xref: /aosp_15_r20/external/skia/src/gpu/ganesh/geometry/GrPathUtils.cpp (revision c8dee2aa9b3f27cf6c858bd81872bdeb2c07ed17)
1 /*
2  * Copyright 2011 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "src/gpu/ganesh/geometry/GrPathUtils.h"
9 
10 #include "include/core/SkMatrix.h"
11 #include "include/core/SkRect.h"
12 #include "include/private/base/SkAssert.h"
13 #include "include/private/base/SkFloatingPoint.h"
14 #include "src/core/SkGeometry.h"
15 #include "src/core/SkPathEnums.h"
16 #include "src/core/SkPointPriv.h"
17 #include "src/gpu/tessellate/WangsFormula.h"
18 
19 #include <algorithm>
20 
21 using namespace skia_private;
22 
23 static const SkScalar kMinCurveTol = 0.0001f;
24 
tolerance_to_wangs_precision(float srcTol)25 static float tolerance_to_wangs_precision(float srcTol) {
26     // You should have called scaleToleranceToSrc, which guarantees this
27     SkASSERT(srcTol >= kMinCurveTol);
28 
29     // The GrPathUtil API defines tolerance as the max distance the linear segment can be from
30     // the real curve. Wang's formula guarantees the linear segments will be within 1/precision
31     // of the true curve, so precision = 1/srcTol
32     return 1.f / srcTol;
33 }
34 
max_bezier_vertices(uint32_t chopCount)35 uint32_t max_bezier_vertices(uint32_t chopCount) {
36     static constexpr uint32_t kMaxChopsPerCurve = 10;
37     static_assert((1 << kMaxChopsPerCurve) == GrPathUtils::kMaxPointsPerCurve);
38     return 1 << std::min(chopCount, kMaxChopsPerCurve);
39 }
40 
scaleToleranceToSrc(SkScalar devTol,const SkMatrix & viewM,const SkRect & pathBounds)41 SkScalar GrPathUtils::scaleToleranceToSrc(SkScalar devTol,
42                                           const SkMatrix& viewM,
43                                           const SkRect& pathBounds) {
44     // In order to tesselate the path we get a bound on how much the matrix can
45     // scale when mapping to screen coordinates.
46     SkScalar stretch = viewM.getMaxScale();
47 
48     if (stretch < 0) {
49         // take worst case mapRadius amoung four corners.
50         // (less than perfect)
51         for (int i = 0; i < 4; ++i) {
52             SkMatrix mat;
53             mat.setTranslate((i % 2) ? pathBounds.fLeft : pathBounds.fRight,
54                              (i < 2) ? pathBounds.fTop : pathBounds.fBottom);
55             mat.postConcat(viewM);
56             stretch = std::max(stretch, mat.mapRadius(SK_Scalar1));
57         }
58     }
59     SkScalar srcTol = 0;
60     if (stretch <= 0) {
61         // We have degenerate bounds or some degenerate matrix. Thus we set the tolerance to be the
62         // max of the path pathBounds width and height.
63         srcTol = std::max(pathBounds.width(), pathBounds.height());
64     } else {
65         srcTol = devTol / stretch;
66     }
67     if (srcTol < kMinCurveTol) {
68         srcTol = kMinCurveTol;
69     }
70     return srcTol;
71 }
72 
quadraticPointCount(const SkPoint points[],SkScalar tol)73 uint32_t GrPathUtils::quadraticPointCount(const SkPoint points[], SkScalar tol) {
74     return max_bezier_vertices(skgpu::wangs_formula::quadratic_log2(
75             tolerance_to_wangs_precision(tol), points));
76 }
77 
generateQuadraticPoints(const SkPoint & p0,const SkPoint & p1,const SkPoint & p2,SkScalar tolSqd,SkPoint ** points,uint32_t pointsLeft)78 uint32_t GrPathUtils::generateQuadraticPoints(const SkPoint& p0,
79                                               const SkPoint& p1,
80                                               const SkPoint& p2,
81                                               SkScalar tolSqd,
82                                               SkPoint** points,
83                                               uint32_t pointsLeft) {
84     if (pointsLeft < 2 ||
85         (SkPointPriv::DistanceToLineSegmentBetweenSqd(p1, p0, p2)) < tolSqd) {
86         (*points)[0] = p2;
87         *points += 1;
88         return 1;
89     }
90 
91     SkPoint q[] = {
92         { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
93         { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
94     };
95     SkPoint r = { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) };
96 
97     pointsLeft >>= 1;
98     uint32_t a = generateQuadraticPoints(p0, q[0], r, tolSqd, points, pointsLeft);
99     uint32_t b = generateQuadraticPoints(r, q[1], p2, tolSqd, points, pointsLeft);
100     return a + b;
101 }
102 
cubicPointCount(const SkPoint points[],SkScalar tol)103 uint32_t GrPathUtils::cubicPointCount(const SkPoint points[], SkScalar tol) {
104     return max_bezier_vertices(skgpu::wangs_formula::cubic_log2(
105             tolerance_to_wangs_precision(tol), points));
106 }
107 
generateCubicPoints(const SkPoint & p0,const SkPoint & p1,const SkPoint & p2,const SkPoint & p3,SkScalar tolSqd,SkPoint ** points,uint32_t pointsLeft)108 uint32_t GrPathUtils::generateCubicPoints(const SkPoint& p0,
109                                           const SkPoint& p1,
110                                           const SkPoint& p2,
111                                           const SkPoint& p3,
112                                           SkScalar tolSqd,
113                                           SkPoint** points,
114                                           uint32_t pointsLeft) {
115     if (pointsLeft < 2 ||
116         (SkPointPriv::DistanceToLineSegmentBetweenSqd(p1, p0, p3) < tolSqd &&
117          SkPointPriv::DistanceToLineSegmentBetweenSqd(p2, p0, p3) < tolSqd)) {
118         (*points)[0] = p3;
119         *points += 1;
120         return 1;
121     }
122     SkPoint q[] = {
123         { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
124         { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
125         { SkScalarAve(p2.fX, p3.fX), SkScalarAve(p2.fY, p3.fY) }
126     };
127     SkPoint r[] = {
128         { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) },
129         { SkScalarAve(q[1].fX, q[2].fX), SkScalarAve(q[1].fY, q[2].fY) }
130     };
131     SkPoint s = { SkScalarAve(r[0].fX, r[1].fX), SkScalarAve(r[0].fY, r[1].fY) };
132     pointsLeft >>= 1;
133     uint32_t a = generateCubicPoints(p0, q[0], r[0], s, tolSqd, points, pointsLeft);
134     uint32_t b = generateCubicPoints(s, r[1], q[2], p3, tolSqd, points, pointsLeft);
135     return a + b;
136 }
137 
set(const SkPoint qPts[3])138 void GrPathUtils::QuadUVMatrix::set(const SkPoint qPts[3]) {
139     // We want M such that M * xy_pt = uv_pt
140     // We know M * control_pts = [0  1/2 1]
141     //                           [0  0   1]
142     //                           [1  1   1]
143     // And control_pts = [x0 x1 x2]
144     //                   [y0 y1 y2]
145     //                   [1  1  1 ]
146     // We invert the control pt matrix and post concat to both sides to get M.
147     // Using the known form of the control point matrix and the result, we can
148     // optimize and improve precision.
149 
150     double x0 = qPts[0].fX;
151     double y0 = qPts[0].fY;
152     double x1 = qPts[1].fX;
153     double y1 = qPts[1].fY;
154     double x2 = qPts[2].fX;
155     double y2 = qPts[2].fY;
156 
157     // pre-calculate some adjugate matrix factors for determinant
158     double a2 = x1*y2-x2*y1;
159     double a5 = x2*y0-x0*y2;
160     double a8 = x0*y1-x1*y0;
161     double det = a2 + a5 + a8;
162 
163     if (!SkIsFinite(det)
164         || SkScalarNearlyZero((float)det, SK_ScalarNearlyZero * SK_ScalarNearlyZero)) {
165         // The quad is degenerate. Hopefully this is rare. Find the pts that are
166         // farthest apart to compute a line (unless it is really a pt).
167         SkScalar maxD = SkPointPriv::DistanceToSqd(qPts[0], qPts[1]);
168         int maxEdge = 0;
169         SkScalar d = SkPointPriv::DistanceToSqd(qPts[1], qPts[2]);
170         if (d > maxD) {
171             maxD = d;
172             maxEdge = 1;
173         }
174         d = SkPointPriv::DistanceToSqd(qPts[2], qPts[0]);
175         if (d > maxD) {
176             maxD = d;
177             maxEdge = 2;
178         }
179         // We could have a tolerance here, not sure if it would improve anything
180         if (maxD > 0) {
181             // Set the matrix to give (u = 0, v = distance_to_line)
182             SkVector lineVec = qPts[(maxEdge + 1)%3] - qPts[maxEdge];
183             // when looking from the point 0 down the line we want positive
184             // distances to be to the left. This matches the non-degenerate
185             // case.
186             lineVec = SkPointPriv::MakeOrthog(lineVec, SkPointPriv::kLeft_Side);
187             // first row
188             fM[0] = 0;
189             fM[1] = 0;
190             fM[2] = 0;
191             // second row
192             fM[3] = lineVec.fX;
193             fM[4] = lineVec.fY;
194             fM[5] = -lineVec.dot(qPts[maxEdge]);
195         } else {
196             // It's a point. It should cover zero area. Just set the matrix such
197             // that (u, v) will always be far away from the quad.
198             fM[0] = 0; fM[1] = 0; fM[2] = 100.f;
199             fM[3] = 0; fM[4] = 0; fM[5] = 100.f;
200         }
201     } else {
202         double scale = 1.0/det;
203 
204         // compute adjugate matrix
205         double a3, a4, a6, a7;
206         a3 = y2-y0;
207         a4 = x0-x2;
208 
209         a6 = y0-y1;
210         a7 = x1-x0;
211 
212         // this performs the uv_pts*adjugate(control_pts) multiply,
213         // then does the scale by 1/det afterwards to improve precision
214         fM[0] = (float)((0.5*a3 + a6)*scale);
215         fM[1] = (float)((0.5*a4 + a7)*scale);
216         fM[2] = (float)((0.5*a5 + a8)*scale);
217         fM[3] = (float)(a6*scale);
218         fM[4] = (float)(a7*scale);
219         fM[5] = (float)(a8*scale);
220     }
221 }
222 
223 ////////////////////////////////////////////////////////////////////////////////
224 
225 // k = (y2 - y0, x0 - x2, x2*y0 - x0*y2)
226 // l = (y1 - y0, x0 - x1, x1*y0 - x0*y1) * 2*w
227 // m = (y2 - y1, x1 - x2, x2*y1 - x1*y2) * 2*w
getConicKLM(const SkPoint p[3],const SkScalar weight,SkMatrix * out)228 void GrPathUtils::getConicKLM(const SkPoint p[3], const SkScalar weight, SkMatrix* out) {
229     SkMatrix& klm = *out;
230     const SkScalar w2 = 2.f * weight;
231     klm[0] = p[2].fY - p[0].fY;
232     klm[1] = p[0].fX - p[2].fX;
233     klm[2] = p[2].fX * p[0].fY - p[0].fX * p[2].fY;
234 
235     klm[3] = w2 * (p[1].fY - p[0].fY);
236     klm[4] = w2 * (p[0].fX - p[1].fX);
237     klm[5] = w2 * (p[1].fX * p[0].fY - p[0].fX * p[1].fY);
238 
239     klm[6] = w2 * (p[2].fY - p[1].fY);
240     klm[7] = w2 * (p[1].fX - p[2].fX);
241     klm[8] = w2 * (p[2].fX * p[1].fY - p[1].fX * p[2].fY);
242 
243     // scale the max absolute value of coeffs to 10
244     SkScalar scale = 0.f;
245     for (int i = 0; i < 9; ++i) {
246        scale = std::max(scale, SkScalarAbs(klm[i]));
247     }
248     SkASSERT(scale > 0.f);
249     scale = 10.f / scale;
250     for (int i = 0; i < 9; ++i) {
251         klm[i] *= scale;
252     }
253 }
254 
255 ////////////////////////////////////////////////////////////////////////////////
256 
257 namespace {
258 
259 // a is the first control point of the cubic.
260 // ab is the vector from a to the second control point.
261 // dc is the vector from the fourth to the third control point.
262 // d is the fourth control point.
263 // p is the candidate quadratic control point.
264 // this assumes that the cubic doesn't inflect and is simple
is_point_within_cubic_tangents(const SkPoint & a,const SkVector & ab,const SkVector & dc,const SkPoint & d,SkPathFirstDirection dir,const SkPoint p)265 bool is_point_within_cubic_tangents(const SkPoint& a,
266                                     const SkVector& ab,
267                                     const SkVector& dc,
268                                     const SkPoint& d,
269                                     SkPathFirstDirection dir,
270                                     const SkPoint p) {
271     SkVector ap = p - a;
272     SkScalar apXab = ap.cross(ab);
273     if (SkPathFirstDirection::kCW == dir) {
274         if (apXab > 0) {
275             return false;
276         }
277     } else {
278         SkASSERT(SkPathFirstDirection::kCCW == dir);
279         if (apXab < 0) {
280             return false;
281         }
282     }
283 
284     SkVector dp = p - d;
285     SkScalar dpXdc = dp.cross(dc);
286     if (SkPathFirstDirection::kCW == dir) {
287         if (dpXdc < 0) {
288             return false;
289         }
290     } else {
291         SkASSERT(SkPathFirstDirection::kCCW == dir);
292         if (dpXdc > 0) {
293             return false;
294         }
295     }
296     return true;
297 }
298 
convert_noninflect_cubic_to_quads(const SkPoint p[4],SkScalar toleranceSqd,TArray<SkPoint,true> * quads,int sublevel=0,bool preserveFirstTangent=true,bool preserveLastTangent=true)299 void convert_noninflect_cubic_to_quads(const SkPoint p[4],
300                                        SkScalar toleranceSqd,
301                                        TArray<SkPoint, true>* quads,
302                                        int sublevel = 0,
303                                        bool preserveFirstTangent = true,
304                                        bool preserveLastTangent = true) {
305     // Notation: Point a is always p[0]. Point b is p[1] unless p[1] == p[0], in which case it is
306     // p[2]. Point d is always p[3]. Point c is p[2] unless p[2] == p[3], in which case it is p[1].
307     SkVector ab = p[1] - p[0];
308     SkVector dc = p[2] - p[3];
309 
310     if (SkPointPriv::LengthSqd(ab) < SK_ScalarNearlyZero) {
311         if (SkPointPriv::LengthSqd(dc) < SK_ScalarNearlyZero) {
312             SkPoint* degQuad = quads->push_back_n(3);
313             degQuad[0] = p[0];
314             degQuad[1] = p[0];
315             degQuad[2] = p[3];
316             return;
317         }
318         ab = p[2] - p[0];
319     }
320     if (SkPointPriv::LengthSqd(dc) < SK_ScalarNearlyZero) {
321         dc = p[1] - p[3];
322     }
323 
324     static const SkScalar kLengthScale = 3 * SK_Scalar1 / 2;
325     static const int kMaxSubdivs = 10;
326 
327     ab.scale(kLengthScale);
328     dc.scale(kLengthScale);
329 
330     // c0 and c1 are extrapolations along vectors ab and dc.
331     SkPoint c0 = p[0] + ab;
332     SkPoint c1 = p[3] + dc;
333 
334     SkScalar dSqd = sublevel > kMaxSubdivs ? 0 : SkPointPriv::DistanceToSqd(c0, c1);
335     if (dSqd < toleranceSqd) {
336         SkPoint newC;
337         if (preserveFirstTangent == preserveLastTangent) {
338             // We used to force a split when both tangents need to be preserved and c0 != c1.
339             // This introduced a large performance regression for tiny paths for no noticeable
340             // quality improvement. However, we aren't quite fulfilling our contract of guaranteeing
341             // the two tangent vectors and this could introduce a missed pixel in
342             // AAHairlinePathRenderer.
343             newC = (c0 + c1) * 0.5f;
344         } else if (preserveFirstTangent) {
345             newC = c0;
346         } else {
347             newC = c1;
348         }
349 
350         SkPoint* pts = quads->push_back_n(3);
351         pts[0] = p[0];
352         pts[1] = newC;
353         pts[2] = p[3];
354         return;
355     }
356     SkPoint choppedPts[7];
357     SkChopCubicAtHalf(p, choppedPts);
358     convert_noninflect_cubic_to_quads(
359             choppedPts + 0, toleranceSqd, quads, sublevel + 1, preserveFirstTangent, false);
360     convert_noninflect_cubic_to_quads(
361             choppedPts + 3, toleranceSqd, quads, sublevel + 1, false, preserveLastTangent);
362 }
363 
convert_noninflect_cubic_to_quads_with_constraint(const SkPoint p[4],SkScalar toleranceSqd,SkPathFirstDirection dir,TArray<SkPoint,true> * quads,int sublevel=0)364 void convert_noninflect_cubic_to_quads_with_constraint(const SkPoint p[4],
365                                                        SkScalar toleranceSqd,
366                                                        SkPathFirstDirection dir,
367                                                        TArray<SkPoint, true>* quads,
368                                                        int sublevel = 0) {
369     // Notation: Point a is always p[0]. Point b is p[1] unless p[1] == p[0], in which case it is
370     // p[2]. Point d is always p[3]. Point c is p[2] unless p[2] == p[3], in which case it is p[1].
371 
372     SkVector ab = p[1] - p[0];
373     SkVector dc = p[2] - p[3];
374 
375     if (SkPointPriv::LengthSqd(ab) < SK_ScalarNearlyZero) {
376         if (SkPointPriv::LengthSqd(dc) < SK_ScalarNearlyZero) {
377             SkPoint* degQuad = quads->push_back_n(3);
378             degQuad[0] = p[0];
379             degQuad[1] = p[0];
380             degQuad[2] = p[3];
381             return;
382         }
383         ab = p[2] - p[0];
384     }
385     if (SkPointPriv::LengthSqd(dc) < SK_ScalarNearlyZero) {
386         dc = p[1] - p[3];
387     }
388 
389     // When the ab and cd tangents are degenerate or nearly parallel with vector from d to a the
390     // constraint that the quad point falls between the tangents becomes hard to enforce and we are
391     // likely to hit the max subdivision count. However, in this case the cubic is approaching a
392     // line and the accuracy of the quad point isn't so important. We check if the two middle cubic
393     // control points are very close to the baseline vector. If so then we just pick quadratic
394     // points on the control polygon.
395 
396     SkVector da = p[0] - p[3];
397     bool doQuads = SkPointPriv::LengthSqd(dc) < SK_ScalarNearlyZero ||
398                    SkPointPriv::LengthSqd(ab) < SK_ScalarNearlyZero;
399     if (!doQuads) {
400         SkScalar invDALengthSqd = SkPointPriv::LengthSqd(da);
401         if (invDALengthSqd > SK_ScalarNearlyZero) {
402             invDALengthSqd = SkScalarInvert(invDALengthSqd);
403             // cross(ab, da)^2/length(da)^2 == sqd distance from b to line from d to a.
404             // same goes for point c using vector cd.
405             SkScalar detABSqd = ab.cross(da);
406             detABSqd = SkScalarSquare(detABSqd);
407             SkScalar detDCSqd = dc.cross(da);
408             detDCSqd = SkScalarSquare(detDCSqd);
409             if (detABSqd * invDALengthSqd < toleranceSqd &&
410                 detDCSqd * invDALengthSqd < toleranceSqd) {
411                 doQuads = true;
412             }
413         }
414     }
415     if (doQuads) {
416         SkPoint b = p[0] + ab;
417         SkPoint c = p[3] + dc;
418         SkPoint mid = b + c;
419         mid.scale(SK_ScalarHalf);
420         // Insert two quadratics to cover the case when ab points away from d and/or dc
421         // points away from a.
422         if (SkVector::DotProduct(da, dc) < 0 || SkVector::DotProduct(ab, da) > 0) {
423             SkPoint* qpts = quads->push_back_n(6);
424             qpts[0] = p[0];
425             qpts[1] = b;
426             qpts[2] = mid;
427             qpts[3] = mid;
428             qpts[4] = c;
429             qpts[5] = p[3];
430         } else {
431             SkPoint* qpts = quads->push_back_n(3);
432             qpts[0] = p[0];
433             qpts[1] = mid;
434             qpts[2] = p[3];
435         }
436         return;
437     }
438 
439     static const SkScalar kLengthScale = 3 * SK_Scalar1 / 2;
440     static const int kMaxSubdivs = 10;
441 
442     ab.scale(kLengthScale);
443     dc.scale(kLengthScale);
444 
445     // c0 and c1 are extrapolations along vectors ab and dc.
446     SkVector c0 = p[0] + ab;
447     SkVector c1 = p[3] + dc;
448 
449     SkScalar dSqd = sublevel > kMaxSubdivs ? 0 : SkPointPriv::DistanceToSqd(c0, c1);
450     if (dSqd < toleranceSqd) {
451         SkPoint cAvg = (c0 + c1) * 0.5f;
452         bool subdivide = false;
453 
454         if (!is_point_within_cubic_tangents(p[0], ab, dc, p[3], dir, cAvg)) {
455             // choose a new cAvg that is the intersection of the two tangent lines.
456             ab = SkPointPriv::MakeOrthog(ab);
457             SkScalar z0 = -ab.dot(p[0]);
458             dc = SkPointPriv::MakeOrthog(dc);
459             SkScalar z1 = -dc.dot(p[3]);
460             cAvg.fX = ab.fY * z1 - z0 * dc.fY;
461             cAvg.fY = z0 * dc.fX - ab.fX * z1;
462             SkScalar z = ab.fX * dc.fY - ab.fY * dc.fX;
463             z = sk_ieee_float_divide(1.0f, z);
464             cAvg.fX *= z;
465             cAvg.fY *= z;
466             if (sublevel <= kMaxSubdivs) {
467                 SkScalar d0Sqd = SkPointPriv::DistanceToSqd(c0, cAvg);
468                 SkScalar d1Sqd = SkPointPriv::DistanceToSqd(c1, cAvg);
469                 // We need to subdivide if d0 + d1 > tolerance but we have the sqd values. We know
470                 // the distances and tolerance can't be negative.
471                 // (d0 + d1)^2 > toleranceSqd
472                 // d0Sqd + 2*d0*d1 + d1Sqd > toleranceSqd
473                 SkScalar d0d1 = SkScalarSqrt(d0Sqd * d1Sqd);
474                 subdivide = 2 * d0d1 + d0Sqd + d1Sqd > toleranceSqd;
475             }
476         }
477         if (!subdivide) {
478             SkPoint* pts = quads->push_back_n(3);
479             pts[0] = p[0];
480             pts[1] = cAvg;
481             pts[2] = p[3];
482             return;
483         }
484     }
485     SkPoint choppedPts[7];
486     SkChopCubicAtHalf(p, choppedPts);
487     convert_noninflect_cubic_to_quads_with_constraint(
488             choppedPts + 0, toleranceSqd, dir, quads, sublevel + 1);
489     convert_noninflect_cubic_to_quads_with_constraint(
490             choppedPts + 3, toleranceSqd, dir, quads, sublevel + 1);
491 }
492 }  // namespace
493 
convertCubicToQuads(const SkPoint p[4],SkScalar tolScale,TArray<SkPoint,true> * quads)494 void GrPathUtils::convertCubicToQuads(const SkPoint p[4],
495                                       SkScalar tolScale,
496                                       TArray<SkPoint, true>* quads) {
497     if (!p[0].isFinite() || !p[1].isFinite() || !p[2].isFinite() || !p[3].isFinite()) {
498         return;
499     }
500     if (!SkIsFinite(tolScale)) {
501         return;
502     }
503     SkPoint chopped[10];
504     int count = SkChopCubicAtInflections(p, chopped);
505 
506     const SkScalar tolSqd = SkScalarSquare(tolScale);
507 
508     for (int i = 0; i < count; ++i) {
509         SkPoint* cubic = chopped + 3*i;
510         convert_noninflect_cubic_to_quads(cubic, tolSqd, quads);
511     }
512 }
513 
convertCubicToQuadsConstrainToTangents(const SkPoint p[4],SkScalar tolScale,SkPathFirstDirection dir,TArray<SkPoint,true> * quads)514 void GrPathUtils::convertCubicToQuadsConstrainToTangents(const SkPoint p[4],
515                                                          SkScalar tolScale,
516                                                          SkPathFirstDirection dir,
517                                                          TArray<SkPoint, true>* quads) {
518     if (!p[0].isFinite() || !p[1].isFinite() || !p[2].isFinite() || !p[3].isFinite()) {
519         return;
520     }
521     if (!SkIsFinite(tolScale)) {
522         return;
523     }
524     SkPoint chopped[10];
525     int count = SkChopCubicAtInflections(p, chopped);
526 
527     const SkScalar tolSqd = SkScalarSquare(tolScale);
528 
529     for (int i = 0; i < count; ++i) {
530         SkPoint* cubic = chopped + 3*i;
531         convert_noninflect_cubic_to_quads_with_constraint(cubic, tolSqd, dir, quads);
532     }
533 }
534