg. `Arc<ArcSwap<T>>`, you can create the [`Map`] type directly. See
632 /// the [`access`] module.
633 ///
634 /// # Performance
635 ///
636 /// As the provided function is called on each load from the shared storage, it should
637 /// generally be cheap. It is expected this will usually be just referencing of a field inside
638 /// the structure.
639 ///
640 /// # Examples
641 ///
642 /// ```rust
643 /// use std::sync::Arc;
644 ///
645 /// use arc_swap::ArcSwap;
646 /// use arc_swap::access::Access;
647 ///
648 /// struct Cfg {
649 /// value: usize,
650 /// }
651 ///
652 /// fn print_many_times<V: Access<usize>>(value: V) {
653 /// for _ in 0..25 {
654 /// let value = value.load();
655 /// println!("{}", *value);
656 /// }
657 /// }
658 ///
659 /// let shared = ArcSwap::from_pointee(Cfg { value: 0 });
660 /// let mapped = shared.map(|c: &Cfg| &c.value);
661 /// crossbeam_utils::thread::scope(|s| {
662 /// // Will print some zeroes and some twos
663 /// s.spawn(|_| print_many_times(mapped));
664 /// s.spawn(|_| shared.store(Arc::new(Cfg { value: 2 })));
665 /// }).expect("Something panicked in a thread");
666 /// ```
map<I, R, F>(&self, f: F) -> Map<&Self, I, F> where F: Fn(&I) -> &R + Clone, Self: Access<I>,667 pub fn map<I, R, F>(&self, f: F) -> Map<&Self, I, F>
668 where
669 F: Fn(&I) -> &R + Clone,
670 Self: Access<I>,
671 {
672 Map::new(self, f)
673 }
674 }
675
676 /// An atomic storage for `Arc`.
677 ///
678 /// This is a type alias only. Most of its methods are described on
679 /// [`ArcSwapAny`](struct.ArcSwapAny.html).
680 pub type ArcSwap<T> = ArcSwapAny<Arc<T>>;
681
682 impl<T, S: Strategy<Arc<T>>> ArcSwapAny<Arc<T>, S> {
683 /// A convenience constructor directly from the pointed-to value.
684 ///
685 /// Direct equivalent for `ArcSwap::new(Arc::new(val))`.
from_pointee(val: T) -> Self where S: Default,686 pub fn from_pointee(val: T) -> Self
687 where
688 S: Default,
689 {
690 Self::from(Arc::new(val))
691 }
692 }
693
694 /// An atomic storage for `Option<Arc>`.
695 ///
696 /// This is very similar to [`ArcSwap`](type.ArcSwap.html), but allows storing NULL values, which
697 /// is useful in some situations.
698 ///
699 /// This is a type alias only. Most of the methods are described on
700 /// [`ArcSwapAny`](struct.ArcSwapAny.html). Even though the examples there often use `ArcSwap`,
701 /// they are applicable to `ArcSwapOption` with appropriate changes.
702 ///
703 /// # Examples
704 ///
705 /// ```
706 /// use std::sync::Arc;
707 /// use arc_swap::ArcSwapOption;
708 ///
709 /// let shared = ArcSwapOption::from(None);
710 /// assert!(shared.load_full().is_none());
711 /// assert!(shared.swap(Some(Arc::new(42))).is_none());
712 /// assert_eq!(42, **shared.load_full().as_ref().unwrap());
713 /// ```
714 pub type ArcSwapOption<T> = ArcSwapAny<Option<Arc<T>>>;
715
716 impl<T, S: Strategy<Option<Arc<T>>>> ArcSwapAny<Option<Arc<T>>, S> {
717 /// A convenience constructor directly from a pointed-to value.
718 ///
719 /// This just allocates the `Arc` under the hood.
720 ///
721 /// # Examples
722 ///
723 /// ```rust
724 /// use arc_swap::ArcSwapOption;
725 ///
726 /// let empty: ArcSwapOption<usize> = ArcSwapOption::from_pointee(None);
727 /// assert!(empty.load().is_none());
728 /// let non_empty: ArcSwapOption<usize> = ArcSwapOption::from_pointee(42);
729 /// assert_eq!(42, **non_empty.load().as_ref().unwrap());
730 /// ```
from_pointee<V: Into<Option<T>>>(val: V) -> Self where S: Default,731 pub fn from_pointee<V: Into<Option<T>>>(val: V) -> Self
732 where
733 S: Default,
734 {
735 Self::new(val.into().map(Arc::new))
736 }
737
738 /// A convenience constructor for an empty value.
739 ///
740 /// This is equivalent to `ArcSwapOption::new(None)`.
empty() -> Self where S: Default,741 pub fn empty() -> Self
742 where
743 S: Default,
744 {
745 Self::new(None)
746 }
747 }
748
749 impl<T> ArcSwapOption<T> {
750 /// A const-fn equivalent of [empty].
751 ///
752 /// Just like [empty], this creates an `None`-holding `ArcSwapOption`. The [empty] is, however,
753 /// more general ‒ this is available only for the default strategy, while [empty] is for any
754 /// [Default]-constructible strategy (current or future one).
755 ///
756 /// [empty]: ArcSwapAny::empty
757 ///
758 /// # Examples
759 ///
760 /// ```rust
761 /// # use std::sync::Arc;
762 /// # use arc_swap::ArcSwapOption;
763 /// static GLOBAL_DATA: ArcSwapOption<usize> = ArcSwapOption::const_empty();
764 ///
765 /// assert!(GLOBAL_DATA.load().is_none());
766 /// GLOBAL_DATA.store(Some(Arc::new(42)));
767 /// assert_eq!(42, **GLOBAL_DATA.load().as_ref().unwrap());
768 /// ```
const_empty() -> Self769 pub const fn const_empty() -> Self {
770 Self {
771 ptr: AtomicPtr::new(ptr::null_mut()),
772 _phantom_arc: PhantomData,
773 strategy: HybridStrategy {
774 _config: DefaultConfig,
775 },
776 }
777 }
778 }
779
780 /// An atomic storage that doesn't share the internal generation locks with others.
781 ///
782 /// This makes it bigger and it also might suffer contention (on the HW level) if used from many
783 /// threads at once. On the other hand, it can't block writes in other instances.
784 ///
785 /// See the [`IndependentStrategy`] for further details.
786 // Being phased out. Will deprecate once we verify in production that the new strategy works fine.
787 #[doc(hidden)]
788 pub type IndependentArcSwap<T> = ArcSwapAny<Arc<T>, IndependentStrategy>;
789
790 /// Arc swap for the [Weak] pointer.
791 ///
792 /// This is similar to [ArcSwap], but it doesn't store [Arc], it stores [Weak]. It doesn't keep the
793 /// data alive when pointed to.
794 ///
795 /// This is a type alias only. Most of the methods are described on the
796 /// [`ArcSwapAny`](struct.ArcSwapAny.html).
797 ///
798 /// Needs the `weak` feature turned on.
799 ///
800 /// [Weak]: std::sync::Weak
801 #[cfg(feature = "weak")]
802 pub type ArcSwapWeak<T> = ArcSwapAny<std::sync::Weak<T>>;
803
804 macro_rules! t {
805 ($name: ident, $strategy: ty) => {
806 #[cfg(test)]
807 mod $name {
808 use std::panic;
809 use std::sync::atomic::{self, AtomicUsize};
810
811 use adaptive_barrier::{Barrier, PanicMode};
812 use crossbeam_utils::thread;
813
814 use super::*;
815
816 const ITERATIONS: usize = 10;
817
818 #[allow(deprecated)] // We use "deprecated" testing strategies in here.
819 type As<T> = ArcSwapAny<Arc<T>, $strategy>;
820 #[allow(deprecated)] // We use "deprecated" testing strategies in here.
821 type Aso<T> = ArcSwapAny<Option<Arc<T>>, $strategy>;
822
823 /// Similar to the one in doc tests of the lib, but more times and more intensive (we
824 /// want to torture it a bit).
825 #[test]
826 #[cfg_attr(miri, ignore)] // Takes like 1 or 2 infinities to run under miri
827 fn publish() {
828 const READERS: usize = 2;
829 for _ in 0..ITERATIONS {
830 let config = As::<String>::default();
831 let ended = AtomicUsize::new(0);
832 thread::scope(|scope| {
833 for _ in 0..READERS {
834 scope.spawn(|_| loop {
835 let cfg = config.load_full();
836 if !cfg.is_empty() {
837 assert_eq!(*cfg, "New configuration");
838 ended.fetch_add(1, Ordering::Relaxed);
839 return;
840 }
841 atomic::spin_loop_hint();
842 });
843 }
844 scope.spawn(|_| {
845 let new_conf = Arc::new("New configuration".to_owned());
846 config.store(new_conf);
847 });
848 })
849 .unwrap();
850 assert_eq!(READERS, ended.load(Ordering::Relaxed));
851 let arc = config.load_full();
852 assert_eq!(2, Arc::strong_count(&arc));
853 assert_eq!(0, Arc::weak_count(&arc));
854 }
855 }
856
857 /// Similar to the doc tests of ArcSwap, but happens more times.
858 #[test]
859 fn swap_load() {
860 for _ in 0..100 {
861 let arc = Arc::new(42);
862 let arc_swap = As::from(Arc::clone(&arc));
863 assert_eq!(42, **arc_swap.load());
864 // It can be read multiple times
865 assert_eq!(42, **arc_swap.load());
866
867 // Put a new one in there
868 let new_arc = Arc::new(0);
869 assert_eq!(42, *arc_swap.swap(Arc::clone(&new_arc)));
870 assert_eq!(0, **arc_swap.load());
871 // One loaded here, one in the arc_swap, one in new_arc
872 let loaded = arc_swap.load_full();
873 assert_eq!(3, Arc::strong_count(&loaded));
874 assert_eq!(0, Arc::weak_count(&loaded));
875 // The original got released from the arc_swap
876 assert_eq!(1, Arc::strong_count(&arc));
877 assert_eq!(0, Arc::weak_count(&arc));
878 }
879 }
880
881 /// Two different writers publish two series of values. The readers check that it is
882 /// always increasing in each serie.
883 ///
884 /// For performance, we try to reuse the threads here.
885 #[test]
886 fn multi_writers() {
887 let first_value = Arc::new((0, 0));
888 let shared = As::from(Arc::clone(&first_value));
889 const WRITER_CNT: usize = 2;
890 const READER_CNT: usize = 3;
891 #[cfg(miri)]
892 const ITERATIONS: usize = 5;
893 #[cfg(not(miri))]
894 const ITERATIONS: usize = 100;
895 const SEQ: usize = 50;
896 let barrier = Barrier::new(PanicMode::Poison);
897 thread::scope(|scope| {
898 for w in 0..WRITER_CNT {
899 // We need to move w into the closure. But we want to just reference the
900 // other things.
901 let mut barrier = barrier.clone();
902 let shared = &shared;
903 let first_value = &first_value;
904 scope.spawn(move |_| {
905 for _ in 0..ITERATIONS {
906 barrier.wait();
907 shared.store(Arc::clone(&first_value));
908 barrier.wait();
909 for i in 0..SEQ {
910 shared.store(Arc::new((w, i + 1)));
911 }
912 }
913 });
914 }
915 for _ in 0..READER_CNT {
916 let mut barrier = barrier.clone();
917 let shared = &shared;
918 let first_value = &first_value;
919 scope.spawn(move |_| {
920 for _ in 0..ITERATIONS {
921 barrier.wait();
922 barrier.wait();
923 let mut previous = [0; WRITER_CNT];
924 let mut last = Arc::clone(&first_value);
925 loop {
926 let cur = shared.load();
927 if Arc::ptr_eq(&last, &cur) {
928 atomic::spin_loop_hint();
929 continue;
930 }
931 let (w, s) = **cur;
932 assert!(previous[w] < s, "{:?} vs {:?}", previous, cur);
933 previous[w] = s;
934 last = Guard::into_inner(cur);
935 if s == SEQ {
936 break;
937 }
938 }
939 }
940 });
941 }
942
943 drop(barrier);
944 })
945 .unwrap();
946 }
947
948 #[test]
949 fn load_null() {
950 let shared = Aso::<usize>::default();
951 let guard = shared.load();
952 assert!(guard.is_none());
953 shared.store(Some(Arc::new(42)));
954 assert_eq!(42, **shared.load().as_ref().unwrap());
955 }
956
957 #[test]
958 fn from_into() {
959 let a = Arc::new(42);
960 let shared = As::new(a);
961 let guard = shared.load();
962 let a = shared.into_inner();
963 assert_eq!(42, *a);
964 assert_eq!(2, Arc::strong_count(&a));
965 drop(guard);
966 assert_eq!(1, Arc::strong_count(&a));
967 }
968
969 // Note on the Relaxed order here. This should be enough, because there's that
970 // barrier.wait in between that should do the synchronization of happens-before for us.
971 // And using SeqCst would probably not help either, as there's nothing else with SeqCst
972 // here in this test to relate it to.
973 #[derive(Default)]
974 struct ReportDrop(Arc<AtomicUsize>);
975 impl Drop for ReportDrop {
976 fn drop(&mut self) {
977 self.0.fetch_add(1, Ordering::Relaxed);
978 }
979 }
980
981 /// Interaction of two threads about a guard and dropping it.
982 ///
983 /// We make sure everything works in timely manner (eg. dropping of stuff) even if multiple
984 /// threads interact.
985 ///
986 /// The idea is:
987 /// * Thread 1 loads a value.
988 /// * Thread 2 replaces the shared value. The original value is not destroyed.
989 /// * Thread 1 drops the guard. The value is destroyed and this is observable in both threads.
990 #[test]
991 fn guard_drop_in_thread() {
992 for _ in 0..ITERATIONS {
993 let cnt = Arc::new(AtomicUsize::new(0));
994
995 let shared = As::from_pointee(ReportDrop(cnt.clone()));
996 assert_eq!(cnt.load(Ordering::Relaxed), 0, "Dropped prematurely");
997 // We need the threads to wait for each other at places.
998 let sync = Barrier::new(PanicMode::Poison);
999
1000 thread::scope(|scope| {
1001 scope.spawn({
1002 let sync = sync.clone();
1003 |_| {
1004 let mut sync = sync; // Move into the closure
1005 let guard = shared.load();
1006 sync.wait();
1007 // Thread 2 replaces the shared value. We wait for it to confirm.
1008 sync.wait();
1009 drop(guard);
1010 assert_eq!(cnt.load(Ordering::Relaxed), 1, "Value not dropped");
1011 // Let thread 2 know we already dropped it.
1012 sync.wait();
1013 }
1014 });
1015
1016 scope.spawn(|_| {
1017 let mut sync = sync;
1018 // Thread 1 loads, we wait for that
1019 sync.wait();
1020 shared.store(Default::default());
1021 assert_eq!(
1022 cnt.load(Ordering::Relaxed),
1023 0,
1024 "Dropped while still in use"
1025 );
1026 // Let thread 2 know we replaced it
1027 sync.wait();
1028 // Thread 1 drops its guard. We wait for it to confirm.
1029 sync.wait();
1030 assert_eq!(cnt.load(Ordering::Relaxed), 1, "Value not dropped");
1031 });
1032 })
1033 .unwrap();
1034 }
1035 }
1036
1037 /// Check dropping a lease in a different thread than it was created doesn't cause any
1038 /// problems.
1039 #[test]
1040 fn guard_drop_in_another_thread() {
1041 for _ in 0..ITERATIONS {
1042 let cnt = Arc::new(AtomicUsize::new(0));
1043 let shared = As::from_pointee(ReportDrop(cnt.clone()));
1044 assert_eq!(cnt.load(Ordering::Relaxed), 0, "Dropped prematurely");
1045 let guard = shared.load();
1046
1047 drop(shared);
1048 assert_eq!(cnt.load(Ordering::Relaxed), 0, "Dropped prematurely");
1049
1050 thread::scope(|scope| {
1051 scope.spawn(|_| {
1052 drop(guard);
1053 });
1054 })
1055 .unwrap();
1056
1057 assert_eq!(cnt.load(Ordering::Relaxed), 1, "Not dropped");
1058 }
1059 }
1060
1061 #[test]
1062 fn load_option() {
1063 let shared = Aso::from_pointee(42);
1064 // The type here is not needed in real code, it's just addition test the type matches.
1065 let opt: Option<_> = Guard::into_inner(shared.load());
1066 assert_eq!(42, *opt.unwrap());
1067
1068 shared.store(None);
1069 assert!(shared.load().is_none());
1070 }
1071
1072 // Check stuff can get formatted
1073 #[test]
1074 fn debug_impl() {
1075 let shared = As::from_pointee(42);
1076 assert_eq!("ArcSwapAny(42)", &format!("{:?}", shared));
1077 assert_eq!("42", &format!("{:?}", shared.load()));
1078 }
1079
1080 #[test]
1081 fn display_impl() {
1082 let shared = As::from_pointee(42);
1083 assert_eq!("42", &format!("{}", shared));
1084 assert_eq!("42", &format!("{}", shared.load()));
1085 }
1086
1087 // The following "tests" are not run, only compiled. They check that things that should be
1088 // Send/Sync actually are.
1089 fn _check_stuff_is_send_sync() {
1090 let shared = As::from_pointee(42);
1091 let moved = As::from_pointee(42);
1092 let shared_ref = &shared;
1093 let lease = shared.load();
1094 let lease_ref = &lease;
1095 let lease = shared.load();
1096 thread::scope(|s| {
1097 s.spawn(move |_| {
1098 let _ = lease;
1099 let _ = lease_ref;
1100 let _ = shared_ref;
1101 let _ = moved;
1102 });
1103 })
1104 .unwrap();
1105 }
1106
1107 /// We have a callback in RCU. Check what happens if we access the value from within.
1108 #[test]
1109 fn recursive() {
1110 let shared = ArcSwap::from(Arc::new(0));
1111
1112 shared.rcu(|i| {
1113 if **i < 10 {
1114 shared.rcu(|i| **i + 1);
1115 }
1116 **i
1117 });
1118 assert_eq!(10, **shared.load());
1119 assert_eq!(2, Arc::strong_count(&shared.load_full()));
1120 }
1121
1122 /// A panic from within the rcu callback should not change anything.
1123 #[test]
1124 fn rcu_panic() {
1125 let shared = ArcSwap::from(Arc::new(0));
1126 assert!(panic::catch_unwind(|| shared.rcu(|_| -> usize { panic!() })).is_err());
1127 assert_eq!(1, Arc::strong_count(&shared.swap(Arc::new(42))));
1128 }
1129
1130 /// Handling null/none values
1131 #[test]
1132 fn nulls() {
1133 let shared = ArcSwapOption::from(Some(Arc::new(0)));
1134 let orig = shared.swap(None);
1135 assert_eq!(1, Arc::strong_count(&orig.unwrap()));
1136 let null = shared.load();
1137 assert!(null.is_none());
1138 let a = Arc::new(42);
1139 let orig = shared.compare_and_swap(ptr::null(), Some(Arc::clone(&a)));
1140 assert!(orig.is_none());
1141 assert_eq!(2, Arc::strong_count(&a));
1142 let orig = Guard::into_inner(shared.compare_and_swap(&None::<Arc<_>>, None));
1143 assert_eq!(3, Arc::strong_count(&a));
1144 assert!(ptr_eq(&a, &orig));
1145 }
1146
1147 #[test]
1148 /// Multiple RCUs interacting.
1149 fn rcu() {
1150 const ITERATIONS: usize = 50;
1151 const THREADS: usize = 10;
1152 let shared = ArcSwap::from(Arc::new(0));
1153 thread::scope(|scope| {
1154 for _ in 0..THREADS {
1155 scope.spawn(|_| {
1156 for _ in 0..ITERATIONS {
1157 shared.rcu(|old| **old + 1);
1158 }
1159 });
1160 }
1161 })
1162 .unwrap();
1163 assert_eq!(THREADS * ITERATIONS, **shared.load());
1164 }
1165
1166 #[test]
1167 /// Make sure the reference count and compare_and_swap works as expected.
1168 fn cas_ref_cnt() {
1169 #[cfg(miri)]
1170 const ITERATIONS: usize = 10;
1171 #[cfg(not(miri))]
1172 const ITERATIONS: usize = 50;
1173 let shared = ArcSwap::from(Arc::new(0));
1174 for i in 0..ITERATIONS {
1175 let orig = shared.load_full();
1176 assert_eq!(i, *orig);
1177 if i % 2 == 1 {
1178 // One for orig, one for shared
1179 assert_eq!(2, Arc::strong_count(&orig));
1180 }
1181 let n1 = Arc::new(i + 1);
1182 // Fill up the slots sometimes
1183 let fillup = || {
1184 if i % 2 == 0 {
1185 Some((0..ITERATIONS).map(|_| shared.load()).collect::<Vec<_>>())
1186 } else {
1187 None
1188 }
1189 };
1190 let guards = fillup();
1191 // Success
1192 let prev = shared.compare_and_swap(&orig, Arc::clone(&n1));
1193 assert!(ptr_eq(&orig, &prev));
1194 drop(guards);
1195 // One for orig, one for prev
1196 assert_eq!(2, Arc::strong_count(&orig));
1197 // One for n1, one for shared
1198 assert_eq!(2, Arc::strong_count(&n1));
1199 assert_eq!(i + 1, **shared.load());
1200 let n2 = Arc::new(i);
1201 drop(prev);
1202 let guards = fillup();
1203 // Failure
1204 let prev = Guard::into_inner(shared.compare_and_swap(&orig, Arc::clone(&n2)));
1205 drop(guards);
1206 assert!(ptr_eq(&n1, &prev));
1207 // One for orig
1208 assert_eq!(1, Arc::strong_count(&orig));
1209 // One for n1, one for shared, one for prev
1210 assert_eq!(3, Arc::strong_count(&n1));
1211 // n2 didn't get increased
1212 assert_eq!(1, Arc::strong_count(&n2));
1213 assert_eq!(i + 1, **shared.load());
1214 }
1215
1216 let a = shared.load_full();
1217 // One inside shared, one for a
1218 assert_eq!(2, Arc::strong_count(&a));
1219 drop(shared);
1220 // Only a now
1221 assert_eq!(1, Arc::strong_count(&a));
1222 }
1223 }
1224 };
1225 }
1226
1227 t!(tests_default, DefaultStrategy);
1228 #[cfg(all(feature = "internal-test-strategies", test))]
1229 #[allow(deprecated)]
1230 mod internal_strategies {
1231 use super::*;
1232 t!(
1233 tests_full_slots,
1234 crate::strategy::test_strategies::FillFastSlots
1235 );
1236 }
1237
1238 /// These tests assume details about the used strategy.
1239 #[cfg(test)]
1240 mod tests {
1241 use super::*;
1242
1243 /// Accessing the value inside ArcSwap with Guards (and checks for the reference
1244 /// counts).
1245 #[test]
load_cnt()1246 fn load_cnt() {
1247 let a = Arc::new(0);
1248 let shared = ArcSwap::from(Arc::clone(&a));
1249 // One in shared, one in a
1250 assert_eq!(2, Arc::strong_count(&a));
1251 let guard = shared.load();
1252 assert_eq!(0, **guard);
1253 // The guard doesn't have its own ref count now
1254 assert_eq!(2, Arc::strong_count(&a));
1255 let guard_2 = shared.load();
1256 // Unlike with guard, this does not deadlock
1257 shared.store(Arc::new(1));
1258 // But now, each guard got a full Arc inside it
1259 assert_eq!(3, Arc::strong_count(&a));
1260 // And when we get rid of them, they disappear
1261 drop(guard_2);
1262 assert_eq!(2, Arc::strong_count(&a));
1263 let _b = Arc::clone(&guard);
1264 assert_eq!(3, Arc::strong_count(&a));
1265 // We can drop the guard it came from
1266 drop(guard);
1267 assert_eq!(2, Arc::strong_count(&a));
1268 let guard = shared.load();
1269 assert_eq!(1, **guard);
1270 drop(shared);
1271 // We can still use the guard after the shared disappears
1272 assert_eq!(1, **guard);
1273 let ptr = Arc::clone(&guard);
1274 // One in shared, one in guard
1275 assert_eq!(2, Arc::strong_count(&ptr));
1276 drop(guard);
1277 assert_eq!(1, Arc::strong_count(&ptr));
1278 }
1279
1280 /// There can be only limited amount of leases on one thread. Following ones are
1281 /// created, but contain full Arcs.
1282 #[test]
lease_overflow()1283 fn lease_overflow() {
1284 #[cfg(miri)]
1285 const GUARD_COUNT: usize = 100;
1286 #[cfg(not(miri))]
1287 const GUARD_COUNT: usize = 1000;
1288 let a = Arc::new(0);
1289 let shared = ArcSwap::from(Arc::clone(&a));
1290 assert_eq!(2, Arc::strong_count(&a));
1291 let mut guards = (0..GUARD_COUNT).map(|_| shared.load()).collect::<Vec<_>>();
1292 let count = Arc::strong_count(&a);
1293 assert!(count > 2);
1294 let guard = shared.load();
1295 assert_eq!(count + 1, Arc::strong_count(&a));
1296 drop(guard);
1297 assert_eq!(count, Arc::strong_count(&a));
1298 // When we delete the first one, it didn't have an Arc in it, so the ref count
1299 // doesn't drop
1300 guards.swap_remove(0);
1301 assert_eq!(count, Arc::strong_count(&a));
1302 // But new one reuses now vacant the slot and doesn't create a new Arc
1303 let _guard = shared.load();
1304 assert_eq!(count, Arc::strong_count(&a));
1305 }
1306 }
1307