1 //! Unsafe `ioctl` API.
2 //!
3 //! Unix systems expose a number of `ioctl`'s. `ioctl`s have been adopted as a
4 //! general purpose system call for making calls into the kernel. In addition
5 //! to the wide variety of system calls that are included by default in the
6 //! kernel, many drivers expose their own `ioctl`'s for controlling their
7 //! behavior, some of which are proprietary. Therefore it is impossible to make
8 //! a safe interface for every `ioctl` call, as they all have wildly varying
9 //! semantics.
10 //!
11 //! This module provides an unsafe interface to write your own `ioctl` API. To
12 //! start, create a type that implements [`Ioctl`]. Then, pass it to [`ioctl`]
13 //! to make the `ioctl` call.
14 
15 #![allow(unsafe_code)]
16 
17 use crate::backend::c;
18 use crate::fd::{AsFd, BorrowedFd};
19 use crate::io::Result;
20 
21 #[cfg(any(linux_kernel, bsd))]
22 use core::mem;
23 
24 pub use patterns::*;
25 
26 mod patterns;
27 
28 #[cfg(linux_kernel)]
29 mod linux;
30 
31 #[cfg(bsd)]
32 mod bsd;
33 
34 #[cfg(linux_kernel)]
35 use linux as platform;
36 
37 #[cfg(bsd)]
38 use bsd as platform;
39 
40 /// Perform an `ioctl` call.
41 ///
42 /// `ioctl` was originally intended to act as a way of modifying the behavior
43 /// of files, but has since been adopted as a general purpose system call for
44 /// making calls into the kernel. In addition to the default calls exposed by
45 /// generic file descriptors, many drivers expose their own `ioctl` calls for
46 /// controlling their behavior, some of which are proprietary.
47 ///
48 /// This crate exposes many other `ioctl` interfaces with safe and idiomatic
49 /// wrappers, like [`ioctl_fionbio`] and [`ioctl_fionread`]. It is recommended
50 /// to use those instead of this function, as they are safer and more
51 /// idiomatic. For other cases, implement the [`Ioctl`] API and pass it to this
52 /// function.
53 ///
54 /// See documentation for [`Ioctl`] for more information.
55 ///
56 /// [`ioctl_fionbio`]: crate::io::ioctl_fionbio
57 /// [`ioctl_fionread`]: crate::io::ioctl_fionread
58 ///
59 /// # Safety
60 ///
61 /// While [`Ioctl`] takes much of the unsafety out of `ioctl` calls, it is
62 /// still unsafe to call this code with arbitrary device drivers, as it is up
63 /// to the device driver to implement the `ioctl` call correctly. It is on the
64 /// onus of the protocol between the user and the driver to ensure that the
65 /// `ioctl` call is safe to make.
66 ///
67 /// # References
68 ///  - [Linux]
69 ///  - [Winsock]
70 ///  - [FreeBSD]
71 ///  - [NetBSD]
72 ///  - [OpenBSD]
73 ///  - [Apple]
74 ///  - [Solaris]
75 ///  - [illumos]
76 ///
77 /// [Linux]: https://man7.org/linux/man-pages/man2/ioctl.2.html
78 /// [Winsock]: https://learn.microsoft.com/en-us/windows/win32/api/winsock/nf-winsock-ioctlsocket
79 /// [FreeBSD]: https://man.freebsd.org/cgi/man.cgi?query=ioctl&sektion=2
80 /// [NetBSD]: https://man.netbsd.org/ioctl.2
81 /// [OpenBSD]: https://man.openbsd.org/ioctl.2
82 /// [Apple]: https://developer.apple.com/library/archive/documentation/System/Conceptual/ManPages_iPhoneOS/man2/ioctl.2.html
83 /// [Solaris]: https://docs.oracle.com/cd/E23824_01/html/821-1463/ioctl-2.html
84 /// [illumos]: https://illumos.org/man/2/ioctl
85 #[inline]
ioctl<F: AsFd, I: Ioctl>(fd: F, mut ioctl: I) -> Result<I::Output>86 pub unsafe fn ioctl<F: AsFd, I: Ioctl>(fd: F, mut ioctl: I) -> Result<I::Output> {
87     let fd = fd.as_fd();
88     let request = I::OPCODE.raw();
89     let arg = ioctl.as_ptr();
90 
91     // SAFETY: The variant of `Ioctl` asserts that this is a valid IOCTL call
92     // to make.
93     let output = if I::IS_MUTATING {
94         _ioctl(fd, request, arg)?
95     } else {
96         _ioctl_readonly(fd, request, arg)?
97     };
98 
99     // SAFETY: The variant of `Ioctl` asserts that this is a valid pointer to
100     // the output data.
101     I::output_from_ptr(output, arg)
102 }
103 
_ioctl( fd: BorrowedFd<'_>, request: RawOpcode, arg: *mut c::c_void, ) -> Result<IoctlOutput>104 unsafe fn _ioctl(
105     fd: BorrowedFd<'_>,
106     request: RawOpcode,
107     arg: *mut c::c_void,
108 ) -> Result<IoctlOutput> {
109     crate::backend::io::syscalls::ioctl(fd, request, arg)
110 }
111 
_ioctl_readonly( fd: BorrowedFd<'_>, request: RawOpcode, arg: *mut c::c_void, ) -> Result<IoctlOutput>112 unsafe fn _ioctl_readonly(
113     fd: BorrowedFd<'_>,
114     request: RawOpcode,
115     arg: *mut c::c_void,
116 ) -> Result<IoctlOutput> {
117     crate::backend::io::syscalls::ioctl_readonly(fd, request, arg)
118 }
119 
120 /// A trait defining the properties of an `ioctl` command.
121 ///
122 /// Objects implementing this trait can be passed to [`ioctl`] to make an
123 /// `ioctl` call. The contents of the object represent the inputs to the
124 /// `ioctl` call. The inputs must be convertible to a pointer through the
125 /// `as_ptr` method. In most cases, this involves either casting a number to a
126 /// pointer, or creating a pointer to the actual data. The latter case is
127 /// necessary for `ioctl` calls that modify userspace data.
128 ///
129 /// # Safety
130 ///
131 /// This trait is unsafe to implement because it is impossible to guarantee
132 /// that the `ioctl` call is safe. The `ioctl` call may be proprietary, or it
133 /// may be unsafe to call in certain circumstances.
134 ///
135 /// By implementing this trait, you guarantee that:
136 ///
137 /// - The `ioctl` call expects the input provided by `as_ptr` and produces the
138 ///   output as indicated by `output`.
139 /// - That `output_from_ptr` can safely take the pointer from `as_ptr` and cast
140 ///   it to the correct type, *only* after the `ioctl` call.
141 /// - That `OPCODE` uniquely identifies the `ioctl` call.
142 /// - That, for whatever platforms you are targeting, the `ioctl` call is safe
143 ///   to make.
144 /// - If `IS_MUTATING` is false, that no userspace data will be modified by the
145 ///   `ioctl` call.
146 pub unsafe trait Ioctl {
147     /// The type of the output data.
148     ///
149     /// Given a pointer, one should be able to construct an instance of this
150     /// type.
151     type Output;
152 
153     /// The opcode used by this `ioctl` command.
154     ///
155     /// There are different types of opcode depending on the operation. See
156     /// documentation for the [`Opcode`] struct for more information.
157     const OPCODE: Opcode;
158 
159     /// Does the `ioctl` mutate any data in the userspace?
160     ///
161     /// If the `ioctl` call does not mutate any data in the userspace, then
162     /// making this `false` enables optimizations that can make the call
163     /// faster. When in doubt, set this to `true`.
164     ///
165     /// # Safety
166     ///
167     /// This should only be set to `false` if the `ioctl` call does not mutate
168     /// any data in the userspace. Undefined behavior may occur if this is set
169     /// to `false` when it should be `true`.
170     const IS_MUTATING: bool;
171 
172     /// Get a pointer to the data to be passed to the `ioctl` command.
173     ///
174     /// See trait-level documentation for more information.
as_ptr(&mut self) -> *mut c::c_void175     fn as_ptr(&mut self) -> *mut c::c_void;
176 
177     /// Cast the output data to the correct type.
178     ///
179     /// # Safety
180     ///
181     /// The `extract_output` value must be the resulting value after a
182     /// successful `ioctl` call, and `out` is the direct return value of an
183     /// `ioctl` call that did not fail. In this case `extract_output` is the
184     /// pointer that was passed to the `ioctl` call.
output_from_ptr( out: IoctlOutput, extract_output: *mut c::c_void, ) -> Result<Self::Output>185     unsafe fn output_from_ptr(
186         out: IoctlOutput,
187         extract_output: *mut c::c_void,
188     ) -> Result<Self::Output>;
189 }
190 
191 /// The opcode used by an `Ioctl`.
192 #[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
193 pub struct Opcode {
194     /// The raw opcode.
195     raw: RawOpcode,
196 }
197 
198 impl Opcode {
199     /// Create a new old `Opcode` from a raw opcode.
200     ///
201     /// Rather than being a composition of several attributes, old opcodes are
202     /// just numbers. In general most drivers follow stricter conventions, but
203     /// older drivers may still use this strategy.
204     #[inline]
old(raw: RawOpcode) -> Self205     pub const fn old(raw: RawOpcode) -> Self {
206         Self { raw }
207     }
208 
209     /// Create a new opcode from a direction, group, number, and size.
210     ///
211     /// This corresponds to the C macro `_IOC(direction, group, number, size)`
212     #[cfg(any(linux_kernel, bsd))]
213     #[inline]
from_components( direction: Direction, group: u8, number: u8, data_size: usize, ) -> Self214     pub const fn from_components(
215         direction: Direction,
216         group: u8,
217         number: u8,
218         data_size: usize,
219     ) -> Self {
220         if data_size > RawOpcode::MAX as usize {
221             panic!("data size is too large");
222         }
223 
224         Self::old(platform::compose_opcode(
225             direction,
226             group as RawOpcode,
227             number as RawOpcode,
228             data_size as RawOpcode,
229         ))
230     }
231 
232     /// Create a new non-mutating opcode from a group, a number, and the type
233     /// of data.
234     ///
235     /// This corresponds to the C macro `_IO(group, number)` when `T` is zero
236     /// sized.
237     #[cfg(any(linux_kernel, bsd))]
238     #[inline]
none<T>(group: u8, number: u8) -> Self239     pub const fn none<T>(group: u8, number: u8) -> Self {
240         Self::from_components(Direction::None, group, number, mem::size_of::<T>())
241     }
242 
243     /// Create a new reading opcode from a group, a number and the type of
244     /// data.
245     ///
246     /// This corresponds to the C macro `_IOR(group, number, T)`.
247     #[cfg(any(linux_kernel, bsd))]
248     #[inline]
read<T>(group: u8, number: u8) -> Self249     pub const fn read<T>(group: u8, number: u8) -> Self {
250         Self::from_components(Direction::Read, group, number, mem::size_of::<T>())
251     }
252 
253     /// Create a new writing opcode from a group, a number and the type of
254     /// data.
255     ///
256     /// This corresponds to the C macro `_IOW(group, number, T)`.
257     #[cfg(any(linux_kernel, bsd))]
258     #[inline]
write<T>(group: u8, number: u8) -> Self259     pub const fn write<T>(group: u8, number: u8) -> Self {
260         Self::from_components(Direction::Write, group, number, mem::size_of::<T>())
261     }
262 
263     /// Create a new reading and writing opcode from a group, a number and the
264     /// type of data.
265     ///
266     /// This corresponds to the C macro `_IOWR(group, number, T)`.
267     #[cfg(any(linux_kernel, bsd))]
268     #[inline]
read_write<T>(group: u8, number: u8) -> Self269     pub const fn read_write<T>(group: u8, number: u8) -> Self {
270         Self::from_components(Direction::ReadWrite, group, number, mem::size_of::<T>())
271     }
272 
273     /// Get the raw opcode.
274     #[inline]
raw(self) -> RawOpcode275     pub fn raw(self) -> RawOpcode {
276         self.raw
277     }
278 }
279 
280 /// The direction that an `ioctl` is going.
281 ///
282 /// Note that this is relative to userspace. `Read` means reading data from the
283 /// kernel, and write means the kernel writing data to userspace.
284 #[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
285 pub enum Direction {
286     /// None of the above.
287     None,
288 
289     /// Read data from the kernel.
290     Read,
291 
292     /// Write data to the kernel.
293     Write,
294 
295     /// Read and write data to the kernel.
296     ReadWrite,
297 }
298 
299 /// The type used by the `ioctl` to signify the output.
300 pub type IoctlOutput = c::c_int;
301 
302 /// The type used by the `ioctl` to signify the command.
303 pub type RawOpcode = _RawOpcode;
304 
305 // Under raw Linux, this is an `unsigned int`.
306 #[cfg(linux_raw)]
307 type _RawOpcode = c::c_uint;
308 
309 // On libc Linux with GNU libc or uclibc, this is an `unsigned long`.
310 #[cfg(all(
311     not(linux_raw),
312     target_os = "linux",
313     any(target_env = "gnu", target_env = "uclibc")
314 ))]
315 type _RawOpcode = c::c_ulong;
316 
317 // Musl uses `c_int`.
318 #[cfg(all(
319     not(linux_raw),
320     target_os = "linux",
321     not(target_env = "gnu"),
322     not(target_env = "uclibc")
323 ))]
324 type _RawOpcode = c::c_int;
325 
326 // Android uses `c_int`.
327 #[cfg(all(not(linux_raw), target_os = "android"))]
328 type _RawOpcode = c::c_int;
329 
330 // BSD, Haiku, Hurd, Redox, and Vita use `unsigned long`.
331 #[cfg(any(
332     bsd,
333     target_os = "redox",
334     target_os = "haiku",
335     target_os = "hurd",
336     target_os = "vita"
337 ))]
338 type _RawOpcode = c::c_ulong;
339 
340 // AIX, Emscripten, Fuchsia, Solaris, and WASI use a `int`.
341 #[cfg(any(
342     solarish,
343     target_os = "aix",
344     target_os = "fuchsia",
345     target_os = "emscripten",
346     target_os = "wasi",
347     target_os = "nto"
348 ))]
349 type _RawOpcode = c::c_int;
350 
351 // ESP-IDF uses a `c_uint`.
352 #[cfg(target_os = "espidf")]
353 type _RawOpcode = c::c_uint;
354 
355 // Windows has `ioctlsocket`, which uses `i32`.
356 #[cfg(windows)]
357 type _RawOpcode = i32;
358