1 use crate::{
2     element::{Drawable, PointCollection},
3     style::{IntoFont, RGBColor, TextStyle, BLACK},
4 };
5 use plotters_backend::{BackendCoord, DrawingBackend, DrawingErrorKind};
6 use std::{error::Error, f64::consts::PI, fmt::Display};
7 
8 #[derive(Debug)]
9 enum PieError {
10     LengthMismatch,
11 }
12 impl Display for PieError {
fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result13     fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
14         match self {
15             &PieError::LengthMismatch => write!(f, "Length Mismatch"),
16         }
17     }
18 }
19 
20 impl Error for PieError {}
21 
22 /// A Pie Graph
23 pub struct Pie<'a, Coord, Label: Display> {
24     center: &'a Coord, // cartesian coord
25     radius: &'a f64,
26     sizes: &'a [f64],
27     colors: &'a [RGBColor],
28     labels: &'a [Label],
29     total: f64,
30     start_radian: f64,
31     label_style: TextStyle<'a>,
32     label_offset: f64,
33     percentage_style: Option<TextStyle<'a>>,
34 }
35 
36 impl<'a, Label: Display> Pie<'a, (i32, i32), Label> {
37     /// Build a Pie object.
38     /// Assumes a start angle at 0.0, which is aligned to the horizontal axis.
new( center: &'a (i32, i32), radius: &'a f64, sizes: &'a [f64], colors: &'a [RGBColor], labels: &'a [Label], ) -> Self39     pub fn new(
40         center: &'a (i32, i32),
41         radius: &'a f64,
42         sizes: &'a [f64],
43         colors: &'a [RGBColor],
44         labels: &'a [Label],
45     ) -> Self {
46         // fold iterator to pre-calculate total from given slice sizes
47         let total = sizes.iter().sum();
48 
49         // default label style and offset as 5% of the radius
50         let radius_5pct = radius * 0.05;
51 
52         // strong assumption that the background is white for legibility.
53         let label_style = TextStyle::from(("sans-serif", radius_5pct).into_font()).color(&BLACK);
54         Self {
55             center,
56             radius,
57             sizes,
58             colors,
59             labels,
60             total,
61             start_radian: 0.0,
62             label_style,
63             label_offset: radius_5pct,
64             percentage_style: None,
65         }
66     }
67 
68     /// Pass an angle in degrees to change the default.
69     /// Default is set to start at 0, which is aligned on the x axis.
70     /// ```
71     /// use plotters::prelude::*;
72     /// let mut pie = Pie::new(&(50,50), &10.0, &[50.0, 25.25, 20.0, 5.5], &[RED, BLUE, GREEN, WHITE], &["Red", "Blue", "Green", "White"]);
73     /// pie.start_angle(-90.0);  // retract to a right angle, so it starts aligned to a vertical Y axis.
74     /// ```
start_angle(&mut self, start_angle: f64)75     pub fn start_angle(&mut self, start_angle: f64) {
76         // angle is more intuitive in degrees as an API, but we use it as radian offset internally.
77         self.start_radian = start_angle.to_radians();
78     }
79 
80     ///
label_style<T: Into<TextStyle<'a>>>(&mut self, label_style: T)81     pub fn label_style<T: Into<TextStyle<'a>>>(&mut self, label_style: T) {
82         self.label_style = label_style.into();
83     }
84 
85     /// Sets the offset to labels, to distanciate them further/closer from the center.
label_offset(&mut self, offset_to_radius: f64)86     pub fn label_offset(&mut self, offset_to_radius: f64) {
87         self.label_offset = offset_to_radius
88     }
89 
90     /// enables drawing the wedge's percentage in the middle of the wedge, with the given style
percentages<T: Into<TextStyle<'a>>>(&mut self, label_style: T)91     pub fn percentages<T: Into<TextStyle<'a>>>(&mut self, label_style: T) {
92         self.percentage_style = Some(label_style.into());
93     }
94 }
95 
96 impl<'a, DB: DrawingBackend, Label: Display> Drawable<DB> for Pie<'a, (i32, i32), Label> {
draw<I: Iterator<Item = BackendCoord>>( &self, _pos: I, backend: &mut DB, _parent_dim: (u32, u32), ) -> Result<(), DrawingErrorKind<DB::ErrorType>>97     fn draw<I: Iterator<Item = BackendCoord>>(
98         &self,
99         _pos: I,
100         backend: &mut DB,
101         _parent_dim: (u32, u32),
102     ) -> Result<(), DrawingErrorKind<DB::ErrorType>> {
103         let mut offset_theta = self.start_radian;
104 
105         // const reused for every radian calculation
106         // the bigger the radius, the more fine-grained it should calculate
107         // to avoid being aliasing from being too noticeable.
108         // this all could be avoided if backend could draw a curve/bezier line as part of a polygon.
109         let radian_increment = PI / 180.0 / self.radius.sqrt() * 2.0;
110         let mut perc_labels = Vec::new();
111         for (index, slice) in self.sizes.iter().enumerate() {
112             let slice_style = self
113                 .colors
114                 .get(index)
115                 .ok_or_else(|| DrawingErrorKind::FontError(Box::new(PieError::LengthMismatch)))?;
116             let label = self
117                 .labels
118                 .get(index)
119                 .ok_or_else(|| DrawingErrorKind::FontError(Box::new(PieError::LengthMismatch)))?;
120             // start building wedge line against the previous edge
121             let mut points = vec![*self.center];
122             let ratio = slice / self.total;
123             let theta_final = ratio * 2.0 * PI + offset_theta; // end radian for the wedge
124 
125             // calculate middle for labels before mutating offset
126             let middle_theta = ratio * PI + offset_theta;
127 
128             // calculate every fraction of radian for the wedge, offsetting for every iteration, clockwise
129             //
130             // a custom Range such as `for theta in offset_theta..=theta_final` would be more elegant
131             // but f64 doesn't implement the Range trait, and it would requires the Step trait (increment by 1.0 or 0.0001?)
132             // which is unstable therefore cannot be implemented outside of std, even as a newtype for radians.
133             while offset_theta <= theta_final {
134                 let coord = theta_to_ordinal_coord(*self.radius, offset_theta, self.center);
135                 points.push(coord);
136                 offset_theta += radian_increment;
137             }
138             // final point of the wedge may not fall exactly on a radian, so add it extra
139             let final_coord = theta_to_ordinal_coord(*self.radius, theta_final, self.center);
140             points.push(final_coord);
141             // next wedge calculation will start from previous wedges's last radian
142             offset_theta = theta_final;
143 
144             // draw wedge
145             // TODO: Currently the backend doesn't have API to draw an arc. We need add that in the
146             // future
147             backend.fill_polygon(points, slice_style)?;
148 
149             // label coords from the middle
150             let mut mid_coord =
151                 theta_to_ordinal_coord(self.radius + self.label_offset, middle_theta, self.center);
152 
153             // ensure label's doesn't fall in the circle
154             let label_size = backend.estimate_text_size(&label.to_string(), &self.label_style)?;
155             // if on the left hand side of the pie, offset whole label to the left
156             if mid_coord.0 <= self.center.0 {
157                 mid_coord.0 -= label_size.0 as i32;
158             }
159             // put label
160             backend.draw_text(&label.to_string(), &self.label_style, mid_coord)?;
161             if let Some(percentage_style) = &self.percentage_style {
162                 let perc_label = format!("{:.1}%", (ratio * 100.0));
163                 let label_size = backend.estimate_text_size(&perc_label, percentage_style)?;
164                 let text_x_mid = (label_size.0 as f64 / 2.0).round() as i32;
165                 let text_y_mid = (label_size.1 as f64 / 2.0).round() as i32;
166                 let perc_coord = theta_to_ordinal_coord(
167                     self.radius / 2.0,
168                     middle_theta,
169                     &(self.center.0 - text_x_mid, self.center.1 - text_y_mid),
170                 );
171                 // perc_coord.0 -= middle_label_size.0.round() as i32;
172                 perc_labels.push((perc_label, perc_coord));
173             }
174         }
175         // while percentages are generated during the first main iterations,
176         // they have to go on top of the already drawn wedges, so require a new iteration.
177         for (label, coord) in perc_labels {
178             let style = self.percentage_style.as_ref().unwrap();
179             backend.draw_text(&label, style, coord)?;
180         }
181         Ok(())
182     }
183 }
184 
185 impl<'a, Label: Display> PointCollection<'a, (i32, i32)> for &'a Pie<'a, (i32, i32), Label> {
186     type Point = &'a (i32, i32);
187     type IntoIter = std::iter::Once<&'a (i32, i32)>;
point_iter(self) -> std::iter::Once<&'a (i32, i32)>188     fn point_iter(self) -> std::iter::Once<&'a (i32, i32)> {
189         std::iter::once(self.center)
190     }
191 }
192 
theta_to_ordinal_coord(radius: f64, theta: f64, ordinal_offset: &(i32, i32)) -> (i32, i32)193 fn theta_to_ordinal_coord(radius: f64, theta: f64, ordinal_offset: &(i32, i32)) -> (i32, i32) {
194     // polar coordinates are (r, theta)
195     // convert to (x, y) coord, with center as offset
196 
197     let (sin, cos) = theta.sin_cos();
198     (
199         // casting f64 to discrete i32 pixels coordinates is inevitably going to lose precision
200         // if plotters can support float coordinates, this place would surely benefit, especially for small sizes.
201         // so far, the result isn't so bad though
202         (radius * cos + ordinal_offset.0 as f64).round() as i32, // x
203         (radius * sin + ordinal_offset.1 as f64).round() as i32, // y
204     )
205 }
206 #[cfg(test)]
207 mod test {
208     use super::*;
209     // use crate::prelude::*;
210 
211     #[test]
polar_coord_to_cartestian_coord()212     fn polar_coord_to_cartestian_coord() {
213         let coord = theta_to_ordinal_coord(800.0, 1.5_f64.to_radians(), &(5, 5));
214         // rounded tends to be more accurate. this gets truncated to (804, 25) without rounding.
215         assert_eq!(coord, (805, 26)); //coord calculated from theta
216     }
217     #[test]
pie_calculations()218     fn pie_calculations() {
219         let mut center = (5, 5);
220         let mut radius = 800.0;
221 
222         let sizes = vec![50.0, 25.0];
223         // length isn't validated in new()
224         let colors = vec![];
225         let labels: Vec<&str> = vec![];
226         let pie = Pie::new(&center, &radius, &sizes, &colors, &labels);
227         assert_eq!(pie.total, 75.0); // total calculated from sizes
228 
229         // not ownership greedy
230         center.1 += 1;
231         radius += 1.0;
232         assert!(colors.get(0).is_none());
233         assert!(labels.get(0).is_none());
234         assert_eq!(radius, 801.0);
235     }
236 }
237