1 use crate::codec::Framed;
2 
3 use tokio::io::{AsyncRead, AsyncWrite};
4 
5 use bytes::BytesMut;
6 use std::io;
7 
8 /// Decoding of frames via buffers.
9 ///
10 /// This trait is used when constructing an instance of [`Framed`] or
11 /// [`FramedRead`]. An implementation of `Decoder` takes a byte stream that has
12 /// already been buffered in `src` and decodes the data into a stream of
13 /// `Self::Item` frames.
14 ///
15 /// Implementations are able to track state on `self`, which enables
16 /// implementing stateful streaming parsers. In many cases, though, this type
17 /// will simply be a unit struct (e.g. `struct HttpDecoder`).
18 ///
19 /// For some underlying data-sources, namely files and FIFOs,
20 /// it's possible to temporarily read 0 bytes by reaching EOF.
21 ///
22 /// In these cases `decode_eof` will be called until it signals
23 /// fulfillment of all closing frames by returning `Ok(None)`.
24 /// After that, repeated attempts to read from the [`Framed`] or [`FramedRead`]
25 /// will not invoke `decode` or `decode_eof` again, until data can be read
26 /// during a retry.
27 ///
28 /// It is up to the Decoder to keep track of a restart after an EOF,
29 /// and to decide how to handle such an event by, for example,
30 /// allowing frames to cross EOF boundaries, re-emitting opening frames, or
31 /// resetting the entire internal state.
32 ///
33 /// [`Framed`]: crate::codec::Framed
34 /// [`FramedRead`]: crate::codec::FramedRead
35 pub trait Decoder {
36     /// The type of decoded frames.
37     type Item;
38 
39     /// The type of unrecoverable frame decoding errors.
40     ///
41     /// If an individual message is ill-formed but can be ignored without
42     /// interfering with the processing of future messages, it may be more
43     /// useful to report the failure as an `Item`.
44     ///
45     /// `From<io::Error>` is required in the interest of making `Error` suitable
46     /// for returning directly from a [`FramedRead`], and to enable the default
47     /// implementation of `decode_eof` to yield an `io::Error` when the decoder
48     /// fails to consume all available data.
49     ///
50     /// Note that implementors of this trait can simply indicate `type Error =
51     /// io::Error` to use I/O errors as this type.
52     ///
53     /// [`FramedRead`]: crate::codec::FramedRead
54     type Error: From<io::Error>;
55 
56     /// Attempts to decode a frame from the provided buffer of bytes.
57     ///
58     /// This method is called by [`FramedRead`] whenever bytes are ready to be
59     /// parsed. The provided buffer of bytes is what's been read so far, and
60     /// this instance of `Decode` can determine whether an entire frame is in
61     /// the buffer and is ready to be returned.
62     ///
63     /// If an entire frame is available, then this instance will remove those
64     /// bytes from the buffer provided and return them as a decoded
65     /// frame. Note that removing bytes from the provided buffer doesn't always
66     /// necessarily copy the bytes, so this should be an efficient operation in
67     /// most circumstances.
68     ///
69     /// If the bytes look valid, but a frame isn't fully available yet, then
70     /// `Ok(None)` is returned. This indicates to the [`Framed`] instance that
71     /// it needs to read some more bytes before calling this method again.
72     ///
73     /// Note that the bytes provided may be empty. If a previous call to
74     /// `decode` consumed all the bytes in the buffer then `decode` will be
75     /// called again until it returns `Ok(None)`, indicating that more bytes need to
76     /// be read.
77     ///
78     /// Finally, if the bytes in the buffer are malformed then an error is
79     /// returned indicating why. This informs [`Framed`] that the stream is now
80     /// corrupt and should be terminated.
81     ///
82     /// [`Framed`]: crate::codec::Framed
83     /// [`FramedRead`]: crate::codec::FramedRead
84     ///
85     /// # Buffer management
86     ///
87     /// Before returning from the function, implementations should ensure that
88     /// the buffer has appropriate capacity in anticipation of future calls to
89     /// `decode`. Failing to do so leads to inefficiency.
90     ///
91     /// For example, if frames have a fixed length, or if the length of the
92     /// current frame is known from a header, a possible buffer management
93     /// strategy is:
94     ///
95     /// ```no_run
96     /// # use std::io;
97     /// #
98     /// # use bytes::BytesMut;
99     /// # use tokio_util::codec::Decoder;
100     /// #
101     /// # struct MyCodec;
102     /// #
103     /// impl Decoder for MyCodec {
104     ///     // ...
105     ///     # type Item = BytesMut;
106     ///     # type Error = io::Error;
107     ///
108     ///     fn decode(&mut self, src: &mut BytesMut) -> Result<Option<Self::Item>, Self::Error> {
109     ///         // ...
110     ///
111     ///         // Reserve enough to complete decoding of the current frame.
112     ///         let current_frame_len: usize = 1000; // Example.
113     ///         // And to start decoding the next frame.
114     ///         let next_frame_header_len: usize = 10; // Example.
115     ///         src.reserve(current_frame_len + next_frame_header_len);
116     ///
117     ///         return Ok(None);
118     ///     }
119     /// }
120     /// ```
121     ///
122     /// An optimal buffer management strategy minimizes reallocations and
123     /// over-allocations.
decode(&mut self, src: &mut BytesMut) -> Result<Option<Self::Item>, Self::Error>124     fn decode(&mut self, src: &mut BytesMut) -> Result<Option<Self::Item>, Self::Error>;
125 
126     /// A default method available to be called when there are no more bytes
127     /// available to be read from the underlying I/O.
128     ///
129     /// This method defaults to calling `decode` and returns an error if
130     /// `Ok(None)` is returned while there is unconsumed data in `buf`.
131     /// Typically this doesn't need to be implemented unless the framing
132     /// protocol differs near the end of the stream, or if you need to construct
133     /// frames _across_ eof boundaries on sources that can be resumed.
134     ///
135     /// Note that the `buf` argument may be empty. If a previous call to
136     /// `decode_eof` consumed all the bytes in the buffer, `decode_eof` will be
137     /// called again until it returns `None`, indicating that there are no more
138     /// frames to yield. This behavior enables returning finalization frames
139     /// that may not be based on inbound data.
140     ///
141     /// Once `None` has been returned, `decode_eof` won't be called again until
142     /// an attempt to resume the stream has been made, where the underlying stream
143     /// actually returned more data.
decode_eof(&mut self, buf: &mut BytesMut) -> Result<Option<Self::Item>, Self::Error>144     fn decode_eof(&mut self, buf: &mut BytesMut) -> Result<Option<Self::Item>, Self::Error> {
145         match self.decode(buf)? {
146             Some(frame) => Ok(Some(frame)),
147             None => {
148                 if buf.is_empty() {
149                     Ok(None)
150                 } else {
151                     Err(io::Error::new(io::ErrorKind::Other, "bytes remaining on stream").into())
152                 }
153             }
154         }
155     }
156 
157     /// Provides a [`Stream`] and [`Sink`] interface for reading and writing to this
158     /// `Io` object, using `Decode` and `Encode` to read and write the raw data.
159     ///
160     /// Raw I/O objects work with byte sequences, but higher-level code usually
161     /// wants to batch these into meaningful chunks, called "frames". This
162     /// method layers framing on top of an I/O object, by using the `Codec`
163     /// traits to handle encoding and decoding of messages frames. Note that
164     /// the incoming and outgoing frame types may be distinct.
165     ///
166     /// This function returns a *single* object that is both `Stream` and
167     /// `Sink`; grouping this into a single object is often useful for layering
168     /// things like gzip or TLS, which require both read and write access to the
169     /// underlying object.
170     ///
171     /// If you want to work more directly with the streams and sink, consider
172     /// calling `split` on the [`Framed`] returned by this method, which will
173     /// break them into separate objects, allowing them to interact more easily.
174     ///
175     /// [`Stream`]: futures_core::Stream
176     /// [`Sink`]: futures_sink::Sink
177     /// [`Framed`]: crate::codec::Framed
framed<T: AsyncRead + AsyncWrite + Sized>(self, io: T) -> Framed<T, Self> where Self: Sized,178     fn framed<T: AsyncRead + AsyncWrite + Sized>(self, io: T) -> Framed<T, Self>
179     where
180         Self: Sized,
181     {
182         Framed::new(io, self)
183     }
184 }
185