1 /* origin: FreeBSD /usr/src/lib/msun/src/e_exp.c */
2 /*
3  * ====================================================
4  * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Permission to use, copy, modify, and distribute this
7  * software is freely granted, provided that this notice
8  * is preserved.
9  * ====================================================
10  */
11 /* exp(x)
12  * Returns the exponential of x.
13  *
14  * Method
15  *   1. Argument reduction:
16  *      Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
17  *      Given x, find r and integer k such that
18  *
19  *               x = k*ln2 + r,  |r| <= 0.5*ln2.
20  *
21  *      Here r will be represented as r = hi-lo for better
22  *      accuracy.
23  *
24  *   2. Approximation of exp(r) by a special rational function on
25  *      the interval [0,0.34658]:
26  *      Write
27  *          R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
28  *      We use a special Remez algorithm on [0,0.34658] to generate
29  *      a polynomial of degree 5 to approximate R. The maximum error
30  *      of this polynomial approximation is bounded by 2**-59. In
31  *      other words,
32  *          R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
33  *      (where z=r*r, and the values of P1 to P5 are listed below)
34  *      and
35  *          |                  5          |     -59
36  *          | 2.0+P1*z+...+P5*z   -  R(z) | <= 2
37  *          |                             |
38  *      The computation of exp(r) thus becomes
39  *                              2*r
40  *              exp(r) = 1 + ----------
41  *                            R(r) - r
42  *                                 r*c(r)
43  *                     = 1 + r + ----------- (for better accuracy)
44  *                                2 - c(r)
45  *      where
46  *                              2       4             10
47  *              c(r) = r - (P1*r  + P2*r  + ... + P5*r   ).
48  *
49  *   3. Scale back to obtain exp(x):
50  *      From step 1, we have
51  *         exp(x) = 2^k * exp(r)
52  *
53  * Special cases:
54  *      exp(INF) is INF, exp(NaN) is NaN;
55  *      exp(-INF) is 0, and
56  *      for finite argument, only exp(0)=1 is exact.
57  *
58  * Accuracy:
59  *      according to an error analysis, the error is always less than
60  *      1 ulp (unit in the last place).
61  *
62  * Misc. info.
63  *      For IEEE double
64  *          if x >  709.782712893383973096 then exp(x) overflows
65  *          if x < -745.133219101941108420 then exp(x) underflows
66  */
67 
68 use super::scalbn;
69 
70 const HALF: [f64; 2] = [0.5, -0.5];
71 const LN2HI: f64 = 6.93147180369123816490e-01; /* 0x3fe62e42, 0xfee00000 */
72 const LN2LO: f64 = 1.90821492927058770002e-10; /* 0x3dea39ef, 0x35793c76 */
73 const INVLN2: f64 = 1.44269504088896338700e+00; /* 0x3ff71547, 0x652b82fe */
74 const P1: f64 = 1.66666666666666019037e-01; /* 0x3FC55555, 0x5555553E */
75 const P2: f64 = -2.77777777770155933842e-03; /* 0xBF66C16C, 0x16BEBD93 */
76 const P3: f64 = 6.61375632143793436117e-05; /* 0x3F11566A, 0xAF25DE2C */
77 const P4: f64 = -1.65339022054652515390e-06; /* 0xBEBBBD41, 0xC5D26BF1 */
78 const P5: f64 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
79 
80 /// Exponential, base *e* (f64)
81 ///
82 /// Calculate the exponential of `x`, that is, *e* raised to the power `x`
83 /// (where *e* is the base of the natural system of logarithms, approximately 2.71828).
84 #[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
exp(mut x: f64) -> f6485 pub fn exp(mut x: f64) -> f64 {
86     let x1p1023 = f64::from_bits(0x7fe0000000000000); // 0x1p1023 === 2 ^ 1023
87     let x1p_149 = f64::from_bits(0x36a0000000000000); // 0x1p-149 === 2 ^ -149
88 
89     let hi: f64;
90     let lo: f64;
91     let c: f64;
92     let xx: f64;
93     let y: f64;
94     let k: i32;
95     let sign: i32;
96     let mut hx: u32;
97 
98     hx = (x.to_bits() >> 32) as u32;
99     sign = (hx >> 31) as i32;
100     hx &= 0x7fffffff; /* high word of |x| */
101 
102     /* special cases */
103     if hx >= 0x4086232b {
104         /* if |x| >= 708.39... */
105         if x.is_nan() {
106             return x;
107         }
108         if x > 709.782712893383973096 {
109             /* overflow if x!=inf */
110             x *= x1p1023;
111             return x;
112         }
113         if x < -708.39641853226410622 {
114             /* underflow if x!=-inf */
115             force_eval!((-x1p_149 / x) as f32);
116             if x < -745.13321910194110842 {
117                 return 0.;
118             }
119         }
120     }
121 
122     /* argument reduction */
123     if hx > 0x3fd62e42 {
124         /* if |x| > 0.5 ln2 */
125         if hx >= 0x3ff0a2b2 {
126             /* if |x| >= 1.5 ln2 */
127             k = (INVLN2 * x + i!(HALF, sign as usize)) as i32;
128         } else {
129             k = 1 - sign - sign;
130         }
131         hi = x - k as f64 * LN2HI; /* k*ln2hi is exact here */
132         lo = k as f64 * LN2LO;
133         x = hi - lo;
134     } else if hx > 0x3e300000 {
135         /* if |x| > 2**-28 */
136         k = 0;
137         hi = x;
138         lo = 0.;
139     } else {
140         /* inexact if x!=0 */
141         force_eval!(x1p1023 + x);
142         return 1. + x;
143     }
144 
145     /* x is now in primary range */
146     xx = x * x;
147     c = x - xx * (P1 + xx * (P2 + xx * (P3 + xx * (P4 + xx * P5))));
148     y = 1. + (x * c / (2. - c) - lo + hi);
149     if k == 0 {
150         y
151     } else {
152         scalbn(y, k)
153     }
154 }
155