1 /*
2  * Copyright 2014-2016 The OpenSSL Project Authors. All Rights Reserved.
3  * Copyright (c) 2014, Intel Corporation. All Rights Reserved.
4  *
5  * Licensed under the OpenSSL license (the "License").  You may not use
6  * this file except in compliance with the License.  You can obtain a copy
7  * in the file LICENSE in the source distribution or at
8  * https://www.openssl.org/source/license.html
9  *
10  * Originally written by Shay Gueron (1, 2), and Vlad Krasnov (1)
11  * (1) Intel Corporation, Israel Development Center, Haifa, Israel
12  * (2) University of Haifa, Israel
13  *
14  * Reference:
15  * S.Gueron and V.Krasnov, "Fast Prime Field Elliptic Curve Cryptography with
16  *                          256 Bit Primes"
17  */
18 
19 #include <ring-core/base.h>
20 
21 #include "../../limbs/limbs.inl"
22 
23 #include <stdint.h>
24 
25 #include "p256-nistz.h"
26 
27 #if defined(OPENSSL_USE_NISTZ256)
28 
29 typedef P256_POINT_AFFINE PRECOMP256_ROW[64];
30 
31 // One converted into the Montgomery domain
32 static const BN_ULONG ONE[P256_LIMBS] = {
33     TOBN(0x00000000, 0x00000001), TOBN(0xffffffff, 0x00000000),
34     TOBN(0xffffffff, 0xffffffff), TOBN(0x00000000, 0xfffffffe),
35 };
36 
37 // Precomputed tables for the default generator
38 #include "p256-nistz-table.h"
39 
40 // Recode window to a signed digit, see |nistp_recode_scalar_bits| in
41 // util.c for details
booth_recode_w5(crypto_word_t in)42 static crypto_word_t booth_recode_w5(crypto_word_t in) {
43   crypto_word_t s, d;
44 
45   s = ~((in >> 5) - 1);
46   d = (1 << 6) - in - 1;
47   d = (d & s) | (in & ~s);
48   d = (d >> 1) + (d & 1);
49 
50   return (d << 1) + (s & 1);
51 }
52 
booth_recode_w7(crypto_word_t in)53 static crypto_word_t booth_recode_w7(crypto_word_t in) {
54   crypto_word_t s, d;
55 
56   s = ~((in >> 7) - 1);
57   d = (1 << 8) - in - 1;
58   d = (d & s) | (in & ~s);
59   d = (d >> 1) + (d & 1);
60 
61   return (d << 1) + (s & 1);
62 }
63 
64 // The `(P256_LIMBS == 8)` case is unreachable for 64-bit targets.
65 #if defined(OPENSSL_64_BIT) && defined(__clang__)
66 #pragma GCC diagnostic push
67 #pragma GCC diagnostic ignored "-Wunreachable-code"
68 #endif
69 
70 // copy_conditional copies |src| to |dst| if |move| is one and leaves it as-is
71 // if |move| is zero.
72 //
73 // WARNING: this breaks the usual convention of constant-time functions
74 // returning masks.
copy_conditional(BN_ULONG dst[P256_LIMBS],const BN_ULONG src[P256_LIMBS],BN_ULONG move)75 static void copy_conditional(BN_ULONG dst[P256_LIMBS],
76                              const BN_ULONG src[P256_LIMBS], BN_ULONG move) {
77   BN_ULONG mask1 = ((BN_ULONG)0) - move;
78   BN_ULONG mask2 = ~mask1;
79 
80   dst[0] = (src[0] & mask1) ^ (dst[0] & mask2);
81   dst[1] = (src[1] & mask1) ^ (dst[1] & mask2);
82   dst[2] = (src[2] & mask1) ^ (dst[2] & mask2);
83   dst[3] = (src[3] & mask1) ^ (dst[3] & mask2);
84   if (P256_LIMBS == 8) {
85     dst[4] = (src[4] & mask1) ^ (dst[4] & mask2);
86     dst[5] = (src[5] & mask1) ^ (dst[5] & mask2);
87     dst[6] = (src[6] & mask1) ^ (dst[6] & mask2);
88     dst[7] = (src[7] & mask1) ^ (dst[7] & mask2);
89   }
90 }
91 
92 #if defined(__clang__)
93 #pragma GCC diagnostic pop
94 #endif
95 
96 // is_not_zero returns one iff in != 0 and zero otherwise.
97 //
98 // WARNING: this breaks the usual convention of constant-time functions
99 // returning masks.
100 //
101 // (define-fun is_not_zero ((in (_ BitVec 64))) (_ BitVec 64)
102 //   (bvlshr (bvor in (bvsub #x0000000000000000 in)) #x000000000000003f)
103 // )
104 //
105 // (declare-fun x () (_ BitVec 64))
106 //
107 // (assert (and (= x #x0000000000000000) (= (is_not_zero x) #x0000000000000001)))
108 // (check-sat)
109 //
110 // (assert (and (not (= x #x0000000000000000)) (= (is_not_zero x) #x0000000000000000)))
111 // (check-sat)
112 //
is_not_zero(BN_ULONG in)113 static BN_ULONG is_not_zero(BN_ULONG in) {
114   in |= (0 - in);
115   in >>= BN_BITS2 - 1;
116   return in;
117 }
118 
119 
120 // r = p * p_scalar
ecp_nistz256_windowed_mul(P256_POINT * r,const BN_ULONG p_scalar[P256_LIMBS],const BN_ULONG p_x[P256_LIMBS],const BN_ULONG p_y[P256_LIMBS])121 static void ecp_nistz256_windowed_mul(P256_POINT *r,
122                                       const BN_ULONG p_scalar[P256_LIMBS],
123                                       const BN_ULONG p_x[P256_LIMBS],
124                                       const BN_ULONG p_y[P256_LIMBS]) {
125   debug_assert_nonsecret(r != NULL);
126   debug_assert_nonsecret(p_scalar != NULL);
127   debug_assert_nonsecret(p_x != NULL);
128   debug_assert_nonsecret(p_y != NULL);
129 
130   static const size_t kWindowSize = 5;
131   static const crypto_word_t kMask = (1 << (5 /* kWindowSize */ + 1)) - 1;
132 
133   // A |P256_POINT| is (3 * 32) = 96 bytes, and the 64-byte alignment should
134   // add no more than 63 bytes of overhead. Thus, |table| should require
135   // ~1599 ((96 * 16) + 63) bytes of stack space.
136   alignas(64) P256_POINT table[16];
137   P256_SCALAR_BYTES p_str;
138   p256_scalar_bytes_from_limbs(p_str, p_scalar);
139 
140   // table[0] is implicitly (0,0,0) (the point at infinity), therefore it is
141   // not stored. All other values are actually stored with an offset of -1 in
142   // table.
143   P256_POINT *row = table;
144 
145   limbs_copy(row[1 - 1].X, p_x, P256_LIMBS);
146   limbs_copy(row[1 - 1].Y, p_y, P256_LIMBS);
147   limbs_copy(row[1 - 1].Z, ONE, P256_LIMBS);
148 
149   ecp_nistz256_point_double(&row[2 - 1], &row[1 - 1]);
150   ecp_nistz256_point_add(&row[3 - 1], &row[2 - 1], &row[1 - 1]);
151   ecp_nistz256_point_double(&row[4 - 1], &row[2 - 1]);
152   ecp_nistz256_point_double(&row[6 - 1], &row[3 - 1]);
153   ecp_nistz256_point_double(&row[8 - 1], &row[4 - 1]);
154   ecp_nistz256_point_double(&row[12 - 1], &row[6 - 1]);
155   ecp_nistz256_point_add(&row[5 - 1], &row[4 - 1], &row[1 - 1]);
156   ecp_nistz256_point_add(&row[7 - 1], &row[6 - 1], &row[1 - 1]);
157   ecp_nistz256_point_add(&row[9 - 1], &row[8 - 1], &row[1 - 1]);
158   ecp_nistz256_point_add(&row[13 - 1], &row[12 - 1], &row[1 - 1]);
159   ecp_nistz256_point_double(&row[14 - 1], &row[7 - 1]);
160   ecp_nistz256_point_double(&row[10 - 1], &row[5 - 1]);
161   ecp_nistz256_point_add(&row[15 - 1], &row[14 - 1], &row[1 - 1]);
162   ecp_nistz256_point_add(&row[11 - 1], &row[10 - 1], &row[1 - 1]);
163   ecp_nistz256_point_double(&row[16 - 1], &row[8 - 1]);
164 
165   BN_ULONG tmp[P256_LIMBS];
166   alignas(32) P256_POINT h;
167   size_t index = 255;
168   crypto_word_t wvalue = p_str[(index - 1) / 8];
169   wvalue = (wvalue >> ((index - 1) % 8)) & kMask;
170 
171   ecp_nistz256_select_w5(r, table, (int)(booth_recode_w5(wvalue) >> 1));
172 
173   while (index >= 5) {
174     if (index != 255) {
175       size_t off = (index - 1) / 8;
176 
177       wvalue = (crypto_word_t)p_str[off] | (crypto_word_t)p_str[off + 1] << 8;
178       wvalue = (wvalue >> ((index - 1) % 8)) & kMask;
179 
180       wvalue = booth_recode_w5(wvalue);
181 
182       ecp_nistz256_select_w5(&h, table, (int)(wvalue >> 1));
183 
184       ecp_nistz256_neg(tmp, h.Y);
185       copy_conditional(h.Y, tmp, (wvalue & 1));
186 
187       ecp_nistz256_point_add(r, r, &h);
188     }
189 
190     index -= kWindowSize;
191 
192     ecp_nistz256_point_double(r, r);
193     ecp_nistz256_point_double(r, r);
194     ecp_nistz256_point_double(r, r);
195     ecp_nistz256_point_double(r, r);
196     ecp_nistz256_point_double(r, r);
197   }
198 
199   // Final window
200   wvalue = p_str[0];
201   wvalue = (wvalue << 1) & kMask;
202 
203   wvalue = booth_recode_w5(wvalue);
204 
205   ecp_nistz256_select_w5(&h, table, (int)(wvalue >> 1));
206 
207   ecp_nistz256_neg(tmp, h.Y);
208   copy_conditional(h.Y, tmp, wvalue & 1);
209 
210   ecp_nistz256_point_add(r, r, &h);
211 }
212 
calc_first_wvalue(size_t * index,const uint8_t p_str[33])213 static crypto_word_t calc_first_wvalue(size_t *index, const uint8_t p_str[33]) {
214   static const size_t kWindowSize = 7;
215   static const crypto_word_t kMask = (1 << (7 /* kWindowSize */ + 1)) - 1;
216   *index = kWindowSize;
217 
218   crypto_word_t wvalue = ((crypto_word_t)p_str[0] << 1) & kMask;
219   return booth_recode_w7(wvalue);
220 }
221 
calc_wvalue(size_t * index,const uint8_t p_str[33])222 static crypto_word_t calc_wvalue(size_t *index, const uint8_t p_str[33]) {
223   static const size_t kWindowSize = 7;
224   static const crypto_word_t kMask = (1 << (7 /* kWindowSize */ + 1)) - 1;
225 
226   const size_t off = (*index - 1) / 8;
227   crypto_word_t wvalue =
228       (crypto_word_t)p_str[off] | (crypto_word_t)p_str[off + 1] << 8;
229   wvalue = (wvalue >> ((*index - 1) % 8)) & kMask;
230   *index += kWindowSize;
231 
232   return booth_recode_w7(wvalue);
233 }
234 
p256_point_mul(P256_POINT * r,const Limb p_scalar[P256_LIMBS],const Limb p_x[P256_LIMBS],const Limb p_y[P256_LIMBS])235 void p256_point_mul(P256_POINT *r, const Limb p_scalar[P256_LIMBS],
236                         const Limb p_x[P256_LIMBS],
237                         const Limb p_y[P256_LIMBS]) {
238   alignas(32) P256_POINT out;
239   ecp_nistz256_windowed_mul(&out, p_scalar, p_x, p_y);
240 
241   limbs_copy(r->X, out.X, P256_LIMBS);
242   limbs_copy(r->Y, out.Y, P256_LIMBS);
243   limbs_copy(r->Z, out.Z, P256_LIMBS);
244 }
245 
p256_point_mul_base(P256_POINT * r,const Limb scalar[P256_LIMBS])246 void p256_point_mul_base(P256_POINT *r, const Limb scalar[P256_LIMBS]) {
247   P256_SCALAR_BYTES p_str;
248   p256_scalar_bytes_from_limbs(p_str, scalar);
249 
250   // First window
251   size_t index = 0;
252   crypto_word_t wvalue = calc_first_wvalue(&index, p_str);
253 
254   alignas(32) P256_POINT_AFFINE t;
255   alignas(32) P256_POINT p;
256   ecp_nistz256_select_w7(&t, ecp_nistz256_precomputed[0], (int)(wvalue >> 1));
257   ecp_nistz256_neg(p.Z, t.Y);
258   copy_conditional(t.Y, p.Z, wvalue & 1);
259 
260   // Convert |t| from affine to Jacobian coordinates. We set Z to zero if |t|
261   // is infinity and |ONE| otherwise. |t| was computed from the table, so it
262   // is infinity iff |wvalue >> 1| is zero.
263   limbs_copy(p.X, t.X, P256_LIMBS);
264   limbs_copy(p.Y, t.Y, P256_LIMBS);
265   limbs_zero(p.Z, P256_LIMBS);
266   copy_conditional(p.Z, ONE, is_not_zero(wvalue >> 1));
267 
268   for (int i = 1; i < 37; i++) {
269     wvalue = calc_wvalue(&index, p_str);
270 
271     ecp_nistz256_select_w7(&t, ecp_nistz256_precomputed[i], (int)(wvalue >> 1));
272 
273     alignas(32) BN_ULONG neg_Y[P256_LIMBS];
274     ecp_nistz256_neg(neg_Y, t.Y);
275     copy_conditional(t.Y, neg_Y, wvalue & 1);
276 
277     // Note |ecp_nistz256_point_add_affine| does not work if |p| and |t| are the
278     // same non-infinity point.
279     ecp_nistz256_point_add_affine(&p, &p, &t);
280   }
281 
282   limbs_copy(r->X, p.X, P256_LIMBS);
283   limbs_copy(r->Y, p.Y, P256_LIMBS);
284   limbs_copy(r->Z, p.Z, P256_LIMBS);
285 }
286 
287 #endif /* defined(OPENSSL_USE_NISTZ256) */
288