1 use crate::leading_zeros::leading_zeros_u16;
2 use core::mem;
3 
4 #[inline]
f32_to_bf16(value: f32) -> u165 pub(crate) const fn f32_to_bf16(value: f32) -> u16 {
6     // TODO: Replace mem::transmute with to_bits() once to_bits is const-stabilized
7     // Convert to raw bytes
8     let x: u32 = unsafe { mem::transmute(value) };
9 
10     // check for NaN
11     if x & 0x7FFF_FFFFu32 > 0x7F80_0000u32 {
12         // Keep high part of current mantissa but also set most significiant mantissa bit
13         return ((x >> 16) | 0x0040u32) as u16;
14     }
15 
16     // round and shift
17     let round_bit = 0x0000_8000u32;
18     if (x & round_bit) != 0 && (x & (3 * round_bit - 1)) != 0 {
19         (x >> 16) as u16 + 1
20     } else {
21         (x >> 16) as u16
22     }
23 }
24 
25 #[inline]
f64_to_bf16(value: f64) -> u1626 pub(crate) const fn f64_to_bf16(value: f64) -> u16 {
27     // TODO: Replace mem::transmute with to_bits() once to_bits is const-stabilized
28     // Convert to raw bytes, truncating the last 32-bits of mantissa; that precision will always
29     // be lost on half-precision.
30     let val: u64 = unsafe { mem::transmute(value) };
31     let x = (val >> 32) as u32;
32 
33     // Extract IEEE754 components
34     let sign = x & 0x8000_0000u32;
35     let exp = x & 0x7FF0_0000u32;
36     let man = x & 0x000F_FFFFu32;
37 
38     // Check for all exponent bits being set, which is Infinity or NaN
39     if exp == 0x7FF0_0000u32 {
40         // Set mantissa MSB for NaN (and also keep shifted mantissa bits).
41         // We also have to check the last 32 bits.
42         let nan_bit = if man == 0 && (val as u32 == 0) {
43             0
44         } else {
45             0x0040u32
46         };
47         return ((sign >> 16) | 0x7F80u32 | nan_bit | (man >> 13)) as u16;
48     }
49 
50     // The number is normalized, start assembling half precision version
51     let half_sign = sign >> 16;
52     // Unbias the exponent, then bias for bfloat16 precision
53     let unbiased_exp = ((exp >> 20) as i64) - 1023;
54     let half_exp = unbiased_exp + 127;
55 
56     // Check for exponent overflow, return +infinity
57     if half_exp >= 0xFF {
58         return (half_sign | 0x7F80u32) as u16;
59     }
60 
61     // Check for underflow
62     if half_exp <= 0 {
63         // Check mantissa for what we can do
64         if 7 - half_exp > 21 {
65             // No rounding possibility, so this is a full underflow, return signed zero
66             return half_sign as u16;
67         }
68         // Don't forget about hidden leading mantissa bit when assembling mantissa
69         let man = man | 0x0010_0000u32;
70         let mut half_man = man >> (14 - half_exp);
71         // Check for rounding
72         let round_bit = 1 << (13 - half_exp);
73         if (man & round_bit) != 0 && (man & (3 * round_bit - 1)) != 0 {
74             half_man += 1;
75         }
76         // No exponent for subnormals
77         return (half_sign | half_man) as u16;
78     }
79 
80     // Rebias the exponent
81     let half_exp = (half_exp as u32) << 7;
82     let half_man = man >> 13;
83     // Check for rounding
84     let round_bit = 0x0000_1000u32;
85     if (man & round_bit) != 0 && (man & (3 * round_bit - 1)) != 0 {
86         // Round it
87         ((half_sign | half_exp | half_man) + 1) as u16
88     } else {
89         (half_sign | half_exp | half_man) as u16
90     }
91 }
92 
93 #[inline]
bf16_to_f32(i: u16) -> f3294 pub(crate) const fn bf16_to_f32(i: u16) -> f32 {
95     // TODO: Replace mem::transmute with from_bits() once from_bits is const-stabilized
96     // If NaN, keep current mantissa but also set most significiant mantissa bit
97     if i & 0x7FFFu16 > 0x7F80u16 {
98         unsafe { mem::transmute((i as u32 | 0x0040u32) << 16) }
99     } else {
100         unsafe { mem::transmute((i as u32) << 16) }
101     }
102 }
103 
104 #[inline]
bf16_to_f64(i: u16) -> f64105 pub(crate) const fn bf16_to_f64(i: u16) -> f64 {
106     // TODO: Replace mem::transmute with from_bits() once from_bits is const-stabilized
107     // Check for signed zero
108     if i & 0x7FFFu16 == 0 {
109         return unsafe { mem::transmute((i as u64) << 48) };
110     }
111 
112     let half_sign = (i & 0x8000u16) as u64;
113     let half_exp = (i & 0x7F80u16) as u64;
114     let half_man = (i & 0x007Fu16) as u64;
115 
116     // Check for an infinity or NaN when all exponent bits set
117     if half_exp == 0x7F80u64 {
118         // Check for signed infinity if mantissa is zero
119         if half_man == 0 {
120             return unsafe { mem::transmute((half_sign << 48) | 0x7FF0_0000_0000_0000u64) };
121         } else {
122             // NaN, keep current mantissa but also set most significiant mantissa bit
123             return unsafe {
124                 mem::transmute((half_sign << 48) | 0x7FF8_0000_0000_0000u64 | (half_man << 45))
125             };
126         }
127     }
128 
129     // Calculate double-precision components with adjusted exponent
130     let sign = half_sign << 48;
131     // Unbias exponent
132     let unbiased_exp = ((half_exp as i64) >> 7) - 127;
133 
134     // Check for subnormals, which will be normalized by adjusting exponent
135     if half_exp == 0 {
136         // Calculate how much to adjust the exponent by
137         let e = leading_zeros_u16(half_man as u16) - 9;
138 
139         // Rebias and adjust exponent
140         let exp = ((1023 - 127 - e) as u64) << 52;
141         let man = (half_man << (46 + e)) & 0xF_FFFF_FFFF_FFFFu64;
142         return unsafe { mem::transmute(sign | exp | man) };
143     }
144     // Rebias exponent for a normalized normal
145     let exp = ((unbiased_exp + 1023) as u64) << 52;
146     let man = (half_man & 0x007Fu64) << 45;
147     unsafe { mem::transmute(sign | exp | man) }
148 }
149