1 //! The block decompression algorithm.
2 use crate::block::{DecompressError, MINMATCH};
3 use crate::fastcpy_unsafe;
4 use crate::sink::SliceSink;
5 use crate::sink::{PtrSink, Sink};
6 use alloc::vec::Vec;
7
8 /// Copies data to output_ptr by self-referential copy from start and match_length
9 #[inline]
duplicate( output_ptr: &mut *mut u8, output_end: *mut u8, start: *const u8, match_length: usize, )10 unsafe fn duplicate(
11 output_ptr: &mut *mut u8,
12 output_end: *mut u8,
13 start: *const u8,
14 match_length: usize,
15 ) {
16 // We cannot simply use memcpy or `extend_from_slice`, because these do not allow
17 // self-referential copies: http://ticki.github.io/img/lz4_runs_encoding_diagram.svg
18
19 // Considering that `wild_copy_match_16` can copy up to `16 - 1` extra bytes.
20 // Defer to `duplicate_overlapping` in case of an overlapping match
21 // OR the if the wild copy would copy beyond the end of the output.
22 if (output_ptr.offset_from(start) as usize) < match_length + 16 - 1
23 || (output_end.offset_from(*output_ptr) as usize) < match_length + 16 - 1
24 {
25 duplicate_overlapping(output_ptr, start, match_length);
26 } else {
27 debug_assert!(
28 output_ptr.add(match_length / 16 * 16 + ((match_length % 16) != 0) as usize * 16)
29 <= output_end
30 );
31 wild_copy_from_src_16(start, *output_ptr, match_length);
32 *output_ptr = output_ptr.add(match_length);
33 }
34 }
35
36 #[inline]
wild_copy_from_src_16(mut source: *const u8, mut dst_ptr: *mut u8, num_items: usize)37 fn wild_copy_from_src_16(mut source: *const u8, mut dst_ptr: *mut u8, num_items: usize) {
38 // Note: if the compiler auto-vectorizes this it'll hurt performance!
39 // It's not the case for 16 bytes stepsize, but for 8 bytes.
40 unsafe {
41 let dst_ptr_end = dst_ptr.add(num_items);
42 loop {
43 core::ptr::copy_nonoverlapping(source, dst_ptr, 16);
44 source = source.add(16);
45 dst_ptr = dst_ptr.add(16);
46 if dst_ptr >= dst_ptr_end {
47 break;
48 }
49 }
50 }
51 }
52
53 /// Copy function, if the data start + match_length overlaps into output_ptr
54 #[inline]
55 #[cfg_attr(nightly, optimize(size))] // to avoid loop unrolling
duplicate_overlapping( output_ptr: &mut *mut u8, mut start: *const u8, match_length: usize, )56 unsafe fn duplicate_overlapping(
57 output_ptr: &mut *mut u8,
58 mut start: *const u8,
59 match_length: usize,
60 ) {
61 // There is an edge case when output_ptr == start, which causes the decoder to potentially
62 // expose up to match_length bytes of uninitialized data in the decompression buffer.
63 // To prevent that we write a dummy zero to output, which will zero out output in such cases.
64 // This is the same strategy used by the reference C implementation https://github.com/lz4/lz4/pull/772
65 output_ptr.write(0u8);
66 let dst_ptr_end = output_ptr.add(match_length);
67
68 while output_ptr.add(1) < dst_ptr_end {
69 // Note that this loop unrolling is done, so that the compiler doesn't do it in a awful
70 // way.
71 // Without that the compiler will unroll/auto-vectorize the copy with a lot of branches.
72 // This is not what we want, as large overlapping copies are not that common.
73 core::ptr::copy(start, *output_ptr, 1);
74 start = start.add(1);
75 *output_ptr = output_ptr.add(1);
76
77 core::ptr::copy(start, *output_ptr, 1);
78 start = start.add(1);
79 *output_ptr = output_ptr.add(1);
80 }
81
82 if *output_ptr < dst_ptr_end {
83 core::ptr::copy(start, *output_ptr, 1);
84 *output_ptr = output_ptr.add(1);
85 }
86 }
87
88 #[inline]
copy_from_dict( output_base: *mut u8, output_ptr: &mut *mut u8, ext_dict: &[u8], offset: usize, match_length: usize, ) -> usize89 unsafe fn copy_from_dict(
90 output_base: *mut u8,
91 output_ptr: &mut *mut u8,
92 ext_dict: &[u8],
93 offset: usize,
94 match_length: usize,
95 ) -> usize {
96 // If we're here we know offset > output pos, so we have at least 1 byte to copy from dict
97 debug_assert!(output_ptr.offset_from(output_base) >= 0);
98 debug_assert!(offset > output_ptr.offset_from(output_base) as usize);
99 // If unchecked-decode is not disabled we also know that the offset falls within ext_dict
100 debug_assert!(ext_dict.len() + output_ptr.offset_from(output_base) as usize >= offset);
101
102 let dict_offset = ext_dict.len() + output_ptr.offset_from(output_base) as usize - offset;
103 // Can't copy past ext_dict len, the match may cross dict and output
104 let dict_match_length = match_length.min(ext_dict.len() - dict_offset);
105 // TODO test fastcpy_unsafe
106 core::ptr::copy_nonoverlapping(
107 ext_dict.as_ptr().add(dict_offset),
108 *output_ptr,
109 dict_match_length,
110 );
111 *output_ptr = output_ptr.add(dict_match_length);
112 dict_match_length
113 }
114
115 /// Read an integer.
116 ///
117 /// In LZ4, we encode small integers in a way that we can have an arbitrary number of bytes. In
118 /// particular, we add the bytes repeatedly until we hit a non-0xFF byte. When we do, we add
119 /// this byte to our sum and terminate the loop.
120 ///
121 /// # Example
122 ///
123 /// ```notest
124 /// 255, 255, 255, 4, 2, 3, 4, 6, 7
125 /// ```
126 ///
127 /// is encoded to _255 + 255 + 255 + 4 = 769_. The bytes after the first 4 is ignored, because
128 /// 4 is the first non-0xFF byte.
129 #[inline]
read_integer_ptr( input_ptr: &mut *const u8, _input_ptr_end: *const u8, ) -> Result<u32, DecompressError>130 fn read_integer_ptr(
131 input_ptr: &mut *const u8,
132 _input_ptr_end: *const u8,
133 ) -> Result<u32, DecompressError> {
134 // We start at zero and count upwards.
135 let mut n: u32 = 0;
136 // If this byte takes value 255 (the maximum value it can take), another byte is read
137 // and added to the sum. This repeats until a byte lower than 255 is read.
138 loop {
139 // We add the next byte until we get a byte which we add to the counting variable.
140
141 #[cfg(not(feature = "unchecked-decode"))]
142 {
143 if *input_ptr >= _input_ptr_end {
144 return Err(DecompressError::ExpectedAnotherByte);
145 }
146 }
147 let extra = unsafe { input_ptr.read() };
148 *input_ptr = unsafe { input_ptr.add(1) };
149 n += extra as u32;
150
151 // We continue if we got 255, break otherwise.
152 if extra != 0xFF {
153 break;
154 }
155 }
156
157 // 255, 255, 255, 8
158 // 111, 111, 111, 101
159
160 Ok(n)
161 }
162
163 /// Read a little-endian 16-bit integer from the input stream.
164 #[inline]
read_u16_ptr(input_ptr: &mut *const u8) -> u16165 fn read_u16_ptr(input_ptr: &mut *const u8) -> u16 {
166 let mut num: u16 = 0;
167 unsafe {
168 core::ptr::copy_nonoverlapping(*input_ptr, &mut num as *mut u16 as *mut u8, 2);
169 *input_ptr = input_ptr.add(2);
170 }
171
172 u16::from_le(num)
173 }
174
175 const FIT_TOKEN_MASK_LITERAL: u8 = 0b00001111;
176 const FIT_TOKEN_MASK_MATCH: u8 = 0b11110000;
177
178 #[test]
check_token()179 fn check_token() {
180 assert!(!does_token_fit(15));
181 assert!(does_token_fit(14));
182 assert!(does_token_fit(114));
183 assert!(!does_token_fit(0b11110000));
184 assert!(does_token_fit(0b10110000));
185 }
186
187 /// The token consists of two parts, the literal length (upper 4 bits) and match_length (lower 4
188 /// bits) if the literal length and match_length are both below 15, we don't need to read additional
189 /// data, so the token does fit the metadata in a single u8.
190 #[inline]
does_token_fit(token: u8) -> bool191 fn does_token_fit(token: u8) -> bool {
192 !((token & FIT_TOKEN_MASK_LITERAL) == FIT_TOKEN_MASK_LITERAL
193 || (token & FIT_TOKEN_MASK_MATCH) == FIT_TOKEN_MASK_MATCH)
194 }
195
196 /// Decompress all bytes of `input` into `output`.
197 ///
198 /// Returns the number of bytes written (decompressed) into `output`.
199 #[inline]
decompress_internal<const USE_DICT: bool, S: Sink>( input: &[u8], output: &mut S, ext_dict: &[u8], ) -> Result<usize, DecompressError>200 pub(crate) fn decompress_internal<const USE_DICT: bool, S: Sink>(
201 input: &[u8],
202 output: &mut S,
203 ext_dict: &[u8],
204 ) -> Result<usize, DecompressError> {
205 // Prevent segfault for empty input
206 if input.is_empty() {
207 return Err(DecompressError::ExpectedAnotherByte);
208 }
209
210 let ext_dict = if USE_DICT {
211 ext_dict
212 } else {
213 // ensure optimizer knows ext_dict length is 0 if !USE_DICT
214 debug_assert!(ext_dict.is_empty());
215 &[]
216 };
217 let output_base = unsafe { output.base_mut_ptr() };
218 let output_end = unsafe { output_base.add(output.capacity()) };
219 let output_start_pos_ptr = unsafe { output.base_mut_ptr().add(output.pos()) as *mut u8 };
220 let mut output_ptr = output_start_pos_ptr;
221
222 let mut input_ptr = input.as_ptr();
223 let input_ptr_end = unsafe { input.as_ptr().add(input.len()) };
224 let safe_distance_from_end = (16 /* literal copy */ + 2 /* u16 match offset */ + 1 /* The next token to read (we can skip the check) */).min(input.len()) ;
225 let input_ptr_safe = unsafe { input_ptr_end.sub(safe_distance_from_end) };
226
227 let safe_output_ptr = unsafe {
228 let mut output_num_safe_bytes = output
229 .capacity()
230 .saturating_sub(16 /* literal copy */ + 18 /* match copy */);
231 if USE_DICT {
232 // In the dictionary case the output pointer is moved by the match length in the dictionary.
233 // This may be up to 17 bytes without exiting the loop. So we need to ensure that we have
234 // at least additional 17 bytes of space left in the output buffer in the fast loop.
235 output_num_safe_bytes = output_num_safe_bytes.saturating_sub(17);
236 };
237
238 output_base.add(output_num_safe_bytes)
239 };
240
241 // Exhaust the decoder by reading and decompressing all blocks until the remaining buffer is
242 // empty.
243 loop {
244 // Read the token. The token is the first byte in a block. It is divided into two 4-bit
245 // subtokens, the higher and the lower.
246 // This token contains to 4-bit "fields", a higher and a lower, representing the literals'
247 // length and the back reference's length, respectively.
248 let token = unsafe { input_ptr.read() };
249 input_ptr = unsafe { input_ptr.add(1) };
250
251 // Checking for hot-loop.
252 // In most cases the metadata does fit in a single 1byte token (statistically) and we are in
253 // a safe-distance to the end. This enables some optimized handling.
254 //
255 // Ideally we want to check for safe output pos like: output.pos() <= safe_output_pos; But
256 // that doesn't work when the safe_output_ptr is == output_ptr due to insufficient
257 // capacity. So we use `<` instead of `<=`, which covers that case.
258 if does_token_fit(token)
259 && (input_ptr as usize) <= input_ptr_safe as usize
260 && output_ptr < safe_output_ptr
261 {
262 let literal_length = (token >> 4) as usize;
263 let mut match_length = MINMATCH + (token & 0xF) as usize;
264
265 // output_ptr <= safe_output_ptr should guarantee we have enough space in output
266 debug_assert!(
267 unsafe { output_ptr.add(literal_length + match_length) } <= output_end,
268 "{literal_length} + {match_length} {} wont fit ",
269 literal_length + match_length
270 );
271
272 // Copy the literal
273 // The literal is at max 16 bytes, and the is_safe_distance check assures
274 // that we are far away enough from the end so we can safely copy 16 bytes
275 unsafe {
276 core::ptr::copy_nonoverlapping(input_ptr, output_ptr, 16);
277 input_ptr = input_ptr.add(literal_length);
278 output_ptr = output_ptr.add(literal_length);
279 }
280
281 // input_ptr <= input_ptr_safe should guarantee we have enough space in input
282 debug_assert!(input_ptr_end as usize - input_ptr as usize >= 2);
283 let offset = read_u16_ptr(&mut input_ptr) as usize;
284
285 let output_len = unsafe { output_ptr.offset_from(output_base) as usize };
286 let offset = offset.min(output_len + ext_dict.len());
287
288 // Check if part of the match is in the external dict
289 if USE_DICT && offset > output_len {
290 let copied = unsafe {
291 copy_from_dict(output_base, &mut output_ptr, ext_dict, offset, match_length)
292 };
293 if copied == match_length {
294 continue;
295 }
296 // match crosses ext_dict and output
297 match_length -= copied;
298 }
299
300 // Calculate the start of this duplicate segment. At this point offset was already
301 // checked to be in bounds and the external dictionary copy, if any, was
302 // already copied and subtracted from match_length.
303 let start_ptr = unsafe { output_ptr.sub(offset) };
304 debug_assert!(start_ptr >= output_base);
305 debug_assert!(start_ptr < output_end);
306 debug_assert!(unsafe { output_end.offset_from(start_ptr) as usize } >= match_length);
307
308 // In this branch we know that match_length is at most 18 (14 + MINMATCH).
309 // But the blocks can overlap, so make sure they are at least 18 bytes apart
310 // to enable an optimized copy of 18 bytes.
311 if offset >= match_length {
312 unsafe {
313 // _copy_, not copy_non_overlaping, as it may overlap.
314 // Compiles to the same assembly on x68_64.
315 core::ptr::copy(start_ptr, output_ptr, 18);
316 output_ptr = output_ptr.add(match_length);
317 }
318 } else {
319 unsafe {
320 duplicate_overlapping(&mut output_ptr, start_ptr, match_length);
321 }
322 }
323
324 continue;
325 }
326
327 // Now, we read the literals section.
328 // Literal Section
329 // If the initial value is 15, it is indicated that another byte will be read and added to
330 // it
331 let mut literal_length = (token >> 4) as usize;
332 if literal_length != 0 {
333 if literal_length == 15 {
334 // The literal_length length took the maximal value, indicating that there is more
335 // than 15 literal_length bytes. We read the extra integer.
336 literal_length += read_integer_ptr(&mut input_ptr, input_ptr_end)? as usize;
337 }
338
339 #[cfg(not(feature = "unchecked-decode"))]
340 {
341 // Check if literal is out of bounds for the input, and if there is enough space on
342 // the output
343 if literal_length > input_ptr_end as usize - input_ptr as usize {
344 return Err(DecompressError::LiteralOutOfBounds);
345 }
346 if literal_length > unsafe { output_end.offset_from(output_ptr) as usize } {
347 return Err(DecompressError::OutputTooSmall {
348 expected: unsafe { output_ptr.offset_from(output_base) as usize }
349 + literal_length,
350 actual: output.capacity(),
351 });
352 }
353 }
354 unsafe {
355 fastcpy_unsafe::slice_copy(input_ptr, output_ptr, literal_length);
356 output_ptr = output_ptr.add(literal_length);
357 input_ptr = input_ptr.add(literal_length);
358 }
359 }
360
361 // If the input stream is emptied, we break out of the loop. This is only the case
362 // in the end of the stream, since the block is intact otherwise.
363 if input_ptr >= input_ptr_end {
364 break;
365 }
366
367 // Read duplicate section
368 #[cfg(not(feature = "unchecked-decode"))]
369 {
370 if (input_ptr_end as usize) - (input_ptr as usize) < 2 {
371 return Err(DecompressError::ExpectedAnotherByte);
372 }
373 }
374 let offset = read_u16_ptr(&mut input_ptr) as usize;
375 // Obtain the initial match length. The match length is the length of the duplicate segment
376 // which will later be copied from data previously decompressed into the output buffer. The
377 // initial length is derived from the second part of the token (the lower nibble), we read
378 // earlier. Since having a match length of less than 4 would mean negative compression
379 // ratio, we start at 4 (MINMATCH).
380
381 // The initial match length can maximally be 19 (MINMATCH + 15). As with the literal length,
382 // this indicates that there are more bytes to read.
383 let mut match_length = MINMATCH + (token & 0xF) as usize;
384 if match_length == MINMATCH + 15 {
385 // The match length took the maximal value, indicating that there is more bytes. We
386 // read the extra integer.
387 match_length += read_integer_ptr(&mut input_ptr, input_ptr_end)? as usize;
388 }
389
390 // We now copy from the already decompressed buffer. This allows us for storing duplicates
391 // by simply referencing the other location.
392 let output_len = unsafe { output_ptr.offset_from(output_base) as usize };
393
394 // We'll do a bounds check except unchecked-decode is enabled.
395 #[cfg(not(feature = "unchecked-decode"))]
396 {
397 if offset > output_len + ext_dict.len() {
398 return Err(DecompressError::OffsetOutOfBounds);
399 }
400 if match_length > unsafe { output_end.offset_from(output_ptr) as usize } {
401 return Err(DecompressError::OutputTooSmall {
402 expected: output_len + match_length,
403 actual: output.capacity(),
404 });
405 }
406 }
407
408 if USE_DICT && offset > output_len {
409 let copied = unsafe {
410 copy_from_dict(output_base, &mut output_ptr, ext_dict, offset, match_length)
411 };
412 if copied == match_length {
413 #[cfg(not(feature = "unchecked-decode"))]
414 {
415 if input_ptr >= input_ptr_end {
416 return Err(DecompressError::ExpectedAnotherByte);
417 }
418 }
419
420 continue;
421 }
422 // match crosses ext_dict and output
423 match_length -= copied;
424 }
425
426 // Calculate the start of this duplicate segment. At this point offset was already checked
427 // to be in bounds and the external dictionary copy, if any, was already copied and
428 // subtracted from match_length.
429 let start_ptr = unsafe { output_ptr.sub(offset) };
430 debug_assert!(start_ptr >= output_base);
431 debug_assert!(start_ptr < output_end);
432 debug_assert!(unsafe { output_end.offset_from(start_ptr) as usize } >= match_length);
433 unsafe {
434 duplicate(&mut output_ptr, output_end, start_ptr, match_length);
435 }
436 #[cfg(not(feature = "unchecked-decode"))]
437 {
438 if input_ptr >= input_ptr_end {
439 return Err(DecompressError::ExpectedAnotherByte);
440 }
441 }
442 }
443 unsafe {
444 output.set_pos(output_ptr.offset_from(output_base) as usize);
445 Ok(output_ptr.offset_from(output_start_pos_ptr) as usize)
446 }
447 }
448
449 /// Decompress all bytes of `input` into `output`.
450 /// `output` should be preallocated with a size of of the uncompressed data.
451 #[inline]
decompress_into(input: &[u8], output: &mut [u8]) -> Result<usize, DecompressError>452 pub fn decompress_into(input: &[u8], output: &mut [u8]) -> Result<usize, DecompressError> {
453 decompress_internal::<false, _>(input, &mut SliceSink::new(output, 0), b"")
454 }
455
456 /// Decompress all bytes of `input` into `output`.
457 ///
458 /// Returns the number of bytes written (decompressed) into `output`.
459 #[inline]
decompress_into_with_dict( input: &[u8], output: &mut [u8], ext_dict: &[u8], ) -> Result<usize, DecompressError>460 pub fn decompress_into_with_dict(
461 input: &[u8],
462 output: &mut [u8],
463 ext_dict: &[u8],
464 ) -> Result<usize, DecompressError> {
465 decompress_internal::<true, _>(input, &mut SliceSink::new(output, 0), ext_dict)
466 }
467
468 /// Decompress all bytes of `input` into a new vec.
469 /// The passed parameter `min_uncompressed_size` needs to be equal or larger than the uncompressed size.
470 ///
471 /// # Panics
472 /// May panic if the parameter `min_uncompressed_size` is smaller than the
473 /// uncompressed data.
474
475 #[inline]
decompress_with_dict( input: &[u8], min_uncompressed_size: usize, ext_dict: &[u8], ) -> Result<Vec<u8>, DecompressError>476 pub fn decompress_with_dict(
477 input: &[u8],
478 min_uncompressed_size: usize,
479 ext_dict: &[u8],
480 ) -> Result<Vec<u8>, DecompressError> {
481 // Allocate a vector to contain the decompressed stream.
482 let mut vec = Vec::with_capacity(min_uncompressed_size);
483 let decomp_len =
484 decompress_internal::<true, _>(input, &mut PtrSink::from_vec(&mut vec, 0), ext_dict)?;
485 unsafe {
486 vec.set_len(decomp_len);
487 }
488 Ok(vec)
489 }
490
491 /// Decompress all bytes of `input` into a new vec. The first 4 bytes are the uncompressed size in
492 /// little endian. Can be used in conjunction with `compress_prepend_size`
493 #[inline]
decompress_size_prepended(input: &[u8]) -> Result<Vec<u8>, DecompressError>494 pub fn decompress_size_prepended(input: &[u8]) -> Result<Vec<u8>, DecompressError> {
495 let (uncompressed_size, input) = super::uncompressed_size(input)?;
496 decompress(input, uncompressed_size)
497 }
498
499 /// Decompress all bytes of `input` into a new vec.
500 /// The passed parameter `min_uncompressed_size` needs to be equal or larger than the uncompressed size.
501 ///
502 /// # Panics
503 /// May panic if the parameter `min_uncompressed_size` is smaller than the
504 /// uncompressed data.
505 #[inline]
decompress(input: &[u8], min_uncompressed_size: usize) -> Result<Vec<u8>, DecompressError>506 pub fn decompress(input: &[u8], min_uncompressed_size: usize) -> Result<Vec<u8>, DecompressError> {
507 // Allocate a vector to contain the decompressed stream.
508 let mut vec = Vec::with_capacity(min_uncompressed_size);
509 let decomp_len =
510 decompress_internal::<true, _>(input, &mut PtrSink::from_vec(&mut vec, 0), b"")?;
511 unsafe {
512 vec.set_len(decomp_len);
513 }
514 Ok(vec)
515 }
516
517 /// Decompress all bytes of `input` into a new vec. The first 4 bytes are the uncompressed size in
518 /// little endian. Can be used in conjunction with `compress_prepend_size_with_dict`
519 #[inline]
decompress_size_prepended_with_dict( input: &[u8], ext_dict: &[u8], ) -> Result<Vec<u8>, DecompressError>520 pub fn decompress_size_prepended_with_dict(
521 input: &[u8],
522 ext_dict: &[u8],
523 ) -> Result<Vec<u8>, DecompressError> {
524 let (uncompressed_size, input) = super::uncompressed_size(input)?;
525 decompress_with_dict(input, uncompressed_size, ext_dict)
526 }
527
528 #[cfg(test)]
529 mod test {
530 use super::*;
531
532 #[test]
all_literal()533 fn all_literal() {
534 assert_eq!(decompress(&[0x30, b'a', b'4', b'9'], 3).unwrap(), b"a49");
535 }
536
537 // this error test is only valid with checked-decode.
538 #[cfg(not(feature = "unchecked-decode"))]
539 #[test]
offset_oob()540 fn offset_oob() {
541 decompress(&[0x10, b'a', 2, 0], 4).unwrap_err();
542 decompress(&[0x40, b'a', 1, 0], 4).unwrap_err();
543 }
544 }
545