xref: /aosp_15_r20/external/skia/src/core/SkRect.cpp (revision c8dee2aa9b3f27cf6c858bd81872bdeb2c07ed17)
1 /*
2  * Copyright 2006 The Android Open Source Project
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "include/core/SkRect.h"
9 
10 #include "include/core/SkM44.h"
11 #include "include/private/base/SkDebug.h"
12 #include "include/private/base/SkTPin.h"
13 #include "src/core/SkRectPriv.h"
14 
15 class SkMatrix;
16 
intersect(const SkIRect & a,const SkIRect & b)17 bool SkIRect::intersect(const SkIRect& a, const SkIRect& b) {
18     SkIRect tmp = {
19         std::max(a.fLeft,   b.fLeft),
20         std::max(a.fTop,    b.fTop),
21         std::min(a.fRight,  b.fRight),
22         std::min(a.fBottom, b.fBottom)
23     };
24     if (tmp.isEmpty()) {
25         return false;
26     }
27     *this = tmp;
28     return true;
29 }
30 
join(const SkIRect & r)31 void SkIRect::join(const SkIRect& r) {
32     // do nothing if the params are empty
33     if (r.fLeft >= r.fRight || r.fTop >= r.fBottom) {
34         return;
35     }
36 
37     // if we are empty, just assign
38     if (fLeft >= fRight || fTop >= fBottom) {
39         *this = r;
40     } else {
41         if (r.fLeft < fLeft)     fLeft = r.fLeft;
42         if (r.fTop < fTop)       fTop = r.fTop;
43         if (r.fRight > fRight)   fRight = r.fRight;
44         if (r.fBottom > fBottom) fBottom = r.fBottom;
45     }
46 }
47 
48 /////////////////////////////////////////////////////////////////////////////
49 
toQuad(SkPoint quad[4]) const50 void SkRect::toQuad(SkPoint quad[4]) const {
51     SkASSERT(quad);
52 
53     quad[0].set(fLeft, fTop);
54     quad[1].set(fRight, fTop);
55     quad[2].set(fRight, fBottom);
56     quad[3].set(fLeft, fBottom);
57 }
58 
59 #include "src/base/SkVx.h"
60 
setBoundsCheck(const SkPoint pts[],int count)61 bool SkRect::setBoundsCheck(const SkPoint pts[], int count) {
62     SkASSERT((pts && count > 0) || count == 0);
63 
64     if (count <= 0) {
65         this->setEmpty();
66         return true;
67     }
68 
69     skvx::float4 min, max;
70     if (count & 1) {
71         min = max = skvx::float2::Load(pts).xyxy();
72         pts   += 1;
73         count -= 1;
74     } else {
75         min = max = skvx::float4::Load(pts);
76         pts   += 2;
77         count -= 2;
78     }
79 
80     skvx::float4 accum = min * 0;
81     while (count) {
82         skvx::float4 xy = skvx::float4::Load(pts);
83         accum = accum * xy;
84         min = skvx::min(min, xy);
85         max = skvx::max(max, xy);
86         pts   += 2;
87         count -= 2;
88     }
89 
90     const bool all_finite = all(accum * 0 == 0);
91     if (all_finite) {
92         this->setLTRB(std::min(min[0], min[2]), std::min(min[1], min[3]),
93                       std::max(max[0], max[2]), std::max(max[1], max[3]));
94     } else {
95         this->setEmpty();
96     }
97     return all_finite;
98 }
99 
setBoundsNoCheck(const SkPoint pts[],int count)100 void SkRect::setBoundsNoCheck(const SkPoint pts[], int count) {
101     if (!this->setBoundsCheck(pts, count)) {
102         this->setLTRB(SK_FloatNaN, SK_FloatNaN, SK_FloatNaN, SK_FloatNaN);
103     }
104 }
105 
106 #define CHECK_INTERSECT(al, at, ar, ab, bl, bt, br, bb) \
107     float L = std::max(al, bl);                         \
108     float R = std::min(ar, br);                         \
109     float T = std::max(at, bt);                         \
110     float B = std::min(ab, bb);                         \
111     do { if (!(L < R && T < B)) return false; } while (0)
112     // do the !(opposite) check so we return false if either arg is NaN
113 
intersect(const SkRect & r)114 bool SkRect::intersect(const SkRect& r) {
115     CHECK_INTERSECT(r.fLeft, r.fTop, r.fRight, r.fBottom, fLeft, fTop, fRight, fBottom);
116     this->setLTRB(L, T, R, B);
117     return true;
118 }
119 
intersect(const SkRect & a,const SkRect & b)120 bool SkRect::intersect(const SkRect& a, const SkRect& b) {
121     CHECK_INTERSECT(a.fLeft, a.fTop, a.fRight, a.fBottom, b.fLeft, b.fTop, b.fRight, b.fBottom);
122     this->setLTRB(L, T, R, B);
123     return true;
124 }
125 
join(const SkRect & r)126 void SkRect::join(const SkRect& r) {
127     if (r.isEmpty()) {
128         return;
129     }
130 
131     if (this->isEmpty()) {
132         *this = r;
133     } else {
134         fLeft   = std::min(fLeft, r.fLeft);
135         fTop    = std::min(fTop, r.fTop);
136         fRight  = std::max(fRight, r.fRight);
137         fBottom = std::max(fBottom, r.fBottom);
138     }
139 }
140 
141 ////////////////////////////////////////////////////////////////////////////////////////////////
142 
143 #include "include/core/SkString.h"
144 #include "src/core/SkStringUtils.h"
145 
set_scalar(SkString * storage,float value,SkScalarAsStringType asType)146 static const char* set_scalar(SkString* storage, float value, SkScalarAsStringType asType) {
147     storage->reset();
148     SkAppendScalar(storage, value, asType);
149     return storage->c_str();
150 }
151 
dumpToString(bool asHex) const152 SkString SkRect::dumpToString(bool asHex) const {
153     SkScalarAsStringType asType = asHex ? kHex_SkScalarAsStringType : kDec_SkScalarAsStringType;
154 
155     SkString line;
156     if (asHex) {
157         SkString tmp;
158         line.printf( "SkRect::MakeLTRB(%s, /* %f */\n", set_scalar(&tmp, fLeft, asType), fLeft);
159         line.appendf("                 %s, /* %f */\n", set_scalar(&tmp, fTop, asType), fTop);
160         line.appendf("                 %s, /* %f */\n", set_scalar(&tmp, fRight, asType), fRight);
161         line.appendf("                 %s  /* %f */);", set_scalar(&tmp, fBottom, asType), fBottom);
162     } else {
163         SkString strL, strT, strR, strB;
164         SkAppendScalarDec(&strL, fLeft);
165         SkAppendScalarDec(&strT, fTop);
166         SkAppendScalarDec(&strR, fRight);
167         SkAppendScalarDec(&strB, fBottom);
168         line.printf("SkRect::MakeLTRB(%s, %s, %s, %s);",
169                     strL.c_str(), strT.c_str(), strR.c_str(), strB.c_str());
170     }
171     return line;
172 }
173 
dump(bool asHex) const174 void SkRect::dump(bool asHex) const {
175     SkDebugf("%s\n", this->dumpToString(asHex).c_str());
176 }
177 
178 ////////////////////////////////////////////////////////////////////////////////////////////////
179 
180 template<typename R>
subtract(const R & a,const R & b,R * out)181 static bool subtract(const R& a, const R& b, R* out) {
182     if (a.isEmpty() || b.isEmpty() || !R::Intersects(a, b)) {
183         // Either already empty, or subtracting the empty rect, or there's no intersection, so
184         // in all cases the answer is A.
185         *out = a;
186         return true;
187     }
188 
189     // 4 rectangles to consider. If the edge in A is contained in B, the resulting difference can
190     // be represented exactly as a rectangle. Otherwise the difference is the largest subrectangle
191     // that is disjoint from B:
192     // 1. Left part of A:   (A.left,  A.top,    B.left,  A.bottom)
193     // 2. Right part of A:  (B.right, A.top,    A.right, A.bottom)
194     // 3. Top part of A:    (A.left,  A.top,    A.right, B.top)
195     // 4. Bottom part of A: (A.left,  B.bottom, A.right, A.bottom)
196     //
197     // Depending on how B intersects A, there will be 1 to 4 positive areas:
198     //  - 4 occur when A contains B
199     //  - 3 occur when B intersects a single edge
200     //  - 2 occur when B intersects at a corner, or spans two opposing edges
201     //  - 1 occurs when B spans two opposing edges and contains a 3rd, resulting in an exact rect
202     //  - 0 occurs when B contains A, resulting in the empty rect
203     //
204     // Compute the relative areas of the 4 rects described above. Since each subrectangle shares
205     // either the width or height of A, we only have to divide by the other dimension, which avoids
206     // overflow on int32 types, and even if the float relative areas overflow to infinity, the
207     // comparisons work out correctly and (one of) the infinitely large subrects will be chosen.
208     float aHeight = (float) a.height();
209     float aWidth = (float) a.width();
210     float leftArea = 0.f, rightArea = 0.f, topArea = 0.f, bottomArea = 0.f;
211     int positiveCount = 0;
212     if (b.fLeft > a.fLeft) {
213         leftArea = (b.fLeft - a.fLeft) / aWidth;
214         positiveCount++;
215     }
216     if (a.fRight > b.fRight) {
217         rightArea = (a.fRight - b.fRight) / aWidth;
218         positiveCount++;
219     }
220     if (b.fTop > a.fTop) {
221         topArea = (b.fTop - a.fTop) / aHeight;
222         positiveCount++;
223     }
224     if (a.fBottom > b.fBottom) {
225         bottomArea = (a.fBottom - b.fBottom) / aHeight;
226         positiveCount++;
227     }
228 
229     if (positiveCount == 0) {
230         SkASSERT(b.contains(a));
231         *out = R::MakeEmpty();
232         return true;
233     }
234 
235     *out = a;
236     if (leftArea > rightArea && leftArea > topArea && leftArea > bottomArea) {
237         // Left chunk of A, so the new right edge is B's left edge
238         out->fRight = b.fLeft;
239     } else if (rightArea > topArea && rightArea > bottomArea) {
240         // Right chunk of A, so the new left edge is B's right edge
241         out->fLeft = b.fRight;
242     } else if (topArea > bottomArea) {
243         // Top chunk of A, so the new bottom edge is B's top edge
244         out->fBottom = b.fTop;
245     } else {
246         // Bottom chunk of A, so the new top edge is B's bottom edge
247         SkASSERT(bottomArea > 0.f);
248         out->fTop = b.fBottom;
249     }
250 
251     // If we have 1 valid area, the disjoint shape is representable as a rectangle.
252     SkASSERT(!R::Intersects(*out, b));
253     return positiveCount == 1;
254 }
255 
Subtract(const SkRect & a,const SkRect & b,SkRect * out)256 bool SkRectPriv::Subtract(const SkRect& a, const SkRect& b, SkRect* out) {
257     return subtract<SkRect>(a, b, out);
258 }
259 
Subtract(const SkIRect & a,const SkIRect & b,SkIRect * out)260 bool SkRectPriv::Subtract(const SkIRect& a, const SkIRect& b, SkIRect* out) {
261     return subtract<SkIRect>(a, b, out);
262 }
263 
264 
QuadContainsRect(const SkMatrix & m,const SkIRect & a,const SkIRect & b,float tol)265 bool SkRectPriv::QuadContainsRect(const SkMatrix& m,
266                                   const SkIRect& a,
267                                   const SkIRect& b,
268                                   float tol) {
269     return QuadContainsRect(SkM44(m), SkRect::Make(a), SkRect::Make(b), tol);
270 }
271 
QuadContainsRect(const SkM44 & m,const SkRect & a,const SkRect & b,float tol)272 bool SkRectPriv::QuadContainsRect(const SkM44& m, const SkRect& a, const SkRect& b, float tol) {
273     return all(QuadContainsRectMask(m, a, b, tol));
274 }
275 
QuadContainsRectMask(const SkM44 & m,const SkRect & a,const SkRect & b,float tol)276 skvx::int4 SkRectPriv::QuadContainsRectMask(const SkM44& m,
277                                             const SkRect& a,
278                                             const SkRect& b,
279                                             float tol) {
280     SkDEBUGCODE(SkM44 inverse;)
281     SkASSERT(m.invert(&inverse));
282     // With empty rectangles, the calculated edges could give surprising results. If 'a' were not
283     // sorted, its normals would point outside the sorted rectangle, so lots of potential rects
284     // would be seen as "contained". If 'a' is all 0s, its edge equations are also (0,0,0) so every
285     // point has a distance of 0, and would be interpreted as inside.
286     if (a.isEmpty()) {
287         return skvx::int4(0); // all "false"
288     }
289     // However, 'b' is only used to define its 4 corners to check against the transformed edges.
290     // This is valid regardless of b's emptiness or sortedness.
291 
292     // Calculate the 4 homogenous coordinates of 'a' transformed by 'm' where Z=0 and W=1.
293     auto ax = skvx::float4{a.fLeft, a.fRight, a.fRight, a.fLeft};
294     auto ay = skvx::float4{a.fTop, a.fTop, a.fBottom, a.fBottom};
295 
296     auto max = m.rc(0,0)*ax + m.rc(0,1)*ay + m.rc(0,3);
297     auto may = m.rc(1,0)*ax + m.rc(1,1)*ay + m.rc(1,3);
298     auto maw = m.rc(3,0)*ax + m.rc(3,1)*ay + m.rc(3,3);
299 
300     if (all(maw < 0.f)) {
301         // If all points of A are mapped to w < 0, then the edge equations end up representing the
302         // convex hull of projected points when A should in fact be considered empty.
303         return skvx::int4(0); // all "false"
304     }
305 
306     // Cross product of adjacent vertices provides homogenous lines for the 4 sides of the quad
307     auto lA = may*skvx::shuffle<1,2,3,0>(maw) - maw*skvx::shuffle<1,2,3,0>(may);
308     auto lB = maw*skvx::shuffle<1,2,3,0>(max) - max*skvx::shuffle<1,2,3,0>(maw);
309     auto lC = max*skvx::shuffle<1,2,3,0>(may) - may*skvx::shuffle<1,2,3,0>(max);
310 
311     // Before transforming, the corners of 'a' were in CW order, but afterwards they may become CCW,
312     // so the sign corrects the direction of the edge normals to point inwards.
313     float sign = (lA[0]*lB[1] - lB[0]*lA[1]) < 0 ? -1.f : 1.f;
314 
315     // Calculate distance from 'b' to each edge. Since 'b' has presumably been transformed by 'm'
316     // *and* projected, this assumes W = 1.
317     SkRect bInset = b.makeInset(tol, tol);
318     auto d0 = sign * (lA*bInset.fLeft  + lB*bInset.fTop    + lC);
319     auto d1 = sign * (lA*bInset.fRight + lB*bInset.fTop    + lC);
320     auto d2 = sign * (lA*bInset.fRight + lB*bInset.fBottom + lC);
321     auto d3 = sign * (lA*bInset.fLeft  + lB*bInset.fBottom + lC);
322 
323     // 'b' is contained in the mapped rectangle if all distances are >= 0
324     return (d0 >= 0.f) & (d1 >= 0.f) & (d2 >= 0.f) & (d3 >= 0.f);
325 }
326 
ClosestDisjointEdge(const SkIRect & src,const SkIRect & dst)327 SkIRect SkRectPriv::ClosestDisjointEdge(const SkIRect& src, const SkIRect& dst) {
328     if (src.isEmpty() || dst.isEmpty()) {
329         return SkIRect::MakeEmpty();
330     }
331 
332     int l = src.fLeft;
333     int r = src.fRight;
334     if (r <= dst.fLeft) {
335         // Select right column of pixels in crop
336         l = r - 1;
337     } else if (l >= dst.fRight) {
338         // Left column of 'crop'
339         r = l + 1;
340     } else {
341         // Regular intersection along X axis.
342         l = SkTPin(l, dst.fLeft, dst.fRight);
343         r = SkTPin(r, dst.fLeft, dst.fRight);
344     }
345 
346     int t = src.fTop;
347     int b = src.fBottom;
348     if (b <= dst.fTop) {
349         // Select bottom row of pixels in crop
350         t = b - 1;
351     } else if (t >= dst.fBottom) {
352         // Top row of 'crop'
353         b = t + 1;
354     } else {
355         t = SkTPin(t, dst.fTop, dst.fBottom);
356         b = SkTPin(b, dst.fTop, dst.fBottom);
357     }
358 
359     return SkIRect::MakeLTRB(l,t,r,b);
360 }
361