1 /* origin: FreeBSD /usr/src/lib/msun/src/s_expm1f.c */
2 /*
3  * Conversion to float by Ian Lance Taylor, Cygnus Support, [email protected].
4  */
5 /*
6  * ====================================================
7  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
8  *
9  * Developed at SunPro, a Sun Microsystems, Inc. business.
10  * Permission to use, copy, modify, and distribute this
11  * software is freely granted, provided that this notice
12  * is preserved.
13  * ====================================================
14  */
15 
16 const O_THRESHOLD: f32 = 8.8721679688e+01; /* 0x42b17180 */
17 const LN2_HI: f32 = 6.9313812256e-01; /* 0x3f317180 */
18 const LN2_LO: f32 = 9.0580006145e-06; /* 0x3717f7d1 */
19 const INV_LN2: f32 = 1.4426950216e+00; /* 0x3fb8aa3b */
20 /*
21  * Domain [-0.34568, 0.34568], range ~[-6.694e-10, 6.696e-10]:
22  * |6 / x * (1 + 2 * (1 / (exp(x) - 1) - 1 / x)) - q(x)| < 2**-30.04
23  * Scaled coefficients: Qn_here = 2**n * Qn_for_q (see s_expm1.c):
24  */
25 const Q1: f32 = -3.3333212137e-2; /* -0x888868.0p-28 */
26 const Q2: f32 = 1.5807170421e-3; /*  0xcf3010.0p-33 */
27 
28 /// Exponential, base *e*, of x-1 (f32)
29 ///
30 /// Calculates the exponential of `x` and subtract 1, that is, *e* raised
31 /// to the power `x` minus 1 (where *e* is the base of the natural
32 /// system of logarithms, approximately 2.71828).
33 /// The result is accurate even for small values of `x`,
34 /// where using `exp(x)-1` would lose many significant digits.
35 #[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
expm1f(mut x: f32) -> f3236 pub fn expm1f(mut x: f32) -> f32 {
37     let x1p127 = f32::from_bits(0x7f000000); // 0x1p127f === 2 ^ 127
38 
39     let mut hx = x.to_bits();
40     let sign = (hx >> 31) != 0;
41     hx &= 0x7fffffff;
42 
43     /* filter out huge and non-finite argument */
44     if hx >= 0x4195b844 {
45         /* if |x|>=27*ln2 */
46         if hx > 0x7f800000 {
47             /* NaN */
48             return x;
49         }
50         if sign {
51             return -1.;
52         }
53         if x > O_THRESHOLD {
54             x *= x1p127;
55             return x;
56         }
57     }
58 
59     let k: i32;
60     let hi: f32;
61     let lo: f32;
62     let mut c = 0f32;
63     /* argument reduction */
64     if hx > 0x3eb17218 {
65         /* if  |x| > 0.5 ln2 */
66         if hx < 0x3F851592 {
67             /* and |x| < 1.5 ln2 */
68             if !sign {
69                 hi = x - LN2_HI;
70                 lo = LN2_LO;
71                 k = 1;
72             } else {
73                 hi = x + LN2_HI;
74                 lo = -LN2_LO;
75                 k = -1;
76             }
77         } else {
78             k = (INV_LN2 * x + (if sign { -0.5 } else { 0.5 })) as i32;
79             let t = k as f32;
80             hi = x - t * LN2_HI; /* t*ln2_hi is exact here */
81             lo = t * LN2_LO;
82         }
83         x = hi - lo;
84         c = (hi - x) - lo;
85     } else if hx < 0x33000000 {
86         /* when |x|<2**-25, return x */
87         if hx < 0x00800000 {
88             force_eval!(x * x);
89         }
90         return x;
91     } else {
92         k = 0;
93     }
94 
95     /* x is now in primary range */
96     let hfx = 0.5 * x;
97     let hxs = x * hfx;
98     let r1 = 1. + hxs * (Q1 + hxs * Q2);
99     let t = 3. - r1 * hfx;
100     let mut e = hxs * ((r1 - t) / (6. - x * t));
101     if k == 0 {
102         /* c is 0 */
103         return x - (x * e - hxs);
104     }
105     e = x * (e - c) - c;
106     e -= hxs;
107     /* exp(x) ~ 2^k (x_reduced - e + 1) */
108     if k == -1 {
109         return 0.5 * (x - e) - 0.5;
110     }
111     if k == 1 {
112         if x < -0.25 {
113             return -2. * (e - (x + 0.5));
114         }
115         return 1. + 2. * (x - e);
116     }
117     let twopk = f32::from_bits(((0x7f + k) << 23) as u32); /* 2^k */
118     if (k < 0) || (k > 56) {
119         /* suffice to return exp(x)-1 */
120         let mut y = x - e + 1.;
121         if k == 128 {
122             y = y * 2. * x1p127;
123         } else {
124             y = y * twopk;
125         }
126         return y - 1.;
127     }
128     let uf = f32::from_bits(((0x7f - k) << 23) as u32); /* 2^-k */
129     if k < 23 {
130         (x - e + (1. - uf)) * twopk
131     } else {
132         (x - (e + uf) + 1.) * twopk
133     }
134 }
135