xref: /aosp_15_r20/external/skia/src/core/SkMD5.cpp (revision c8dee2aa9b3f27cf6c858bd81872bdeb2c07ed17)
1 /*
2  * Copyright 2012 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  *
7  * The following code is based on the description in RFC 1321.
8  * http://www.ietf.org/rfc/rfc1321.txt
9  */
10 
11 //The following macros can be defined to affect the MD5 code generated.
12 //SK_MD5_CLEAR_DATA causes all intermediate state to be overwritten with 0's.
13 //SK_CPU_LENDIAN allows 32 bit <=> 8 bit conversions without copies (if alligned).
14 //SK_CPU_FAST_UNALIGNED_ACCESS allows 32 bit <=> 8 bit conversions without copies if SK_CPU_LENDIAN.
15 
16 #include "src/base/SkUtils.h"
17 #include "src/core/SkMD5.h"
18 
19 #include "include/private/base/SkFeatures.h"
20 #include "include/private/base/SkMalloc.h"
21 
22 /** MD5 basic transformation. Transforms state based on block. */
23 static void transform(uint32_t state[4], const uint8_t block[64]);
24 
25 /** Encodes input into output (4 little endian 32 bit values). */
26 static void encode(uint8_t output[16], const uint32_t input[4]);
27 
28 /** Encodes input into output (little endian 64 bit value). */
29 static void encode(uint8_t output[8], const uint64_t input);
30 
31 /** Decodes input (4 little endian 32 bit values) into storage, if required. */
32 static const uint32_t* decode(uint32_t storage[16], const uint8_t input[64]);
33 
SkMD5()34 SkMD5::SkMD5() : byteCount(0) {
35     // These are magic numbers from the specification.
36     this->state[0] = 0x67452301;
37     this->state[1] = 0xefcdab89;
38     this->state[2] = 0x98badcfe;
39     this->state[3] = 0x10325476;
40 }
41 
write(const void * buf,size_t inputLength)42 bool SkMD5::write(const void* buf, size_t inputLength) {
43     const uint8_t* input = reinterpret_cast<const uint8_t*>(buf);
44     unsigned int bufferIndex = (unsigned int)(this->byteCount & 0x3F);
45     unsigned int bufferAvailable = 64 - bufferIndex;
46 
47     unsigned int inputIndex;
48     if (inputLength >= bufferAvailable) {
49         if (bufferIndex) {
50             sk_careful_memcpy(&this->buffer[bufferIndex], input, bufferAvailable);
51             transform(this->state, this->buffer);
52             inputIndex = bufferAvailable;
53         } else {
54             inputIndex = 0;
55         }
56 
57         for (; inputIndex + 63 < inputLength; inputIndex += 64) {
58             transform(this->state, &input[inputIndex]);
59         }
60 
61         bufferIndex = 0;
62     } else {
63         inputIndex = 0;
64     }
65 
66     sk_careful_memcpy(&this->buffer[bufferIndex], &input[inputIndex], inputLength - inputIndex);
67 
68     this->byteCount += inputLength;
69     return true;
70 }
71 
finish()72 SkMD5::Digest SkMD5::finish() {
73     SkMD5::Digest digest;
74     // Get the number of bits before padding.
75     uint8_t bits[8];
76     encode(bits, this->byteCount << 3);
77 
78     // Pad out to 56 mod 64.
79     unsigned int bufferIndex = (unsigned int)(this->byteCount & 0x3F);
80     unsigned int paddingLength = (bufferIndex < 56) ? (56 - bufferIndex) : (120 - bufferIndex);
81     static const uint8_t PADDING[64] = {
82         0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
83            0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
84            0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
85            0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
86     };
87     (void)this->write(PADDING, paddingLength);
88 
89     // Append length (length before padding, will cause final update).
90     (void)this->write(bits, 8);
91 
92     // Write out digest.
93     encode(digest.data, this->state);
94 
95 #if defined(SK_MD5_CLEAR_DATA)
96     // Clear state.
97     memset(this, 0, sizeof(*this));
98 #endif
99     return digest;
100 }
101 
to_hex_string(const uint8_t * data,const char * hexDigits)102 static SkString to_hex_string(const uint8_t* data, const char* hexDigits) {
103     SkString hexString(2 * sizeof(SkMD5::Digest::data));
104     for (size_t i = 0; i < sizeof(SkMD5::Digest::data); ++i) {
105         uint8_t byte = data[i];
106         hexString[2 * i + 0] = hexDigits[byte >> 4];
107         hexString[2 * i + 1] = hexDigits[byte & 0xF];
108     }
109     return hexString;
110 }
111 
toHexString() const112 SkString SkMD5::Digest::toHexString() const {
113     return to_hex_string(data, SkHexadecimalDigits::gUpper);
114 }
115 
toLowercaseHexString() const116 SkString SkMD5::Digest::toLowercaseHexString() const {
117     return to_hex_string(data, SkHexadecimalDigits::gLower);
118 }
119 
operator ()F120 struct F { uint32_t operator()(uint32_t x, uint32_t y, uint32_t z) {
121     //return (x & y) | ((~x) & z);
122     return ((y ^ z) & x) ^ z; //equivelent but faster
123 }};
124 
operator ()G125 struct G { uint32_t operator()(uint32_t x, uint32_t y, uint32_t z) {
126     return (x & z) | (y & (~z));
127     //return ((x ^ y) & z) ^ y; //equivelent but slower
128 }};
129 
operator ()H130 struct H { uint32_t operator()(uint32_t x, uint32_t y, uint32_t z) {
131     return x ^ y ^ z;
132 }};
133 
operator ()I134 struct I { uint32_t operator()(uint32_t x, uint32_t y, uint32_t z) {
135     return y ^ (x | (~z));
136 }};
137 
138 /** Rotates x left n bits. */
rotate_left(uint32_t x,uint8_t n)139 static inline uint32_t rotate_left(uint32_t x, uint8_t n) {
140     return (x << n) | (x >> (32 - n));
141 }
142 
143 template <typename T>
operation(T operation,uint32_t & a,uint32_t b,uint32_t c,uint32_t d,uint32_t x,uint8_t s,uint32_t t)144 static inline void operation(T operation, uint32_t& a, uint32_t b, uint32_t c, uint32_t d,
145                              uint32_t x, uint8_t s, uint32_t t) {
146     a = b + rotate_left(a + operation(b, c, d) + x + t, s);
147 }
148 
transform(uint32_t state[4],const uint8_t block[64])149 static void transform(uint32_t state[4], const uint8_t block[64]) {
150     uint32_t a = state[0], b = state[1], c = state[2], d = state[3];
151 
152     uint32_t storage[16];
153     const uint32_t* X = decode(storage, block);
154 
155     // Round 1
156     operation(F(), a, b, c, d, X[ 0],  7, 0xd76aa478); // 1
157     operation(F(), d, a, b, c, X[ 1], 12, 0xe8c7b756); // 2
158     operation(F(), c, d, a, b, X[ 2], 17, 0x242070db); // 3
159     operation(F(), b, c, d, a, X[ 3], 22, 0xc1bdceee); // 4
160     operation(F(), a, b, c, d, X[ 4],  7, 0xf57c0faf); // 5
161     operation(F(), d, a, b, c, X[ 5], 12, 0x4787c62a); // 6
162     operation(F(), c, d, a, b, X[ 6], 17, 0xa8304613); // 7
163     operation(F(), b, c, d, a, X[ 7], 22, 0xfd469501); // 8
164     operation(F(), a, b, c, d, X[ 8],  7, 0x698098d8); // 9
165     operation(F(), d, a, b, c, X[ 9], 12, 0x8b44f7af); // 10
166     operation(F(), c, d, a, b, X[10], 17, 0xffff5bb1); // 11
167     operation(F(), b, c, d, a, X[11], 22, 0x895cd7be); // 12
168     operation(F(), a, b, c, d, X[12],  7, 0x6b901122); // 13
169     operation(F(), d, a, b, c, X[13], 12, 0xfd987193); // 14
170     operation(F(), c, d, a, b, X[14], 17, 0xa679438e); // 15
171     operation(F(), b, c, d, a, X[15], 22, 0x49b40821); // 16
172 
173     // Round 2
174     operation(G(), a, b, c, d, X[ 1],  5, 0xf61e2562); // 17
175     operation(G(), d, a, b, c, X[ 6],  9, 0xc040b340); // 18
176     operation(G(), c, d, a, b, X[11], 14, 0x265e5a51); // 19
177     operation(G(), b, c, d, a, X[ 0], 20, 0xe9b6c7aa); // 20
178     operation(G(), a, b, c, d, X[ 5],  5, 0xd62f105d); // 21
179     operation(G(), d, a, b, c, X[10],  9,  0x2441453); // 22
180     operation(G(), c, d, a, b, X[15], 14, 0xd8a1e681); // 23
181     operation(G(), b, c, d, a, X[ 4], 20, 0xe7d3fbc8); // 24
182     operation(G(), a, b, c, d, X[ 9],  5, 0x21e1cde6); // 25
183     operation(G(), d, a, b, c, X[14],  9, 0xc33707d6); // 26
184     operation(G(), c, d, a, b, X[ 3], 14, 0xf4d50d87); // 27
185     operation(G(), b, c, d, a, X[ 8], 20, 0x455a14ed); // 28
186     operation(G(), a, b, c, d, X[13],  5, 0xa9e3e905); // 29
187     operation(G(), d, a, b, c, X[ 2],  9, 0xfcefa3f8); // 30
188     operation(G(), c, d, a, b, X[ 7], 14, 0x676f02d9); // 31
189     operation(G(), b, c, d, a, X[12], 20, 0x8d2a4c8a); // 32
190 
191     // Round 3
192     operation(H(), a, b, c, d, X[ 5],  4, 0xfffa3942); // 33
193     operation(H(), d, a, b, c, X[ 8], 11, 0x8771f681); // 34
194     operation(H(), c, d, a, b, X[11], 16, 0x6d9d6122); // 35
195     operation(H(), b, c, d, a, X[14], 23, 0xfde5380c); // 36
196     operation(H(), a, b, c, d, X[ 1],  4, 0xa4beea44); // 37
197     operation(H(), d, a, b, c, X[ 4], 11, 0x4bdecfa9); // 38
198     operation(H(), c, d, a, b, X[ 7], 16, 0xf6bb4b60); // 39
199     operation(H(), b, c, d, a, X[10], 23, 0xbebfbc70); // 40
200     operation(H(), a, b, c, d, X[13],  4, 0x289b7ec6); // 41
201     operation(H(), d, a, b, c, X[ 0], 11, 0xeaa127fa); // 42
202     operation(H(), c, d, a, b, X[ 3], 16, 0xd4ef3085); // 43
203     operation(H(), b, c, d, a, X[ 6], 23,  0x4881d05); // 44
204     operation(H(), a, b, c, d, X[ 9],  4, 0xd9d4d039); // 45
205     operation(H(), d, a, b, c, X[12], 11, 0xe6db99e5); // 46
206     operation(H(), c, d, a, b, X[15], 16, 0x1fa27cf8); // 47
207     operation(H(), b, c, d, a, X[ 2], 23, 0xc4ac5665); // 48
208 
209     // Round 4
210     operation(I(), a, b, c, d, X[ 0],  6, 0xf4292244); // 49
211     operation(I(), d, a, b, c, X[ 7], 10, 0x432aff97); // 50
212     operation(I(), c, d, a, b, X[14], 15, 0xab9423a7); // 51
213     operation(I(), b, c, d, a, X[ 5], 21, 0xfc93a039); // 52
214     operation(I(), a, b, c, d, X[12],  6, 0x655b59c3); // 53
215     operation(I(), d, a, b, c, X[ 3], 10, 0x8f0ccc92); // 54
216     operation(I(), c, d, a, b, X[10], 15, 0xffeff47d); // 55
217     operation(I(), b, c, d, a, X[ 1], 21, 0x85845dd1); // 56
218     operation(I(), a, b, c, d, X[ 8],  6, 0x6fa87e4f); // 57
219     operation(I(), d, a, b, c, X[15], 10, 0xfe2ce6e0); // 58
220     operation(I(), c, d, a, b, X[ 6], 15, 0xa3014314); // 59
221     operation(I(), b, c, d, a, X[13], 21, 0x4e0811a1); // 60
222     operation(I(), a, b, c, d, X[ 4],  6, 0xf7537e82); // 61
223     operation(I(), d, a, b, c, X[11], 10, 0xbd3af235); // 62
224     operation(I(), c, d, a, b, X[ 2], 15, 0x2ad7d2bb); // 63
225     operation(I(), b, c, d, a, X[ 9], 21, 0xeb86d391); // 64
226 
227     state[0] += a;
228     state[1] += b;
229     state[2] += c;
230     state[3] += d;
231 
232 #if defined(SK_MD5_CLEAR_DATA)
233     // Clear sensitive information.
234     if (X == &storage) {
235         memset(storage, 0, sizeof(storage));
236     }
237 #endif
238 }
239 
encode(uint8_t output[16],const uint32_t input[4])240 static void encode(uint8_t output[16], const uint32_t input[4]) {
241     for (size_t i = 0, j = 0; i < 4; i++, j += 4) {
242         output[j  ] = (uint8_t) (input[i]        & 0xff);
243         output[j+1] = (uint8_t)((input[i] >>  8) & 0xff);
244         output[j+2] = (uint8_t)((input[i] >> 16) & 0xff);
245         output[j+3] = (uint8_t)((input[i] >> 24) & 0xff);
246     }
247 }
248 
encode(uint8_t output[8],const uint64_t input)249 static void encode(uint8_t output[8], const uint64_t input) {
250     output[0] = (uint8_t) (input        & 0xff);
251     output[1] = (uint8_t)((input >>  8) & 0xff);
252     output[2] = (uint8_t)((input >> 16) & 0xff);
253     output[3] = (uint8_t)((input >> 24) & 0xff);
254     output[4] = (uint8_t)((input >> 32) & 0xff);
255     output[5] = (uint8_t)((input >> 40) & 0xff);
256     output[6] = (uint8_t)((input >> 48) & 0xff);
257     output[7] = (uint8_t)((input >> 56) & 0xff);
258 }
259 
is_aligned(const void * pointer,size_t byte_count)260 static inline bool is_aligned(const void *pointer, size_t byte_count) {
261     return reinterpret_cast<uintptr_t>(pointer) % byte_count == 0;
262 }
263 
decode(uint32_t storage[16],const uint8_t input[64])264 static const uint32_t* decode(uint32_t storage[16], const uint8_t input[64]) {
265 #if defined(SK_CPU_LENDIAN) && defined(SK_CPU_FAST_UNALIGNED_ACCESS)
266    return reinterpret_cast<const uint32_t*>(input);
267 #else
268 #if defined(SK_CPU_LENDIAN)
269     if (is_aligned(input, 4)) {
270         return reinterpret_cast<const uint32_t*>(input);
271     }
272 #endif
273     for (size_t i = 0, j = 0; j < 64; i++, j += 4) {
274         storage[i] =  ((uint32_t)input[j  ])        |
275                      (((uint32_t)input[j+1]) <<  8) |
276                      (((uint32_t)input[j+2]) << 16) |
277                      (((uint32_t)input[j+3]) << 24);
278     }
279     return storage;
280 #endif
281 }
282