1 #[cfg(target_arch = "x86")]
2 use core::arch::x86 as arch;
3 #[cfg(target_arch = "x86_64")]
4 use core::arch::x86_64 as arch;
5 
6 #[derive(Clone)]
7 pub struct State {
8     state: u32,
9 }
10 
11 impl State {
12     #[cfg(not(feature = "std"))]
new(state: u32) -> Option<Self>13     pub fn new(state: u32) -> Option<Self> {
14         if cfg!(target_feature = "pclmulqdq")
15             && cfg!(target_feature = "sse2")
16             && cfg!(target_feature = "sse4.1")
17         {
18             // SAFETY: The conditions above ensure that all
19             //         required instructions are supported by the CPU.
20             Some(Self { state })
21         } else {
22             None
23         }
24     }
25 
26     #[cfg(feature = "std")]
new(state: u32) -> Option<Self>27     pub fn new(state: u32) -> Option<Self> {
28         if is_x86_feature_detected!("pclmulqdq")
29             && is_x86_feature_detected!("sse2")
30             && is_x86_feature_detected!("sse4.1")
31         {
32             // SAFETY: The conditions above ensure that all
33             //         required instructions are supported by the CPU.
34             Some(Self { state })
35         } else {
36             None
37         }
38     }
39 
update(&mut self, buf: &[u8])40     pub fn update(&mut self, buf: &[u8]) {
41         // SAFETY: The `State::new` constructor ensures that all
42         //         required instructions are supported by the CPU.
43         self.state = unsafe { calculate(self.state, buf) }
44     }
45 
finalize(self) -> u3246     pub fn finalize(self) -> u32 {
47         self.state
48     }
49 
reset(&mut self)50     pub fn reset(&mut self) {
51         self.state = 0;
52     }
53 
combine(&mut self, other: u32, amount: u64)54     pub fn combine(&mut self, other: u32, amount: u64) {
55         self.state = ::combine::combine(self.state, other, amount);
56     }
57 }
58 
59 const K1: i64 = 0x154442bd4;
60 const K2: i64 = 0x1c6e41596;
61 const K3: i64 = 0x1751997d0;
62 const K4: i64 = 0x0ccaa009e;
63 const K5: i64 = 0x163cd6124;
64 
65 const P_X: i64 = 0x1DB710641;
66 const U_PRIME: i64 = 0x1F7011641;
67 
68 #[cfg(feature = "std")]
debug(s: &str, a: arch::__m128i) -> arch::__m128i69 unsafe fn debug(s: &str, a: arch::__m128i) -> arch::__m128i {
70     if false {
71         union A {
72             a: arch::__m128i,
73             b: [u8; 16],
74         }
75         let x = A { a }.b;
76         print!(" {:20} | ", s);
77         for x in x.iter() {
78             print!("{:02x} ", x);
79         }
80         println!();
81     }
82     return a;
83 }
84 
85 #[cfg(not(feature = "std"))]
debug(_s: &str, a: arch::__m128i) -> arch::__m128i86 unsafe fn debug(_s: &str, a: arch::__m128i) -> arch::__m128i {
87     a
88 }
89 
90 #[target_feature(enable = "pclmulqdq", enable = "sse2", enable = "sse4.1")]
calculate(crc: u32, mut data: &[u8]) -> u3291 unsafe fn calculate(crc: u32, mut data: &[u8]) -> u32 {
92     // In theory we can accelerate smaller chunks too, but for now just rely on
93     // the fallback implementation as it's too much hassle and doesn't seem too
94     // beneficial.
95     if data.len() < 128 {
96         return ::baseline::update_fast_16(crc, data);
97     }
98 
99     // Step 1: fold by 4 loop
100     let mut x3 = get(&mut data);
101     let mut x2 = get(&mut data);
102     let mut x1 = get(&mut data);
103     let mut x0 = get(&mut data);
104 
105     // fold in our initial value, part of the incremental crc checksum
106     x3 = arch::_mm_xor_si128(x3, arch::_mm_cvtsi32_si128(!crc as i32));
107 
108     let k1k2 = arch::_mm_set_epi64x(K2, K1);
109     while data.len() >= 64 {
110         x3 = reduce128(x3, get(&mut data), k1k2);
111         x2 = reduce128(x2, get(&mut data), k1k2);
112         x1 = reduce128(x1, get(&mut data), k1k2);
113         x0 = reduce128(x0, get(&mut data), k1k2);
114     }
115 
116     let k3k4 = arch::_mm_set_epi64x(K4, K3);
117     let mut x = reduce128(x3, x2, k3k4);
118     x = reduce128(x, x1, k3k4);
119     x = reduce128(x, x0, k3k4);
120 
121     // Step 2: fold by 1 loop
122     while data.len() >= 16 {
123         x = reduce128(x, get(&mut data), k3k4);
124     }
125 
126     debug("128 > 64 init", x);
127 
128     // Perform step 3, reduction from 128 bits to 64 bits. This is
129     // significantly different from the paper and basically doesn't follow it
130     // at all. It's not really clear why, but implementations of this algorithm
131     // in Chrome/Linux diverge in the same way. It is beyond me why this is
132     // different than the paper, maybe the paper has like errata or something?
133     // Unclear.
134     //
135     // It's also not clear to me what's actually happening here and/or why, but
136     // algebraically what's happening is:
137     //
138     // x = (x[0:63] • K4) ^ x[64:127]           // 96 bit result
139     // x = ((x[0:31] as u64) • K5) ^ x[32:95]   // 64 bit result
140     //
141     // It's... not clear to me what's going on here. The paper itself is pretty
142     // vague on this part but definitely uses different constants at least.
143     // It's not clear to me, reading the paper, where the xor operations are
144     // happening or why things are shifting around. This implementation...
145     // appears to work though!
146     let x = arch::_mm_xor_si128(
147         arch::_mm_clmulepi64_si128(x, k3k4, 0x10),
148         arch::_mm_srli_si128(x, 8),
149     );
150     let x = arch::_mm_xor_si128(
151         arch::_mm_clmulepi64_si128(
152             arch::_mm_and_si128(x, arch::_mm_set_epi32(0, 0, 0, !0)),
153             arch::_mm_set_epi64x(0, K5),
154             0x00,
155         ),
156         arch::_mm_srli_si128(x, 4),
157     );
158     debug("128 > 64 xx", x);
159 
160     // Perform a Barrett reduction from our now 64 bits to 32 bits. The
161     // algorithm for this is described at the end of the paper, and note that
162     // this also implements the "bit reflected input" variant.
163     let pu = arch::_mm_set_epi64x(U_PRIME, P_X);
164 
165     // T1(x) = ⌊(R(x) % x^32)⌋ • μ
166     let t1 = arch::_mm_clmulepi64_si128(
167         arch::_mm_and_si128(x, arch::_mm_set_epi32(0, 0, 0, !0)),
168         pu,
169         0x10,
170     );
171     // T2(x) = ⌊(T1(x) % x^32)⌋ • P(x)
172     let t2 = arch::_mm_clmulepi64_si128(
173         arch::_mm_and_si128(t1, arch::_mm_set_epi32(0, 0, 0, !0)),
174         pu,
175         0x00,
176     );
177     // We're doing the bit-reflected variant, so get the upper 32-bits of the
178     // 64-bit result instead of the lower 32-bits.
179     //
180     // C(x) = R(x) ^ T2(x) / x^32
181     let c = arch::_mm_extract_epi32(arch::_mm_xor_si128(x, t2), 1) as u32;
182 
183     if !data.is_empty() {
184         ::baseline::update_fast_16(!c, data)
185     } else {
186         !c
187     }
188 }
189 
reduce128(a: arch::__m128i, b: arch::__m128i, keys: arch::__m128i) -> arch::__m128i190 unsafe fn reduce128(a: arch::__m128i, b: arch::__m128i, keys: arch::__m128i) -> arch::__m128i {
191     let t1 = arch::_mm_clmulepi64_si128(a, keys, 0x00);
192     let t2 = arch::_mm_clmulepi64_si128(a, keys, 0x11);
193     arch::_mm_xor_si128(arch::_mm_xor_si128(b, t1), t2)
194 }
195 
get(a: &mut &[u8]) -> arch::__m128i196 unsafe fn get(a: &mut &[u8]) -> arch::__m128i {
197     debug_assert!(a.len() >= 16);
198     let r = arch::_mm_loadu_si128(a.as_ptr() as *const arch::__m128i);
199     *a = &a[16..];
200     return r;
201 }
202 
203 #[cfg(test)]
204 mod test {
205     quickcheck! {
206         fn check_against_baseline(init: u32, chunks: Vec<(Vec<u8>, usize)>) -> bool {
207             let mut baseline = super::super::super::baseline::State::new(init);
208             let mut pclmulqdq = super::State::new(init).expect("not supported");
209             for (chunk, mut offset) in chunks {
210                 // simulate random alignments by offsetting the slice by up to 15 bytes
211                 offset &= 0xF;
212                 if chunk.len() <= offset {
213                     baseline.update(&chunk);
214                     pclmulqdq.update(&chunk);
215                 } else {
216                     baseline.update(&chunk[offset..]);
217                     pclmulqdq.update(&chunk[offset..]);
218                 }
219             }
220             pclmulqdq.finalize() == baseline.finalize()
221         }
222     }
223 }
224