1 // Generated from vec.rs.tera template. Edit the template, not the generated file.
2 
3 use crate::{f32::math, BVec3A, Vec2, Vec3, Vec4};
4 
5 #[cfg(not(target_arch = "spirv"))]
6 use core::fmt;
7 use core::iter::{Product, Sum};
8 use core::{f32, ops::*};
9 
10 /// Creates a 3-dimensional vector.
11 #[inline(always)]
12 #[must_use]
vec3a(x: f32, y: f32, z: f32) -> Vec3A13 pub const fn vec3a(x: f32, y: f32, z: f32) -> Vec3A {
14     Vec3A::new(x, y, z)
15 }
16 
17 /// A 3-dimensional vector.
18 ///
19 /// SIMD vector types are used for storage on supported platforms for better
20 /// performance than the [`Vec3`] type.
21 ///
22 /// It is possible to convert between [`Vec3`] and [`Vec3A`] types using [`From`]
23 /// or [`Into`] trait implementations.
24 ///
25 /// This type is 16 byte aligned.
26 #[derive(Clone, Copy, PartialEq)]
27 #[cfg_attr(not(target_arch = "spirv"), repr(align(16)))]
28 #[cfg_attr(not(target_arch = "spirv"), repr(C))]
29 #[cfg_attr(target_arch = "spirv", repr(simd))]
30 pub struct Vec3A {
31     pub x: f32,
32     pub y: f32,
33     pub z: f32,
34 }
35 
36 impl Vec3A {
37     /// All zeroes.
38     pub const ZERO: Self = Self::splat(0.0);
39 
40     /// All ones.
41     pub const ONE: Self = Self::splat(1.0);
42 
43     /// All negative ones.
44     pub const NEG_ONE: Self = Self::splat(-1.0);
45 
46     /// All `f32::MIN`.
47     pub const MIN: Self = Self::splat(f32::MIN);
48 
49     /// All `f32::MAX`.
50     pub const MAX: Self = Self::splat(f32::MAX);
51 
52     /// All `f32::NAN`.
53     pub const NAN: Self = Self::splat(f32::NAN);
54 
55     /// All `f32::INFINITY`.
56     pub const INFINITY: Self = Self::splat(f32::INFINITY);
57 
58     /// All `f32::NEG_INFINITY`.
59     pub const NEG_INFINITY: Self = Self::splat(f32::NEG_INFINITY);
60 
61     /// A unit vector pointing along the positive X axis.
62     pub const X: Self = Self::new(1.0, 0.0, 0.0);
63 
64     /// A unit vector pointing along the positive Y axis.
65     pub const Y: Self = Self::new(0.0, 1.0, 0.0);
66 
67     /// A unit vector pointing along the positive Z axis.
68     pub const Z: Self = Self::new(0.0, 0.0, 1.0);
69 
70     /// A unit vector pointing along the negative X axis.
71     pub const NEG_X: Self = Self::new(-1.0, 0.0, 0.0);
72 
73     /// A unit vector pointing along the negative Y axis.
74     pub const NEG_Y: Self = Self::new(0.0, -1.0, 0.0);
75 
76     /// A unit vector pointing along the negative Z axis.
77     pub const NEG_Z: Self = Self::new(0.0, 0.0, -1.0);
78 
79     /// The unit axes.
80     pub const AXES: [Self; 3] = [Self::X, Self::Y, Self::Z];
81 
82     /// Creates a new vector.
83     #[inline(always)]
84     #[must_use]
new(x: f32, y: f32, z: f32) -> Self85     pub const fn new(x: f32, y: f32, z: f32) -> Self {
86         Self { x, y, z }
87     }
88 
89     /// Creates a vector with all elements set to `v`.
90     #[inline]
91     #[must_use]
splat(v: f32) -> Self92     pub const fn splat(v: f32) -> Self {
93         Self { x: v, y: v, z: v }
94     }
95 
96     /// Creates a vector from the elements in `if_true` and `if_false`, selecting which to use
97     /// for each element of `self`.
98     ///
99     /// A true element in the mask uses the corresponding element from `if_true`, and false
100     /// uses the element from `if_false`.
101     #[inline]
102     #[must_use]
select(mask: BVec3A, if_true: Self, if_false: Self) -> Self103     pub fn select(mask: BVec3A, if_true: Self, if_false: Self) -> Self {
104         Self {
105             x: if mask.test(0) { if_true.x } else { if_false.x },
106             y: if mask.test(1) { if_true.y } else { if_false.y },
107             z: if mask.test(2) { if_true.z } else { if_false.z },
108         }
109     }
110 
111     /// Creates a new vector from an array.
112     #[inline]
113     #[must_use]
from_array(a: [f32; 3]) -> Self114     pub const fn from_array(a: [f32; 3]) -> Self {
115         Self::new(a[0], a[1], a[2])
116     }
117 
118     /// `[x, y, z]`
119     #[inline]
120     #[must_use]
to_array(&self) -> [f32; 3]121     pub const fn to_array(&self) -> [f32; 3] {
122         [self.x, self.y, self.z]
123     }
124 
125     /// Creates a vector from the first 3 values in `slice`.
126     ///
127     /// # Panics
128     ///
129     /// Panics if `slice` is less than 3 elements long.
130     #[inline]
131     #[must_use]
from_slice(slice: &[f32]) -> Self132     pub const fn from_slice(slice: &[f32]) -> Self {
133         Self::new(slice[0], slice[1], slice[2])
134     }
135 
136     /// Writes the elements of `self` to the first 3 elements in `slice`.
137     ///
138     /// # Panics
139     ///
140     /// Panics if `slice` is less than 3 elements long.
141     #[inline]
write_to_slice(self, slice: &mut [f32])142     pub fn write_to_slice(self, slice: &mut [f32]) {
143         slice[0] = self.x;
144         slice[1] = self.y;
145         slice[2] = self.z;
146     }
147 
148     /// Internal method for creating a 3D vector from a 4D vector, discarding `w`.
149     #[allow(dead_code)]
150     #[inline]
151     #[must_use]
from_vec4(v: Vec4) -> Self152     pub(crate) fn from_vec4(v: Vec4) -> Self {
153         Self {
154             x: v.x,
155             y: v.y,
156             z: v.z,
157         }
158     }
159 
160     /// Creates a 4D vector from `self` and the given `w` value.
161     #[inline]
162     #[must_use]
extend(self, w: f32) -> Vec4163     pub fn extend(self, w: f32) -> Vec4 {
164         Vec4::new(self.x, self.y, self.z, w)
165     }
166 
167     /// Creates a 2D vector from the `x` and `y` elements of `self`, discarding `z`.
168     ///
169     /// Truncation may also be performed by using [`self.xy()`][crate::swizzles::Vec3Swizzles::xy()].
170     #[inline]
171     #[must_use]
truncate(self) -> Vec2172     pub fn truncate(self) -> Vec2 {
173         use crate::swizzles::Vec3Swizzles;
174         self.xy()
175     }
176 
177     /// Computes the dot product of `self` and `rhs`.
178     #[inline]
179     #[must_use]
dot(self, rhs: Self) -> f32180     pub fn dot(self, rhs: Self) -> f32 {
181         (self.x * rhs.x) + (self.y * rhs.y) + (self.z * rhs.z)
182     }
183 
184     /// Returns a vector where every component is the dot product of `self` and `rhs`.
185     #[inline]
186     #[must_use]
dot_into_vec(self, rhs: Self) -> Self187     pub fn dot_into_vec(self, rhs: Self) -> Self {
188         Self::splat(self.dot(rhs))
189     }
190 
191     /// Computes the cross product of `self` and `rhs`.
192     #[inline]
193     #[must_use]
cross(self, rhs: Self) -> Self194     pub fn cross(self, rhs: Self) -> Self {
195         Self {
196             x: self.y * rhs.z - rhs.y * self.z,
197             y: self.z * rhs.x - rhs.z * self.x,
198             z: self.x * rhs.y - rhs.x * self.y,
199         }
200     }
201 
202     /// Returns a vector containing the minimum values for each element of `self` and `rhs`.
203     ///
204     /// In other words this computes `[self.x.min(rhs.x), self.y.min(rhs.y), ..]`.
205     #[inline]
206     #[must_use]
min(self, rhs: Self) -> Self207     pub fn min(self, rhs: Self) -> Self {
208         Self {
209             x: self.x.min(rhs.x),
210             y: self.y.min(rhs.y),
211             z: self.z.min(rhs.z),
212         }
213     }
214 
215     /// Returns a vector containing the maximum values for each element of `self` and `rhs`.
216     ///
217     /// In other words this computes `[self.x.max(rhs.x), self.y.max(rhs.y), ..]`.
218     #[inline]
219     #[must_use]
max(self, rhs: Self) -> Self220     pub fn max(self, rhs: Self) -> Self {
221         Self {
222             x: self.x.max(rhs.x),
223             y: self.y.max(rhs.y),
224             z: self.z.max(rhs.z),
225         }
226     }
227 
228     /// Component-wise clamping of values, similar to [`f32::clamp`].
229     ///
230     /// Each element in `min` must be less-or-equal to the corresponding element in `max`.
231     ///
232     /// # Panics
233     ///
234     /// Will panic if `min` is greater than `max` when `glam_assert` is enabled.
235     #[inline]
236     #[must_use]
clamp(self, min: Self, max: Self) -> Self237     pub fn clamp(self, min: Self, max: Self) -> Self {
238         glam_assert!(min.cmple(max).all(), "clamp: expected min <= max");
239         self.max(min).min(max)
240     }
241 
242     /// Returns the horizontal minimum of `self`.
243     ///
244     /// In other words this computes `min(x, y, ..)`.
245     #[inline]
246     #[must_use]
min_element(self) -> f32247     pub fn min_element(self) -> f32 {
248         self.x.min(self.y.min(self.z))
249     }
250 
251     /// Returns the horizontal maximum of `self`.
252     ///
253     /// In other words this computes `max(x, y, ..)`.
254     #[inline]
255     #[must_use]
max_element(self) -> f32256     pub fn max_element(self) -> f32 {
257         self.x.max(self.y.max(self.z))
258     }
259 
260     /// Returns a vector mask containing the result of a `==` comparison for each element of
261     /// `self` and `rhs`.
262     ///
263     /// In other words, this computes `[self.x == rhs.x, self.y == rhs.y, ..]` for all
264     /// elements.
265     #[inline]
266     #[must_use]
cmpeq(self, rhs: Self) -> BVec3A267     pub fn cmpeq(self, rhs: Self) -> BVec3A {
268         BVec3A::new(self.x.eq(&rhs.x), self.y.eq(&rhs.y), self.z.eq(&rhs.z))
269     }
270 
271     /// Returns a vector mask containing the result of a `!=` comparison for each element of
272     /// `self` and `rhs`.
273     ///
274     /// In other words this computes `[self.x != rhs.x, self.y != rhs.y, ..]` for all
275     /// elements.
276     #[inline]
277     #[must_use]
cmpne(self, rhs: Self) -> BVec3A278     pub fn cmpne(self, rhs: Self) -> BVec3A {
279         BVec3A::new(self.x.ne(&rhs.x), self.y.ne(&rhs.y), self.z.ne(&rhs.z))
280     }
281 
282     /// Returns a vector mask containing the result of a `>=` comparison for each element of
283     /// `self` and `rhs`.
284     ///
285     /// In other words this computes `[self.x >= rhs.x, self.y >= rhs.y, ..]` for all
286     /// elements.
287     #[inline]
288     #[must_use]
cmpge(self, rhs: Self) -> BVec3A289     pub fn cmpge(self, rhs: Self) -> BVec3A {
290         BVec3A::new(self.x.ge(&rhs.x), self.y.ge(&rhs.y), self.z.ge(&rhs.z))
291     }
292 
293     /// Returns a vector mask containing the result of a `>` comparison for each element of
294     /// `self` and `rhs`.
295     ///
296     /// In other words this computes `[self.x > rhs.x, self.y > rhs.y, ..]` for all
297     /// elements.
298     #[inline]
299     #[must_use]
cmpgt(self, rhs: Self) -> BVec3A300     pub fn cmpgt(self, rhs: Self) -> BVec3A {
301         BVec3A::new(self.x.gt(&rhs.x), self.y.gt(&rhs.y), self.z.gt(&rhs.z))
302     }
303 
304     /// Returns a vector mask containing the result of a `<=` comparison for each element of
305     /// `self` and `rhs`.
306     ///
307     /// In other words this computes `[self.x <= rhs.x, self.y <= rhs.y, ..]` for all
308     /// elements.
309     #[inline]
310     #[must_use]
cmple(self, rhs: Self) -> BVec3A311     pub fn cmple(self, rhs: Self) -> BVec3A {
312         BVec3A::new(self.x.le(&rhs.x), self.y.le(&rhs.y), self.z.le(&rhs.z))
313     }
314 
315     /// Returns a vector mask containing the result of a `<` comparison for each element of
316     /// `self` and `rhs`.
317     ///
318     /// In other words this computes `[self.x < rhs.x, self.y < rhs.y, ..]` for all
319     /// elements.
320     #[inline]
321     #[must_use]
cmplt(self, rhs: Self) -> BVec3A322     pub fn cmplt(self, rhs: Self) -> BVec3A {
323         BVec3A::new(self.x.lt(&rhs.x), self.y.lt(&rhs.y), self.z.lt(&rhs.z))
324     }
325 
326     /// Returns a vector containing the absolute value of each element of `self`.
327     #[inline]
328     #[must_use]
abs(self) -> Self329     pub fn abs(self) -> Self {
330         Self {
331             x: math::abs(self.x),
332             y: math::abs(self.y),
333             z: math::abs(self.z),
334         }
335     }
336 
337     /// Returns a vector with elements representing the sign of `self`.
338     ///
339     /// - `1.0` if the number is positive, `+0.0` or `INFINITY`
340     /// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
341     /// - `NAN` if the number is `NAN`
342     #[inline]
343     #[must_use]
signum(self) -> Self344     pub fn signum(self) -> Self {
345         Self {
346             x: math::signum(self.x),
347             y: math::signum(self.y),
348             z: math::signum(self.z),
349         }
350     }
351 
352     /// Returns a vector with signs of `rhs` and the magnitudes of `self`.
353     #[inline]
354     #[must_use]
copysign(self, rhs: Self) -> Self355     pub fn copysign(self, rhs: Self) -> Self {
356         Self {
357             x: math::copysign(self.x, rhs.x),
358             y: math::copysign(self.y, rhs.y),
359             z: math::copysign(self.z, rhs.z),
360         }
361     }
362 
363     /// Returns a bitmask with the lowest 3 bits set to the sign bits from the elements of `self`.
364     ///
365     /// A negative element results in a `1` bit and a positive element in a `0` bit.  Element `x` goes
366     /// into the first lowest bit, element `y` into the second, etc.
367     #[inline]
368     #[must_use]
is_negative_bitmask(self) -> u32369     pub fn is_negative_bitmask(self) -> u32 {
370         (self.x.is_sign_negative() as u32)
371             | (self.y.is_sign_negative() as u32) << 1
372             | (self.z.is_sign_negative() as u32) << 2
373     }
374 
375     /// Returns `true` if, and only if, all elements are finite.  If any element is either
376     /// `NaN`, positive or negative infinity, this will return `false`.
377     #[inline]
378     #[must_use]
is_finite(self) -> bool379     pub fn is_finite(self) -> bool {
380         self.x.is_finite() && self.y.is_finite() && self.z.is_finite()
381     }
382 
383     /// Returns `true` if any elements are `NaN`.
384     #[inline]
385     #[must_use]
is_nan(self) -> bool386     pub fn is_nan(self) -> bool {
387         self.x.is_nan() || self.y.is_nan() || self.z.is_nan()
388     }
389 
390     /// Performs `is_nan` on each element of self, returning a vector mask of the results.
391     ///
392     /// In other words, this computes `[x.is_nan(), y.is_nan(), z.is_nan(), w.is_nan()]`.
393     #[inline]
394     #[must_use]
is_nan_mask(self) -> BVec3A395     pub fn is_nan_mask(self) -> BVec3A {
396         BVec3A::new(self.x.is_nan(), self.y.is_nan(), self.z.is_nan())
397     }
398 
399     /// Computes the length of `self`.
400     #[doc(alias = "magnitude")]
401     #[inline]
402     #[must_use]
length(self) -> f32403     pub fn length(self) -> f32 {
404         math::sqrt(self.dot(self))
405     }
406 
407     /// Computes the squared length of `self`.
408     ///
409     /// This is faster than `length()` as it avoids a square root operation.
410     #[doc(alias = "magnitude2")]
411     #[inline]
412     #[must_use]
length_squared(self) -> f32413     pub fn length_squared(self) -> f32 {
414         self.dot(self)
415     }
416 
417     /// Computes `1.0 / length()`.
418     ///
419     /// For valid results, `self` must _not_ be of length zero.
420     #[inline]
421     #[must_use]
length_recip(self) -> f32422     pub fn length_recip(self) -> f32 {
423         self.length().recip()
424     }
425 
426     /// Computes the Euclidean distance between two points in space.
427     #[inline]
428     #[must_use]
distance(self, rhs: Self) -> f32429     pub fn distance(self, rhs: Self) -> f32 {
430         (self - rhs).length()
431     }
432 
433     /// Compute the squared euclidean distance between two points in space.
434     #[inline]
435     #[must_use]
distance_squared(self, rhs: Self) -> f32436     pub fn distance_squared(self, rhs: Self) -> f32 {
437         (self - rhs).length_squared()
438     }
439 
440     /// Returns the element-wise quotient of [Euclidean division] of `self` by `rhs`.
441     #[inline]
442     #[must_use]
div_euclid(self, rhs: Self) -> Self443     pub fn div_euclid(self, rhs: Self) -> Self {
444         Self::new(
445             math::div_euclid(self.x, rhs.x),
446             math::div_euclid(self.y, rhs.y),
447             math::div_euclid(self.z, rhs.z),
448         )
449     }
450 
451     /// Returns the element-wise remainder of [Euclidean division] of `self` by `rhs`.
452     ///
453     /// [Euclidean division]: f32::rem_euclid
454     #[inline]
455     #[must_use]
rem_euclid(self, rhs: Self) -> Self456     pub fn rem_euclid(self, rhs: Self) -> Self {
457         Self::new(
458             math::rem_euclid(self.x, rhs.x),
459             math::rem_euclid(self.y, rhs.y),
460             math::rem_euclid(self.z, rhs.z),
461         )
462     }
463 
464     /// Returns `self` normalized to length 1.0.
465     ///
466     /// For valid results, `self` must _not_ be of length zero, nor very close to zero.
467     ///
468     /// See also [`Self::try_normalize()`] and [`Self::normalize_or_zero()`].
469     ///
470     /// Panics
471     ///
472     /// Will panic if `self` is zero length when `glam_assert` is enabled.
473     #[inline]
474     #[must_use]
normalize(self) -> Self475     pub fn normalize(self) -> Self {
476         #[allow(clippy::let_and_return)]
477         let normalized = self.mul(self.length_recip());
478         glam_assert!(normalized.is_finite());
479         normalized
480     }
481 
482     /// Returns `self` normalized to length 1.0 if possible, else returns `None`.
483     ///
484     /// In particular, if the input is zero (or very close to zero), or non-finite,
485     /// the result of this operation will be `None`.
486     ///
487     /// See also [`Self::normalize_or_zero()`].
488     #[inline]
489     #[must_use]
try_normalize(self) -> Option<Self>490     pub fn try_normalize(self) -> Option<Self> {
491         let rcp = self.length_recip();
492         if rcp.is_finite() && rcp > 0.0 {
493             Some(self * rcp)
494         } else {
495             None
496         }
497     }
498 
499     /// Returns `self` normalized to length 1.0 if possible, else returns zero.
500     ///
501     /// In particular, if the input is zero (or very close to zero), or non-finite,
502     /// the result of this operation will be zero.
503     ///
504     /// See also [`Self::try_normalize()`].
505     #[inline]
506     #[must_use]
normalize_or_zero(self) -> Self507     pub fn normalize_or_zero(self) -> Self {
508         let rcp = self.length_recip();
509         if rcp.is_finite() && rcp > 0.0 {
510             self * rcp
511         } else {
512             Self::ZERO
513         }
514     }
515 
516     /// Returns whether `self` is length `1.0` or not.
517     ///
518     /// Uses a precision threshold of `1e-6`.
519     #[inline]
520     #[must_use]
is_normalized(self) -> bool521     pub fn is_normalized(self) -> bool {
522         // TODO: do something with epsilon
523         math::abs(self.length_squared() - 1.0) <= 1e-4
524     }
525 
526     /// Returns the vector projection of `self` onto `rhs`.
527     ///
528     /// `rhs` must be of non-zero length.
529     ///
530     /// # Panics
531     ///
532     /// Will panic if `rhs` is zero length when `glam_assert` is enabled.
533     #[inline]
534     #[must_use]
project_onto(self, rhs: Self) -> Self535     pub fn project_onto(self, rhs: Self) -> Self {
536         let other_len_sq_rcp = rhs.dot(rhs).recip();
537         glam_assert!(other_len_sq_rcp.is_finite());
538         rhs * self.dot(rhs) * other_len_sq_rcp
539     }
540 
541     /// Returns the vector rejection of `self` from `rhs`.
542     ///
543     /// The vector rejection is the vector perpendicular to the projection of `self` onto
544     /// `rhs`, in rhs words the result of `self - self.project_onto(rhs)`.
545     ///
546     /// `rhs` must be of non-zero length.
547     ///
548     /// # Panics
549     ///
550     /// Will panic if `rhs` has a length of zero when `glam_assert` is enabled.
551     #[inline]
552     #[must_use]
reject_from(self, rhs: Self) -> Self553     pub fn reject_from(self, rhs: Self) -> Self {
554         self - self.project_onto(rhs)
555     }
556 
557     /// Returns the vector projection of `self` onto `rhs`.
558     ///
559     /// `rhs` must be normalized.
560     ///
561     /// # Panics
562     ///
563     /// Will panic if `rhs` is not normalized when `glam_assert` is enabled.
564     #[inline]
565     #[must_use]
project_onto_normalized(self, rhs: Self) -> Self566     pub fn project_onto_normalized(self, rhs: Self) -> Self {
567         glam_assert!(rhs.is_normalized());
568         rhs * self.dot(rhs)
569     }
570 
571     /// Returns the vector rejection of `self` from `rhs`.
572     ///
573     /// The vector rejection is the vector perpendicular to the projection of `self` onto
574     /// `rhs`, in rhs words the result of `self - self.project_onto(rhs)`.
575     ///
576     /// `rhs` must be normalized.
577     ///
578     /// # Panics
579     ///
580     /// Will panic if `rhs` is not normalized when `glam_assert` is enabled.
581     #[inline]
582     #[must_use]
reject_from_normalized(self, rhs: Self) -> Self583     pub fn reject_from_normalized(self, rhs: Self) -> Self {
584         self - self.project_onto_normalized(rhs)
585     }
586 
587     /// Returns a vector containing the nearest integer to a number for each element of `self`.
588     /// Round half-way cases away from 0.0.
589     #[inline]
590     #[must_use]
round(self) -> Self591     pub fn round(self) -> Self {
592         Self {
593             x: math::round(self.x),
594             y: math::round(self.y),
595             z: math::round(self.z),
596         }
597     }
598 
599     /// Returns a vector containing the largest integer less than or equal to a number for each
600     /// element of `self`.
601     #[inline]
602     #[must_use]
floor(self) -> Self603     pub fn floor(self) -> Self {
604         Self {
605             x: math::floor(self.x),
606             y: math::floor(self.y),
607             z: math::floor(self.z),
608         }
609     }
610 
611     /// Returns a vector containing the smallest integer greater than or equal to a number for
612     /// each element of `self`.
613     #[inline]
614     #[must_use]
ceil(self) -> Self615     pub fn ceil(self) -> Self {
616         Self {
617             x: math::ceil(self.x),
618             y: math::ceil(self.y),
619             z: math::ceil(self.z),
620         }
621     }
622 
623     /// Returns a vector containing the integer part each element of `self`. This means numbers are
624     /// always truncated towards zero.
625     #[inline]
626     #[must_use]
trunc(self) -> Self627     pub fn trunc(self) -> Self {
628         Self {
629             x: math::trunc(self.x),
630             y: math::trunc(self.y),
631             z: math::trunc(self.z),
632         }
633     }
634 
635     /// Returns a vector containing the fractional part of the vector, e.g. `self -
636     /// self.floor()`.
637     ///
638     /// Note that this is fast but not precise for large numbers.
639     #[inline]
640     #[must_use]
fract(self) -> Self641     pub fn fract(self) -> Self {
642         self - self.floor()
643     }
644 
645     /// Returns a vector containing `e^self` (the exponential function) for each element of
646     /// `self`.
647     #[inline]
648     #[must_use]
exp(self) -> Self649     pub fn exp(self) -> Self {
650         Self::new(math::exp(self.x), math::exp(self.y), math::exp(self.z))
651     }
652 
653     /// Returns a vector containing each element of `self` raised to the power of `n`.
654     #[inline]
655     #[must_use]
powf(self, n: f32) -> Self656     pub fn powf(self, n: f32) -> Self {
657         Self::new(
658             math::powf(self.x, n),
659             math::powf(self.y, n),
660             math::powf(self.z, n),
661         )
662     }
663 
664     /// Returns a vector containing the reciprocal `1.0/n` of each element of `self`.
665     #[inline]
666     #[must_use]
recip(self) -> Self667     pub fn recip(self) -> Self {
668         Self {
669             x: 1.0 / self.x,
670             y: 1.0 / self.y,
671             z: 1.0 / self.z,
672         }
673     }
674 
675     /// Performs a linear interpolation between `self` and `rhs` based on the value `s`.
676     ///
677     /// When `s` is `0.0`, the result will be equal to `self`.  When `s` is `1.0`, the result
678     /// will be equal to `rhs`. When `s` is outside of range `[0, 1]`, the result is linearly
679     /// extrapolated.
680     #[doc(alias = "mix")]
681     #[inline]
682     #[must_use]
lerp(self, rhs: Self, s: f32) -> Self683     pub fn lerp(self, rhs: Self, s: f32) -> Self {
684         self + ((rhs - self) * s)
685     }
686 
687     /// Returns true if the absolute difference of all elements between `self` and `rhs` is
688     /// less than or equal to `max_abs_diff`.
689     ///
690     /// This can be used to compare if two vectors contain similar elements. It works best when
691     /// comparing with a known value. The `max_abs_diff` that should be used used depends on
692     /// the values being compared against.
693     ///
694     /// For more see
695     /// [comparing floating point numbers](https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/).
696     #[inline]
697     #[must_use]
abs_diff_eq(self, rhs: Self, max_abs_diff: f32) -> bool698     pub fn abs_diff_eq(self, rhs: Self, max_abs_diff: f32) -> bool {
699         self.sub(rhs).abs().cmple(Self::splat(max_abs_diff)).all()
700     }
701 
702     /// Returns a vector with a length no less than `min` and no more than `max`
703     ///
704     /// # Panics
705     ///
706     /// Will panic if `min` is greater than `max` when `glam_assert` is enabled.
707     #[inline]
708     #[must_use]
clamp_length(self, min: f32, max: f32) -> Self709     pub fn clamp_length(self, min: f32, max: f32) -> Self {
710         glam_assert!(min <= max);
711         let length_sq = self.length_squared();
712         if length_sq < min * min {
713             min * (self / math::sqrt(length_sq))
714         } else if length_sq > max * max {
715             max * (self / math::sqrt(length_sq))
716         } else {
717             self
718         }
719     }
720 
721     /// Returns a vector with a length no more than `max`
722     #[inline]
723     #[must_use]
clamp_length_max(self, max: f32) -> Self724     pub fn clamp_length_max(self, max: f32) -> Self {
725         let length_sq = self.length_squared();
726         if length_sq > max * max {
727             max * (self / math::sqrt(length_sq))
728         } else {
729             self
730         }
731     }
732 
733     /// Returns a vector with a length no less than `min`
734     #[inline]
735     #[must_use]
clamp_length_min(self, min: f32) -> Self736     pub fn clamp_length_min(self, min: f32) -> Self {
737         let length_sq = self.length_squared();
738         if length_sq < min * min {
739             min * (self / math::sqrt(length_sq))
740         } else {
741             self
742         }
743     }
744 
745     /// Fused multiply-add. Computes `(self * a) + b` element-wise with only one rounding
746     /// error, yielding a more accurate result than an unfused multiply-add.
747     ///
748     /// Using `mul_add` *may* be more performant than an unfused multiply-add if the target
749     /// architecture has a dedicated fma CPU instruction. However, this is not always true,
750     /// and will be heavily dependant on designing algorithms with specific target hardware in
751     /// mind.
752     #[inline]
753     #[must_use]
mul_add(self, a: Self, b: Self) -> Self754     pub fn mul_add(self, a: Self, b: Self) -> Self {
755         Self::new(
756             math::mul_add(self.x, a.x, b.x),
757             math::mul_add(self.y, a.y, b.y),
758             math::mul_add(self.z, a.z, b.z),
759         )
760     }
761 
762     /// Returns the angle (in radians) between two vectors.
763     ///
764     /// The inputs do not need to be unit vectors however they must be non-zero.
765     #[inline]
766     #[must_use]
angle_between(self, rhs: Self) -> f32767     pub fn angle_between(self, rhs: Self) -> f32 {
768         math::acos_approx(
769             self.dot(rhs)
770                 .div(math::sqrt(self.length_squared().mul(rhs.length_squared()))),
771         )
772     }
773 
774     /// Returns some vector that is orthogonal to the given one.
775     ///
776     /// The input vector must be finite and non-zero.
777     ///
778     /// The output vector is not necessarily unit length. For that use
779     /// [`Self::any_orthonormal_vector()`] instead.
780     #[inline]
781     #[must_use]
any_orthogonal_vector(&self) -> Self782     pub fn any_orthogonal_vector(&self) -> Self {
783         // This can probably be optimized
784         if math::abs(self.x) > math::abs(self.y) {
785             Self::new(-self.z, 0.0, self.x) // self.cross(Self::Y)
786         } else {
787             Self::new(0.0, self.z, -self.y) // self.cross(Self::X)
788         }
789     }
790 
791     /// Returns any unit vector that is orthogonal to the given one.
792     ///
793     /// The input vector must be unit length.
794     ///
795     /// # Panics
796     ///
797     /// Will panic if `self` is not normalized when `glam_assert` is enabled.
798     #[inline]
799     #[must_use]
any_orthonormal_vector(&self) -> Self800     pub fn any_orthonormal_vector(&self) -> Self {
801         glam_assert!(self.is_normalized());
802         // From https://graphics.pixar.com/library/OrthonormalB/paper.pdf
803         let sign = math::signum(self.z);
804         let a = -1.0 / (sign + self.z);
805         let b = self.x * self.y * a;
806         Self::new(b, sign + self.y * self.y * a, -self.y)
807     }
808 
809     /// Given a unit vector return two other vectors that together form an orthonormal
810     /// basis. That is, all three vectors are orthogonal to each other and are normalized.
811     ///
812     /// # Panics
813     ///
814     /// Will panic if `self` is not normalized when `glam_assert` is enabled.
815     #[inline]
816     #[must_use]
any_orthonormal_pair(&self) -> (Self, Self)817     pub fn any_orthonormal_pair(&self) -> (Self, Self) {
818         glam_assert!(self.is_normalized());
819         // From https://graphics.pixar.com/library/OrthonormalB/paper.pdf
820         let sign = math::signum(self.z);
821         let a = -1.0 / (sign + self.z);
822         let b = self.x * self.y * a;
823         (
824             Self::new(1.0 + sign * self.x * self.x * a, sign * b, -sign * self.x),
825             Self::new(b, sign + self.y * self.y * a, -self.y),
826         )
827     }
828 
829     /// Casts all elements of `self` to `f64`.
830     #[inline]
831     #[must_use]
as_dvec3(&self) -> crate::DVec3832     pub fn as_dvec3(&self) -> crate::DVec3 {
833         crate::DVec3::new(self.x as f64, self.y as f64, self.z as f64)
834     }
835 
836     /// Casts all elements of `self` to `i16`.
837     #[inline]
838     #[must_use]
as_i16vec3(&self) -> crate::I16Vec3839     pub fn as_i16vec3(&self) -> crate::I16Vec3 {
840         crate::I16Vec3::new(self.x as i16, self.y as i16, self.z as i16)
841     }
842 
843     /// Casts all elements of `self` to `u16`.
844     #[inline]
845     #[must_use]
as_u16vec3(&self) -> crate::U16Vec3846     pub fn as_u16vec3(&self) -> crate::U16Vec3 {
847         crate::U16Vec3::new(self.x as u16, self.y as u16, self.z as u16)
848     }
849 
850     /// Casts all elements of `self` to `i32`.
851     #[inline]
852     #[must_use]
as_ivec3(&self) -> crate::IVec3853     pub fn as_ivec3(&self) -> crate::IVec3 {
854         crate::IVec3::new(self.x as i32, self.y as i32, self.z as i32)
855     }
856 
857     /// Casts all elements of `self` to `u32`.
858     #[inline]
859     #[must_use]
as_uvec3(&self) -> crate::UVec3860     pub fn as_uvec3(&self) -> crate::UVec3 {
861         crate::UVec3::new(self.x as u32, self.y as u32, self.z as u32)
862     }
863 
864     /// Casts all elements of `self` to `i64`.
865     #[inline]
866     #[must_use]
as_i64vec3(&self) -> crate::I64Vec3867     pub fn as_i64vec3(&self) -> crate::I64Vec3 {
868         crate::I64Vec3::new(self.x as i64, self.y as i64, self.z as i64)
869     }
870 
871     /// Casts all elements of `self` to `u64`.
872     #[inline]
873     #[must_use]
as_u64vec3(&self) -> crate::U64Vec3874     pub fn as_u64vec3(&self) -> crate::U64Vec3 {
875         crate::U64Vec3::new(self.x as u64, self.y as u64, self.z as u64)
876     }
877 }
878 
879 impl Default for Vec3A {
880     #[inline(always)]
default() -> Self881     fn default() -> Self {
882         Self::ZERO
883     }
884 }
885 
886 impl Div<Vec3A> for Vec3A {
887     type Output = Self;
888     #[inline]
div(self, rhs: Self) -> Self889     fn div(self, rhs: Self) -> Self {
890         Self {
891             x: self.x.div(rhs.x),
892             y: self.y.div(rhs.y),
893             z: self.z.div(rhs.z),
894         }
895     }
896 }
897 
898 impl DivAssign<Vec3A> for Vec3A {
899     #[inline]
div_assign(&mut self, rhs: Self)900     fn div_assign(&mut self, rhs: Self) {
901         self.x.div_assign(rhs.x);
902         self.y.div_assign(rhs.y);
903         self.z.div_assign(rhs.z);
904     }
905 }
906 
907 impl Div<f32> for Vec3A {
908     type Output = Self;
909     #[inline]
div(self, rhs: f32) -> Self910     fn div(self, rhs: f32) -> Self {
911         Self {
912             x: self.x.div(rhs),
913             y: self.y.div(rhs),
914             z: self.z.div(rhs),
915         }
916     }
917 }
918 
919 impl DivAssign<f32> for Vec3A {
920     #[inline]
div_assign(&mut self, rhs: f32)921     fn div_assign(&mut self, rhs: f32) {
922         self.x.div_assign(rhs);
923         self.y.div_assign(rhs);
924         self.z.div_assign(rhs);
925     }
926 }
927 
928 impl Div<Vec3A> for f32 {
929     type Output = Vec3A;
930     #[inline]
div(self, rhs: Vec3A) -> Vec3A931     fn div(self, rhs: Vec3A) -> Vec3A {
932         Vec3A {
933             x: self.div(rhs.x),
934             y: self.div(rhs.y),
935             z: self.div(rhs.z),
936         }
937     }
938 }
939 
940 impl Mul<Vec3A> for Vec3A {
941     type Output = Self;
942     #[inline]
mul(self, rhs: Self) -> Self943     fn mul(self, rhs: Self) -> Self {
944         Self {
945             x: self.x.mul(rhs.x),
946             y: self.y.mul(rhs.y),
947             z: self.z.mul(rhs.z),
948         }
949     }
950 }
951 
952 impl MulAssign<Vec3A> for Vec3A {
953     #[inline]
mul_assign(&mut self, rhs: Self)954     fn mul_assign(&mut self, rhs: Self) {
955         self.x.mul_assign(rhs.x);
956         self.y.mul_assign(rhs.y);
957         self.z.mul_assign(rhs.z);
958     }
959 }
960 
961 impl Mul<f32> for Vec3A {
962     type Output = Self;
963     #[inline]
mul(self, rhs: f32) -> Self964     fn mul(self, rhs: f32) -> Self {
965         Self {
966             x: self.x.mul(rhs),
967             y: self.y.mul(rhs),
968             z: self.z.mul(rhs),
969         }
970     }
971 }
972 
973 impl MulAssign<f32> for Vec3A {
974     #[inline]
mul_assign(&mut self, rhs: f32)975     fn mul_assign(&mut self, rhs: f32) {
976         self.x.mul_assign(rhs);
977         self.y.mul_assign(rhs);
978         self.z.mul_assign(rhs);
979     }
980 }
981 
982 impl Mul<Vec3A> for f32 {
983     type Output = Vec3A;
984     #[inline]
mul(self, rhs: Vec3A) -> Vec3A985     fn mul(self, rhs: Vec3A) -> Vec3A {
986         Vec3A {
987             x: self.mul(rhs.x),
988             y: self.mul(rhs.y),
989             z: self.mul(rhs.z),
990         }
991     }
992 }
993 
994 impl Add<Vec3A> for Vec3A {
995     type Output = Self;
996     #[inline]
add(self, rhs: Self) -> Self997     fn add(self, rhs: Self) -> Self {
998         Self {
999             x: self.x.add(rhs.x),
1000             y: self.y.add(rhs.y),
1001             z: self.z.add(rhs.z),
1002         }
1003     }
1004 }
1005 
1006 impl AddAssign<Vec3A> for Vec3A {
1007     #[inline]
add_assign(&mut self, rhs: Self)1008     fn add_assign(&mut self, rhs: Self) {
1009         self.x.add_assign(rhs.x);
1010         self.y.add_assign(rhs.y);
1011         self.z.add_assign(rhs.z);
1012     }
1013 }
1014 
1015 impl Add<f32> for Vec3A {
1016     type Output = Self;
1017     #[inline]
add(self, rhs: f32) -> Self1018     fn add(self, rhs: f32) -> Self {
1019         Self {
1020             x: self.x.add(rhs),
1021             y: self.y.add(rhs),
1022             z: self.z.add(rhs),
1023         }
1024     }
1025 }
1026 
1027 impl AddAssign<f32> for Vec3A {
1028     #[inline]
add_assign(&mut self, rhs: f32)1029     fn add_assign(&mut self, rhs: f32) {
1030         self.x.add_assign(rhs);
1031         self.y.add_assign(rhs);
1032         self.z.add_assign(rhs);
1033     }
1034 }
1035 
1036 impl Add<Vec3A> for f32 {
1037     type Output = Vec3A;
1038     #[inline]
add(self, rhs: Vec3A) -> Vec3A1039     fn add(self, rhs: Vec3A) -> Vec3A {
1040         Vec3A {
1041             x: self.add(rhs.x),
1042             y: self.add(rhs.y),
1043             z: self.add(rhs.z),
1044         }
1045     }
1046 }
1047 
1048 impl Sub<Vec3A> for Vec3A {
1049     type Output = Self;
1050     #[inline]
sub(self, rhs: Self) -> Self1051     fn sub(self, rhs: Self) -> Self {
1052         Self {
1053             x: self.x.sub(rhs.x),
1054             y: self.y.sub(rhs.y),
1055             z: self.z.sub(rhs.z),
1056         }
1057     }
1058 }
1059 
1060 impl SubAssign<Vec3A> for Vec3A {
1061     #[inline]
sub_assign(&mut self, rhs: Vec3A)1062     fn sub_assign(&mut self, rhs: Vec3A) {
1063         self.x.sub_assign(rhs.x);
1064         self.y.sub_assign(rhs.y);
1065         self.z.sub_assign(rhs.z);
1066     }
1067 }
1068 
1069 impl Sub<f32> for Vec3A {
1070     type Output = Self;
1071     #[inline]
sub(self, rhs: f32) -> Self1072     fn sub(self, rhs: f32) -> Self {
1073         Self {
1074             x: self.x.sub(rhs),
1075             y: self.y.sub(rhs),
1076             z: self.z.sub(rhs),
1077         }
1078     }
1079 }
1080 
1081 impl SubAssign<f32> for Vec3A {
1082     #[inline]
sub_assign(&mut self, rhs: f32)1083     fn sub_assign(&mut self, rhs: f32) {
1084         self.x.sub_assign(rhs);
1085         self.y.sub_assign(rhs);
1086         self.z.sub_assign(rhs);
1087     }
1088 }
1089 
1090 impl Sub<Vec3A> for f32 {
1091     type Output = Vec3A;
1092     #[inline]
sub(self, rhs: Vec3A) -> Vec3A1093     fn sub(self, rhs: Vec3A) -> Vec3A {
1094         Vec3A {
1095             x: self.sub(rhs.x),
1096             y: self.sub(rhs.y),
1097             z: self.sub(rhs.z),
1098         }
1099     }
1100 }
1101 
1102 impl Rem<Vec3A> for Vec3A {
1103     type Output = Self;
1104     #[inline]
rem(self, rhs: Self) -> Self1105     fn rem(self, rhs: Self) -> Self {
1106         Self {
1107             x: self.x.rem(rhs.x),
1108             y: self.y.rem(rhs.y),
1109             z: self.z.rem(rhs.z),
1110         }
1111     }
1112 }
1113 
1114 impl RemAssign<Vec3A> for Vec3A {
1115     #[inline]
rem_assign(&mut self, rhs: Self)1116     fn rem_assign(&mut self, rhs: Self) {
1117         self.x.rem_assign(rhs.x);
1118         self.y.rem_assign(rhs.y);
1119         self.z.rem_assign(rhs.z);
1120     }
1121 }
1122 
1123 impl Rem<f32> for Vec3A {
1124     type Output = Self;
1125     #[inline]
rem(self, rhs: f32) -> Self1126     fn rem(self, rhs: f32) -> Self {
1127         Self {
1128             x: self.x.rem(rhs),
1129             y: self.y.rem(rhs),
1130             z: self.z.rem(rhs),
1131         }
1132     }
1133 }
1134 
1135 impl RemAssign<f32> for Vec3A {
1136     #[inline]
rem_assign(&mut self, rhs: f32)1137     fn rem_assign(&mut self, rhs: f32) {
1138         self.x.rem_assign(rhs);
1139         self.y.rem_assign(rhs);
1140         self.z.rem_assign(rhs);
1141     }
1142 }
1143 
1144 impl Rem<Vec3A> for f32 {
1145     type Output = Vec3A;
1146     #[inline]
rem(self, rhs: Vec3A) -> Vec3A1147     fn rem(self, rhs: Vec3A) -> Vec3A {
1148         Vec3A {
1149             x: self.rem(rhs.x),
1150             y: self.rem(rhs.y),
1151             z: self.rem(rhs.z),
1152         }
1153     }
1154 }
1155 
1156 #[cfg(not(target_arch = "spirv"))]
1157 impl AsRef<[f32; 3]> for Vec3A {
1158     #[inline]
as_ref(&self) -> &[f32; 3]1159     fn as_ref(&self) -> &[f32; 3] {
1160         unsafe { &*(self as *const Vec3A as *const [f32; 3]) }
1161     }
1162 }
1163 
1164 #[cfg(not(target_arch = "spirv"))]
1165 impl AsMut<[f32; 3]> for Vec3A {
1166     #[inline]
as_mut(&mut self) -> &mut [f32; 3]1167     fn as_mut(&mut self) -> &mut [f32; 3] {
1168         unsafe { &mut *(self as *mut Vec3A as *mut [f32; 3]) }
1169     }
1170 }
1171 
1172 impl Sum for Vec3A {
1173     #[inline]
sum<I>(iter: I) -> Self where I: Iterator<Item = Self>,1174     fn sum<I>(iter: I) -> Self
1175     where
1176         I: Iterator<Item = Self>,
1177     {
1178         iter.fold(Self::ZERO, Self::add)
1179     }
1180 }
1181 
1182 impl<'a> Sum<&'a Self> for Vec3A {
1183     #[inline]
sum<I>(iter: I) -> Self where I: Iterator<Item = &'a Self>,1184     fn sum<I>(iter: I) -> Self
1185     where
1186         I: Iterator<Item = &'a Self>,
1187     {
1188         iter.fold(Self::ZERO, |a, &b| Self::add(a, b))
1189     }
1190 }
1191 
1192 impl Product for Vec3A {
1193     #[inline]
product<I>(iter: I) -> Self where I: Iterator<Item = Self>,1194     fn product<I>(iter: I) -> Self
1195     where
1196         I: Iterator<Item = Self>,
1197     {
1198         iter.fold(Self::ONE, Self::mul)
1199     }
1200 }
1201 
1202 impl<'a> Product<&'a Self> for Vec3A {
1203     #[inline]
product<I>(iter: I) -> Self where I: Iterator<Item = &'a Self>,1204     fn product<I>(iter: I) -> Self
1205     where
1206         I: Iterator<Item = &'a Self>,
1207     {
1208         iter.fold(Self::ONE, |a, &b| Self::mul(a, b))
1209     }
1210 }
1211 
1212 impl Neg for Vec3A {
1213     type Output = Self;
1214     #[inline]
neg(self) -> Self1215     fn neg(self) -> Self {
1216         Self {
1217             x: self.x.neg(),
1218             y: self.y.neg(),
1219             z: self.z.neg(),
1220         }
1221     }
1222 }
1223 
1224 impl Index<usize> for Vec3A {
1225     type Output = f32;
1226     #[inline]
index(&self, index: usize) -> &Self::Output1227     fn index(&self, index: usize) -> &Self::Output {
1228         match index {
1229             0 => &self.x,
1230             1 => &self.y,
1231             2 => &self.z,
1232             _ => panic!("index out of bounds"),
1233         }
1234     }
1235 }
1236 
1237 impl IndexMut<usize> for Vec3A {
1238     #[inline]
index_mut(&mut self, index: usize) -> &mut Self::Output1239     fn index_mut(&mut self, index: usize) -> &mut Self::Output {
1240         match index {
1241             0 => &mut self.x,
1242             1 => &mut self.y,
1243             2 => &mut self.z,
1244             _ => panic!("index out of bounds"),
1245         }
1246     }
1247 }
1248 
1249 #[cfg(not(target_arch = "spirv"))]
1250 impl fmt::Display for Vec3A {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result1251     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1252         write!(f, "[{}, {}, {}]", self.x, self.y, self.z)
1253     }
1254 }
1255 
1256 #[cfg(not(target_arch = "spirv"))]
1257 impl fmt::Debug for Vec3A {
fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result1258     fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
1259         fmt.debug_tuple(stringify!(Vec3A))
1260             .field(&self.x)
1261             .field(&self.y)
1262             .field(&self.z)
1263             .finish()
1264     }
1265 }
1266 
1267 impl From<[f32; 3]> for Vec3A {
1268     #[inline]
from(a: [f32; 3]) -> Self1269     fn from(a: [f32; 3]) -> Self {
1270         Self::new(a[0], a[1], a[2])
1271     }
1272 }
1273 
1274 impl From<Vec3A> for [f32; 3] {
1275     #[inline]
from(v: Vec3A) -> Self1276     fn from(v: Vec3A) -> Self {
1277         [v.x, v.y, v.z]
1278     }
1279 }
1280 
1281 impl From<(f32, f32, f32)> for Vec3A {
1282     #[inline]
from(t: (f32, f32, f32)) -> Self1283     fn from(t: (f32, f32, f32)) -> Self {
1284         Self::new(t.0, t.1, t.2)
1285     }
1286 }
1287 
1288 impl From<Vec3A> for (f32, f32, f32) {
1289     #[inline]
from(v: Vec3A) -> Self1290     fn from(v: Vec3A) -> Self {
1291         (v.x, v.y, v.z)
1292     }
1293 }
1294 
1295 impl From<Vec3> for Vec3A {
1296     #[inline]
from(v: Vec3) -> Self1297     fn from(v: Vec3) -> Self {
1298         Self::new(v.x, v.y, v.z)
1299     }
1300 }
1301 
1302 impl From<Vec4> for Vec3A {
1303     /// Creates a [`Vec3A`] from the `x`, `y` and `z` elements of `self` discarding `w`.
1304     ///
1305     /// On architectures where SIMD is supported such as SSE2 on `x86_64` this conversion is a noop.
1306     #[inline]
from(v: Vec4) -> Self1307     fn from(v: Vec4) -> Self {
1308         Self {
1309             x: v.x,
1310             y: v.y,
1311             z: v.z,
1312         }
1313     }
1314 }
1315 
1316 impl From<Vec3A> for Vec3 {
1317     #[inline]
from(v: Vec3A) -> Self1318     fn from(v: Vec3A) -> Self {
1319         Self {
1320             x: v.x,
1321             y: v.y,
1322             z: v.z,
1323         }
1324     }
1325 }
1326 
1327 impl From<(Vec2, f32)> for Vec3A {
1328     #[inline]
from((v, z): (Vec2, f32)) -> Self1329     fn from((v, z): (Vec2, f32)) -> Self {
1330         Self::new(v.x, v.y, z)
1331     }
1332 }
1333