xref: /aosp_15_r20/external/skia/src/gpu/ganesh/geometry/GrQuadUtils.cpp (revision c8dee2aa9b3f27cf6c858bd81872bdeb2c07ed17)
1 /*
2  * Copyright 2019 Google LLC
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 #include "src/gpu/ganesh/geometry/GrQuadUtils.h"
8 
9 #include "include/core/SkPoint.h"
10 #include "include/core/SkRect.h"
11 #include "include/core/SkScalar.h"
12 #include "include/core/SkTypes.h"
13 #include "include/private/base/SkFloatingPoint.h"
14 #include "include/private/base/SkMacros.h"
15 #include "include/private/gpu/ganesh/GrTypesPriv.h"
16 #include "src/base/SkVx.h"
17 #include "src/core/SkPathPriv.h"
18 #include "src/gpu/ganesh/geometry/GrQuad.h"
19 
20 #include <algorithm>
21 #include <cmath>
22 
23 using float4 = skvx::float4;
24 using mask4  = skvx::int4; // aliased to 'mask' to emphasize that it will hold boolean SIMD masks.
25 
26 #define AI SK_ALWAYS_INLINE
27 
28 // General tolerance used for denominators, checking div-by-0
29 static constexpr float kTolerance = 1e-9f;
30 // Increased slop when comparing signed distances / lengths
31 static constexpr float kDistTolerance = 1e-2f;
32 static constexpr float kDist2Tolerance = kDistTolerance * kDistTolerance;
33 static constexpr float kInvDistTolerance = 1.f / kDistTolerance;
34 
35 // These rotate the points/edge values either clockwise or counterclockwise assuming tri strip
36 // order.
37 template<typename T>
next_cw(const skvx::Vec<4,T> & v)38 static AI skvx::Vec<4, T> next_cw(const skvx::Vec<4, T>& v) {
39     return skvx::shuffle<2, 0, 3, 1>(v);
40 }
41 
42 template<typename T>
next_ccw(const skvx::Vec<4,T> & v)43 static AI skvx::Vec<4, T> next_ccw(const skvx::Vec<4, T>& v) {
44     return skvx::shuffle<1, 3, 0, 2>(v);
45 }
46 
next_diag(const float4 & v)47 static AI float4 next_diag(const float4& v) {
48     // Same as next_ccw(next_ccw(v)), or next_cw(next_cw(v)), e.g. two rotations either direction.
49     return skvx::shuffle<3, 2, 1, 0>(v);
50 }
51 
52 // Replaces zero-length 'bad' edge vectors with the reversed opposite edge vector.
53 // e3 may be null if only 2D edges need to be corrected for.
correct_bad_edges(const mask4 & bad,float4 * e1,float4 * e2,float4 * e3)54 static AI void correct_bad_edges(const mask4& bad, float4* e1, float4* e2, float4* e3) {
55     if (any(bad)) {
56         // Want opposite edges, L B T R -> R T B L but with flipped sign to preserve winding
57         *e1 = if_then_else(bad, -next_diag(*e1), *e1);
58         *e2 = if_then_else(bad, -next_diag(*e2), *e2);
59         if (e3) {
60             *e3 = if_then_else(bad, -next_diag(*e3), *e3);
61         }
62     }
63 }
64 
65 // Replace 'bad' coordinates by rotating CCW to get the next point. c3 may be null for 2D points.
correct_bad_coords(const mask4 & bad,float4 * c1,float4 * c2,float4 * c3)66 static AI void correct_bad_coords(const mask4& bad, float4* c1, float4* c2, float4* c3) {
67     if (any(bad)) {
68         *c1 = if_then_else(bad, next_ccw(*c1), *c1);
69         *c2 = if_then_else(bad, next_ccw(*c2), *c2);
70         if (c3) {
71             *c3 = if_then_else(bad, next_ccw(*c3), *c3);
72         }
73     }
74 }
75 
76 // Since the local quad may not be type kRect, this uses the opposites for each vertex when
77 // interpolating, and calculates new ws in addition to new xs, ys.
interpolate_local(float alpha,int v0,int v1,int v2,int v3,float lx[4],float ly[4],float lw[4])78 static void interpolate_local(float alpha, int v0, int v1, int v2, int v3,
79                               float lx[4], float ly[4], float lw[4]) {
80     SkASSERT(v0 >= 0 && v0 < 4);
81     SkASSERT(v1 >= 0 && v1 < 4);
82     SkASSERT(v2 >= 0 && v2 < 4);
83     SkASSERT(v3 >= 0 && v3 < 4);
84 
85     float beta = 1.f - alpha;
86     lx[v0] = alpha * lx[v0] + beta * lx[v2];
87     ly[v0] = alpha * ly[v0] + beta * ly[v2];
88     lw[v0] = alpha * lw[v0] + beta * lw[v2];
89 
90     lx[v1] = alpha * lx[v1] + beta * lx[v3];
91     ly[v1] = alpha * ly[v1] + beta * ly[v3];
92     lw[v1] = alpha * lw[v1] + beta * lw[v3];
93 }
94 
95 // Crops v0 to v1 based on the clipDevRect. v2 is opposite of v0, v3 is opposite of v1.
96 // It is written to not modify coordinates if there's no intersection along the edge.
97 // Ideally this would have been detected earlier and the entire draw is skipped.
crop_rect_edge(const SkRect & clipDevRect,int v0,int v1,int v2,int v3,float x[4],float y[4],float lx[4],float ly[4],float lw[4])98 static bool crop_rect_edge(const SkRect& clipDevRect, int v0, int v1, int v2, int v3,
99                            float x[4], float y[4], float lx[4], float ly[4], float lw[4]) {
100     SkASSERT(v0 >= 0 && v0 < 4);
101     SkASSERT(v1 >= 0 && v1 < 4);
102     SkASSERT(v2 >= 0 && v2 < 4);
103     SkASSERT(v3 >= 0 && v3 < 4);
104 
105     if (SkScalarNearlyEqual(x[v0], x[v1])) {
106         // A vertical edge
107         if (x[v0] < clipDevRect.fLeft && x[v2] >= clipDevRect.fLeft) {
108             // Overlapping with left edge of clipDevRect
109             if (lx) {
110                 float alpha = (x[v2] - clipDevRect.fLeft) / (x[v2] - x[v0]);
111                 interpolate_local(alpha, v0, v1, v2, v3, lx, ly, lw);
112             }
113             x[v0] = clipDevRect.fLeft;
114             x[v1] = clipDevRect.fLeft;
115             return true;
116         } else if (x[v0] > clipDevRect.fRight && x[v2] <= clipDevRect.fRight) {
117             // Overlapping with right edge of clipDevRect
118             if (lx) {
119                 float alpha = (clipDevRect.fRight - x[v2]) / (x[v0] - x[v2]);
120                 interpolate_local(alpha, v0, v1, v2, v3, lx, ly, lw);
121             }
122             x[v0] = clipDevRect.fRight;
123             x[v1] = clipDevRect.fRight;
124             return true;
125         }
126     } else {
127         // A horizontal edge
128         SkASSERT(SkScalarNearlyEqual(y[v0], y[v1]));
129         if (y[v0] < clipDevRect.fTop && y[v2] >= clipDevRect.fTop) {
130             // Overlapping with top edge of clipDevRect
131             if (lx) {
132                 float alpha = (y[v2] - clipDevRect.fTop) / (y[v2] - y[v0]);
133                 interpolate_local(alpha, v0, v1, v2, v3, lx, ly, lw);
134             }
135             y[v0] = clipDevRect.fTop;
136             y[v1] = clipDevRect.fTop;
137             return true;
138         } else if (y[v0] > clipDevRect.fBottom && y[v2] <= clipDevRect.fBottom) {
139             // Overlapping with bottom edge of clipDevRect
140             if (lx) {
141                 float alpha = (clipDevRect.fBottom - y[v2]) / (y[v0] - y[v2]);
142                 interpolate_local(alpha, v0, v1, v2, v3, lx, ly, lw);
143             }
144             y[v0] = clipDevRect.fBottom;
145             y[v1] = clipDevRect.fBottom;
146             return true;
147         }
148     }
149 
150     // No overlap so don't crop it
151     return false;
152 }
153 
154 // Updates x and y to intersect with clipDevRect.  lx, ly, and lw are updated appropriately and may
155 // be null to skip calculations. Returns bit mask of edges that were clipped.
crop_rect(const SkRect & clipDevRect,float x[4],float y[4],float lx[4],float ly[4],float lw[4])156 static GrQuadAAFlags crop_rect(const SkRect& clipDevRect, float x[4], float y[4],
157                                float lx[4], float ly[4], float lw[4]) {
158     GrQuadAAFlags clipEdgeFlags = GrQuadAAFlags::kNone;
159 
160     // The quad's left edge may not align with the SkRect notion of left due to 90 degree rotations
161     // or mirrors. So, this processes the logical edges of the quad and clamps it to the 4 sides of
162     // clipDevRect.
163 
164     // Quad's left is v0 to v1 (op. v2 and v3)
165     if (crop_rect_edge(clipDevRect, 0, 1, 2, 3, x, y, lx, ly, lw)) {
166         clipEdgeFlags |= GrQuadAAFlags::kLeft;
167     }
168     // Quad's top edge is v0 to v2 (op. v1 and v3)
169     if (crop_rect_edge(clipDevRect, 0, 2, 1, 3, x, y, lx, ly, lw)) {
170         clipEdgeFlags |= GrQuadAAFlags::kTop;
171     }
172     // Quad's right edge is v2 to v3 (op. v0 and v1)
173     if (crop_rect_edge(clipDevRect, 2, 3, 0, 1, x, y, lx, ly, lw)) {
174         clipEdgeFlags |= GrQuadAAFlags::kRight;
175     }
176     // Quad's bottom edge is v1 to v3 (op. v0 and v2)
177     if (crop_rect_edge(clipDevRect, 1, 3, 0, 2, x, y, lx, ly, lw)) {
178         clipEdgeFlags |= GrQuadAAFlags::kBottom;
179     }
180 
181     return clipEdgeFlags;
182 }
183 
184 // Similar to crop_rect, but assumes that both the device coordinates and optional local coordinates
185 // geometrically match the TL, BL, TR, BR vertex ordering, i.e. axis-aligned but not flipped, etc.
crop_simple_rect(const SkRect & clipDevRect,float x[4],float y[4],float lx[4],float ly[4])186 static GrQuadAAFlags crop_simple_rect(const SkRect& clipDevRect, float x[4], float y[4],
187                                       float lx[4], float ly[4]) {
188     GrQuadAAFlags clipEdgeFlags = GrQuadAAFlags::kNone;
189 
190     // Update local coordinates proportionately to how much the device rect edge was clipped
191     const SkScalar dx = lx ? (lx[2] - lx[0]) / (x[2] - x[0]) : 0.f;
192     const SkScalar dy = ly ? (ly[1] - ly[0]) / (y[1] - y[0]) : 0.f;
193     if (clipDevRect.fLeft > x[0]) {
194         if (lx) {
195             lx[0] += (clipDevRect.fLeft - x[0]) * dx;
196             lx[1] = lx[0];
197         }
198         x[0] = clipDevRect.fLeft;
199         x[1] = clipDevRect.fLeft;
200         clipEdgeFlags |= GrQuadAAFlags::kLeft;
201     }
202     if (clipDevRect.fTop > y[0]) {
203         if (ly) {
204             ly[0] += (clipDevRect.fTop - y[0]) * dy;
205             ly[2] = ly[0];
206         }
207         y[0] = clipDevRect.fTop;
208         y[2] = clipDevRect.fTop;
209         clipEdgeFlags |= GrQuadAAFlags::kTop;
210     }
211     if (clipDevRect.fRight < x[2]) {
212         if (lx) {
213             lx[2] -= (x[2] - clipDevRect.fRight) * dx;
214             lx[3] = lx[2];
215         }
216         x[2] = clipDevRect.fRight;
217         x[3] = clipDevRect.fRight;
218         clipEdgeFlags |= GrQuadAAFlags::kRight;
219     }
220     if (clipDevRect.fBottom < y[1]) {
221         if (ly) {
222             ly[1] -= (y[1] - clipDevRect.fBottom) * dy;
223             ly[3] = ly[1];
224         }
225         y[1] = clipDevRect.fBottom;
226         y[3] = clipDevRect.fBottom;
227         clipEdgeFlags |= GrQuadAAFlags::kBottom;
228     }
229 
230     return clipEdgeFlags;
231 }
232 // Consistent with GrQuad::asRect()'s return value but requires fewer operations since we don't need
233 // to calculate the bounds of the quad.
is_simple_rect(const GrQuad & quad)234 static bool is_simple_rect(const GrQuad& quad) {
235     if (quad.quadType() != GrQuad::Type::kAxisAligned) {
236         return false;
237     }
238     // v0 at the geometric top-left is unique, so we only need to compare x[0] < x[2] for left
239     // and y[0] < y[1] for top, but add a little padding to protect against numerical precision
240     // on R90 and R270 transforms tricking this check.
241     return ((quad.x(0) + SK_ScalarNearlyZero) < quad.x(2)) &&
242            ((quad.y(0) + SK_ScalarNearlyZero) < quad.y(1));
243 }
244 
245 // Calculates barycentric coordinates for each point in (testX, testY) in the triangle formed by
246 // (x0,y0) - (x1,y1) - (x2, y2) and stores them in u, v, w.
barycentric_coords(float x0,float y0,float x1,float y1,float x2,float y2,const float4 & testX,const float4 & testY,float4 * u,float4 * v,float4 * w)247 static bool barycentric_coords(float x0, float y0, float x1, float y1, float x2, float y2,
248                                const float4& testX, const float4& testY,
249                                float4* u, float4* v, float4* w) {
250     // The 32-bit calculations can have catastrophic cancellation if the device-space coordinates
251     // are really big, and this code needs to handle that because we evaluate barycentric coords
252     // pre-cropping to the render target bounds. This preserves some precision by shrinking the
253     // coordinate space if the bounds are large.
254     static constexpr float kCoordLimit = 1e7f; // Big but somewhat arbitrary, fixes crbug:10141204
255     float scaleX = std::max(std::max(x0, x1), x2) - std::min(std::min(x0, x1), x2);
256     float scaleY = std::max(std::max(y0, y1), y2) - std::min(std::min(y0, y1), y2);
257     if (scaleX > kCoordLimit) {
258         scaleX = kCoordLimit / scaleX;
259         x0 *= scaleX;
260         x1 *= scaleX;
261         x2 *= scaleX;
262     } else {
263         // Don't scale anything
264         scaleX = 1.f;
265     }
266     if (scaleY > kCoordLimit) {
267         scaleY = kCoordLimit / scaleY;
268         y0 *= scaleY;
269         y1 *= scaleY;
270         y2 *= scaleY;
271     } else {
272         scaleY = 1.f;
273     }
274 
275     // Modeled after SkPathOpsQuad::pointInTriangle() but uses float instead of double, is
276     // vectorized and outputs normalized barycentric coordinates instead of inside/outside test
277     float v0x = x2 - x0;
278     float v0y = y2 - y0;
279     float v1x = x1 - x0;
280     float v1y = y1 - y0;
281 
282     float dot00 = v0x * v0x + v0y * v0y;
283     float dot01 = v0x * v1x + v0y * v1y;
284     float dot11 = v1x * v1x + v1y * v1y;
285 
286     // Not yet 1/d, first check d != 0 with a healthy tolerance (worst case is we end up not
287     // cropping something we could have, which is better than cropping something we shouldn't have).
288     // The tolerance is partly so large because these comparisons operate in device px^4 units,
289     // with plenty of subtractions thrown in. The SkPathOpsQuad code's use of doubles helped, and
290     // because it only needed to return "inside triangle", it could compare against [0, denom] and
291     // skip the normalization entirely.
292     float invDenom = dot00 * dot11 - dot01 * dot01;
293     static constexpr SkScalar kEmptyTriTolerance = SK_Scalar1 / (1 << 5);
294     if (SkScalarNearlyZero(invDenom, kEmptyTriTolerance)) {
295         // The triangle was degenerate/empty, which can cause the following UVW calculations to
296         // return (0,0,1) for every test point. This in turn makes the cropping code think that the
297         // empty triangle contains the crop rect and we turn the draw into a fullscreen clear, which
298         // is definitely the utter opposite of what we'd expect for an empty shape.
299         return false;
300     } else {
301         // Safe to divide
302         invDenom = sk_ieee_float_divide(1.f, invDenom);
303     }
304 
305     float4 v2x = (scaleX * testX) - x0;
306     float4 v2y = (scaleY * testY) - y0;
307 
308     float4 dot02 = v0x * v2x + v0y * v2y;
309     float4 dot12 = v1x * v2x + v1y * v2y;
310 
311     // These are relative to the vertices, so there's no need to undo the scale factor
312     *u = (dot11 * dot02 - dot01 * dot12) * invDenom;
313     *v = (dot00 * dot12 - dot01 * dot02) * invDenom;
314     *w = 1.f - *u - *v;
315 
316     return true;
317 }
318 
inside_triangle(const float4 & u,const float4 & v,const float4 & w)319 static mask4 inside_triangle(const float4& u, const float4& v, const float4& w) {
320     return ((u >= 0.f) & (u <= 1.f)) & ((v >= 0.f) & (v <= 1.f)) & ((w >= 0.f) & (w <= 1.f));
321 }
322 
323 ///////////////////////////////////////////////////////////////////////////////////////////////////
324 
projectedBounds() const325 SkRect GrQuad::projectedBounds() const {
326     float4 xs = this->x4f();
327     float4 ys = this->y4f();
328     float4 ws = this->w4f();
329     mask4 clipW = ws < SkPathPriv::kW0PlaneDistance;
330     if (any(clipW)) {
331         float4 x2d = xs / ws;
332         float4 y2d = ys / ws;
333         // Bounds of just the projected points in front of w = epsilon
334         SkRect frontBounds = {
335             min(if_then_else(clipW, float4(SK_ScalarInfinity), x2d)),
336             min(if_then_else(clipW, float4(SK_ScalarInfinity), y2d)),
337             max(if_then_else(clipW, float4(SK_ScalarNegativeInfinity), x2d)),
338             max(if_then_else(clipW, float4(SK_ScalarNegativeInfinity), y2d))
339         };
340         // Calculate clipped coordinates by following CCW edges, only keeping points where the w
341         // actually changes sign between the vertices.
342         float4 t = (SkPathPriv::kW0PlaneDistance - ws) / (next_ccw(ws) - ws);
343         x2d = (t * next_ccw(xs) + (1.f - t) * xs) / SkPathPriv::kW0PlaneDistance;
344         y2d = (t * next_ccw(ys) + (1.f - t) * ys) / SkPathPriv::kW0PlaneDistance;
345         // True if (w < e) xor (ccw(w) < e), i.e. crosses the w = epsilon plane
346         clipW = clipW ^ (next_ccw(ws) < SkPathPriv::kW0PlaneDistance);
347         return {
348             min(if_then_else(clipW, x2d, float4(frontBounds.fLeft))),
349             min(if_then_else(clipW, y2d, float4(frontBounds.fTop))),
350             max(if_then_else(clipW, x2d, float4(frontBounds.fRight))),
351             max(if_then_else(clipW, y2d, float4(frontBounds.fBottom)))
352         };
353     } else {
354         // Nothing is behind the viewer, so the projection is straight forward and valid
355         ws = 1.f / ws;
356         float4 x2d = xs * ws;
357         float4 y2d = ys * ws;
358         return {min(x2d), min(y2d), max(x2d), max(y2d)};
359     }
360 }
361 
362 ///////////////////////////////////////////////////////////////////////////////////////////////////
363 
364 namespace GrQuadUtils {
365 
ResolveAAType(GrAAType requestedAAType,GrQuadAAFlags requestedEdgeFlags,const GrQuad & quad,GrAAType * outAAType,GrQuadAAFlags * outEdgeFlags)366 void ResolveAAType(GrAAType requestedAAType, GrQuadAAFlags requestedEdgeFlags, const GrQuad& quad,
367                    GrAAType* outAAType, GrQuadAAFlags* outEdgeFlags) {
368     // Most cases will keep the requested types unchanged
369     *outAAType = requestedAAType;
370     *outEdgeFlags = requestedEdgeFlags;
371 
372     switch (requestedAAType) {
373         // When aa type is coverage, disable AA if the edge configuration doesn't actually need it
374         case GrAAType::kCoverage:
375             if (requestedEdgeFlags == GrQuadAAFlags::kNone) {
376                 // This can happen when quads are drawn in bulk, where the requestedAAType was
377                 // conservatively enabled and the edge flags are per-entry.
378                 *outAAType = GrAAType::kNone;
379             } else if (quad.quadType() == GrQuad::Type::kAxisAligned &&
380                        !quad.aaHasEffectOnRect(requestedEdgeFlags)) {
381                 // For coverage AA, if the quad is a rect and AA-enabled edges line up with pixel
382                 // boundaries, then overall AA and per-edge AA can be completely disabled.
383                 *outAAType = GrAAType::kNone;
384                 *outEdgeFlags = GrQuadAAFlags::kNone;
385             }
386 
387             break;
388         // For no or msaa anti aliasing, override the edge flags since edge flags only make sense
389         // when coverage aa is being used.
390         case GrAAType::kNone:
391             *outEdgeFlags = GrQuadAAFlags::kNone;
392             break;
393         case GrAAType::kMSAA:
394             *outEdgeFlags = GrQuadAAFlags::kAll;
395             break;
396     }
397 }
398 
ClipToW0(DrawQuad * quad,DrawQuad * extraVertices)399 int ClipToW0(DrawQuad* quad, DrawQuad* extraVertices) {
400     using Vertices = TessellationHelper::Vertices;
401 
402     SkASSERT(quad && extraVertices);
403 
404     if (quad->fDevice.quadType() < GrQuad::Type::kPerspective) {
405         // W implicitly 1s for each vertex, so nothing to do but draw unmodified 'quad'
406         return 1;
407     }
408 
409     mask4 validW = quad->fDevice.w4f() >= SkPathPriv::kW0PlaneDistance;
410     if (all(validW)) {
411         // Nothing to clip, can proceed normally drawing just 'quad'
412         return 1;
413     } else if (!any(validW)) {
414         // Everything is clipped, so draw nothing
415         return 0;
416     }
417 
418     // The clipped local coordinates will most likely not remain rectilinear
419     GrQuad::Type localType = quad->fLocal.quadType();
420     if (localType < GrQuad::Type::kGeneral) {
421         localType = GrQuad::Type::kGeneral;
422     }
423 
424     // If we got here, there are 1, 2, or 3 points behind the w = 0 plane. If 2 or 3 points are
425     // clipped we can define a new quad that covers the clipped shape directly. If there's 1 clipped
426     // out, the new geometry is a pentagon.
427     Vertices v;
428     v.reset(quad->fDevice, &quad->fLocal);
429 
430     int clipCount = (validW[0] ? 0 : 1) + (validW[1] ? 0 : 1) +
431                     (validW[2] ? 0 : 1) + (validW[3] ? 0 : 1);
432     SkASSERT(clipCount >= 1 && clipCount <= 3);
433 
434     // FIXME de-duplicate from the projectedBounds() calculations.
435     float4 t = (SkPathPriv::kW0PlaneDistance - v.fW) / (next_ccw(v.fW) - v.fW);
436 
437     Vertices clip;
438     clip.fX = (t * next_ccw(v.fX) + (1.f - t) * v.fX);
439     clip.fY = (t * next_ccw(v.fY) + (1.f - t) * v.fY);
440     clip.fW = SkPathPriv::kW0PlaneDistance;
441 
442     clip.fU = (t * next_ccw(v.fU) + (1.f - t) * v.fU);
443     clip.fV = (t * next_ccw(v.fV) + (1.f - t) * v.fV);
444     clip.fR = (t * next_ccw(v.fR) + (1.f - t) * v.fR);
445 
446     mask4 ccwValid = next_ccw(v.fW) >= SkPathPriv::kW0PlaneDistance;
447     mask4 cwValid  = next_cw(v.fW)  >= SkPathPriv::kW0PlaneDistance;
448 
449     if (clipCount != 1) {
450         // Simplest case, replace behind-w0 points with their clipped points by following CCW edge
451         // or CW edge, depending on if the edge crosses from neg. to pos. w or pos. to neg.
452         SkASSERT(clipCount == 2 || clipCount == 3);
453 
454         // NOTE: when 3 vertices are clipped, this results in a degenerate quad where one vertex
455         // is replicated. This is preferably to inserting a 3rd vertex on the w = 0 intersection
456         // line because two parallel edges make inset/outset math unstable for large quads.
457         v.fX = if_then_else(validW, v.fX,
458                        if_then_else((!ccwValid) & (!cwValid), next_ccw(clip.fX),
459                                if_then_else(ccwValid, clip.fX, /* cwValid */ next_cw(clip.fX))));
460         v.fY = if_then_else(validW, v.fY,
461                        if_then_else((!ccwValid) & (!cwValid), next_ccw(clip.fY),
462                                if_then_else(ccwValid, clip.fY, /* cwValid */ next_cw(clip.fY))));
463         v.fW = if_then_else(validW, v.fW, clip.fW);
464 
465         v.fU = if_then_else(validW, v.fU,
466                        if_then_else((!ccwValid) & (!cwValid), next_ccw(clip.fU),
467                                if_then_else(ccwValid, clip.fU, /* cwValid */ next_cw(clip.fU))));
468         v.fV = if_then_else(validW, v.fV,
469                        if_then_else((!ccwValid) & (!cwValid), next_ccw(clip.fV),
470                                if_then_else(ccwValid, clip.fV, /* cwValid */ next_cw(clip.fV))));
471         v.fR = if_then_else(validW, v.fR,
472                        if_then_else((!ccwValid) & (!cwValid), next_ccw(clip.fR),
473                                if_then_else(ccwValid, clip.fR, /* cwValid */ next_cw(clip.fR))));
474 
475         // For 2 or 3 clipped vertices, the resulting shape is a quad or a triangle, so it can be
476         // entirely represented in 'quad'.
477         v.asGrQuads(&quad->fDevice, GrQuad::Type::kPerspective,
478                     &quad->fLocal, localType);
479         return 1;
480     } else {
481         // The clipped geometry is a pentagon, so it will be represented as two quads connected by
482         // a new non-AA edge. Use the midpoint along one of the unclipped edges as a split vertex.
483         Vertices mid;
484         mid.fX = 0.5f * (v.fX + next_ccw(v.fX));
485         mid.fY = 0.5f * (v.fY + next_ccw(v.fY));
486         mid.fW = 0.5f * (v.fW + next_ccw(v.fW));
487 
488         mid.fU = 0.5f * (v.fU + next_ccw(v.fU));
489         mid.fV = 0.5f * (v.fV + next_ccw(v.fV));
490         mid.fR = 0.5f * (v.fR + next_ccw(v.fR));
491 
492         // Make a quad formed by the 2 clipped points, the inserted mid point, and the good vertex
493         // that is CCW rotated from the clipped vertex.
494         Vertices v2;
495         v2.fUVRCount = v.fUVRCount;
496         v2.fX = if_then_else((!validW) | (!ccwValid), clip.fX,
497                         if_then_else(cwValid, next_cw(mid.fX), v.fX));
498         v2.fY = if_then_else((!validW) | (!ccwValid), clip.fY,
499                         if_then_else(cwValid, next_cw(mid.fY), v.fY));
500         v2.fW = if_then_else((!validW) | (!ccwValid), clip.fW,
501                         if_then_else(cwValid, next_cw(mid.fW), v.fW));
502 
503         v2.fU = if_then_else((!validW) | (!ccwValid), clip.fU,
504                         if_then_else(cwValid, next_cw(mid.fU), v.fU));
505         v2.fV = if_then_else((!validW) | (!ccwValid), clip.fV,
506                         if_then_else(cwValid, next_cw(mid.fV), v.fV));
507         v2.fR = if_then_else((!validW) | (!ccwValid), clip.fR,
508                         if_then_else(cwValid, next_cw(mid.fR), v.fR));
509         // The non-AA edge for this quad is the opposite of the clipped vertex's edge
510         GrQuadAAFlags v2EdgeFlag = (!validW[0] ? GrQuadAAFlags::kRight  : // left clipped -> right
511                                    (!validW[1] ? GrQuadAAFlags::kTop    : // bottom clipped -> top
512                                    (!validW[2] ? GrQuadAAFlags::kBottom : // top clipped -> bottom
513                                                  GrQuadAAFlags::kLeft))); // right clipped -> left
514         extraVertices->fEdgeFlags = quad->fEdgeFlags & ~v2EdgeFlag;
515 
516         // Make a quad formed by the remaining two good vertices, one clipped point, and the
517         // inserted mid point.
518         v.fX = if_then_else(!validW, next_cw(clip.fX),
519                        if_then_else(!cwValid, mid.fX, v.fX));
520         v.fY = if_then_else(!validW, next_cw(clip.fY),
521                        if_then_else(!cwValid, mid.fY, v.fY));
522         v.fW = if_then_else(!validW, clip.fW,
523                        if_then_else(!cwValid, mid.fW, v.fW));
524 
525         v.fU = if_then_else(!validW, next_cw(clip.fU),
526                        if_then_else(!cwValid, mid.fU, v.fU));
527         v.fV = if_then_else(!validW, next_cw(clip.fV),
528                        if_then_else(!cwValid, mid.fV, v.fV));
529         v.fR = if_then_else(!validW, next_cw(clip.fR),
530                        if_then_else(!cwValid, mid.fR, v.fR));
531         // The non-AA edge for this quad is the clipped vertex's edge
532         GrQuadAAFlags v1EdgeFlag = (!validW[0] ? GrQuadAAFlags::kLeft   :
533                                    (!validW[1] ? GrQuadAAFlags::kBottom :
534                                    (!validW[2] ? GrQuadAAFlags::kTop    :
535                                                  GrQuadAAFlags::kRight)));
536 
537         v.asGrQuads(&quad->fDevice, GrQuad::Type::kPerspective,
538                     &quad->fLocal, localType);
539         quad->fEdgeFlags &= ~v1EdgeFlag;
540 
541         v2.asGrQuads(&extraVertices->fDevice, GrQuad::Type::kPerspective,
542                      &extraVertices->fLocal, localType);
543         // Caller must draw both 'quad' and 'extraVertices' to cover the clipped geometry
544         return 2;
545     }
546 }
547 
CropToRect(const SkRect & cropRect,GrAA cropAA,DrawQuad * quad,bool computeLocal)548 bool CropToRect(const SkRect& cropRect, GrAA cropAA, DrawQuad* quad, bool computeLocal) {
549     SkASSERT(quad->fDevice.isFinite());
550 
551     if (quad->fDevice.quadType() == GrQuad::Type::kAxisAligned) {
552         // crop_rect and crop_rect_simple keep the rectangles as rectangles, so the intersection
553         // of the crop and quad can be calculated exactly. Some care must be taken if the quad
554         // is axis-aligned but does not satisfy asRect() due to flips, etc.
555         GrQuadAAFlags clippedEdges;
556         if (computeLocal) {
557             if (is_simple_rect(quad->fDevice) && is_simple_rect(quad->fLocal)) {
558                 clippedEdges = crop_simple_rect(cropRect, quad->fDevice.xs(), quad->fDevice.ys(),
559                                                 quad->fLocal.xs(), quad->fLocal.ys());
560             } else {
561                 clippedEdges = crop_rect(cropRect, quad->fDevice.xs(), quad->fDevice.ys(),
562                                          quad->fLocal.xs(), quad->fLocal.ys(), quad->fLocal.ws());
563             }
564         } else {
565             if (is_simple_rect(quad->fDevice)) {
566                 clippedEdges = crop_simple_rect(cropRect, quad->fDevice.xs(), quad->fDevice.ys(),
567                                                 nullptr, nullptr);
568             } else {
569                 clippedEdges = crop_rect(cropRect, quad->fDevice.xs(), quad->fDevice.ys(),
570                                          nullptr, nullptr, nullptr);
571             }
572         }
573 
574         // Apply the clipped edge updates to the original edge flags
575         if (cropAA == GrAA::kYes) {
576             // Turn on all edges that were clipped
577             quad->fEdgeFlags |= clippedEdges;
578         } else {
579             // Turn off all edges that were clipped
580             quad->fEdgeFlags &= ~clippedEdges;
581         }
582         return true;
583     }
584 
585     if (computeLocal || quad->fDevice.quadType() == GrQuad::Type::kPerspective) {
586         // FIXME (michaelludwig) Calculate cropped local coordinates when not kAxisAligned
587         // FIXME (michaelludwig) crbug.com/1204347 and skbug.com/9906 - disable this when there's
588         // perspective; it does not prove numerical robust enough in the wild and should be
589         // revisited.
590         return false;
591     }
592 
593     float4 devX = quad->fDevice.x4f();
594     float4 devY = quad->fDevice.y4f();
595 
596     float4 clipX = {cropRect.fLeft, cropRect.fLeft, cropRect.fRight, cropRect.fRight};
597     float4 clipY = {cropRect.fTop, cropRect.fBottom, cropRect.fTop, cropRect.fBottom};
598 
599     // Calculate barycentric coordinates for the 4 rect corners in the 2 triangles that the quad
600     // is tessellated into when drawn.
601     float4 u1, v1, w1;
602     float4 u2, v2, w2;
603     if (!barycentric_coords(devX[0], devY[0], devX[1], devY[1], devX[2], devY[2], clipX, clipY,
604                             &u1, &v1, &w1) ||
605         !barycentric_coords(devX[1], devY[1], devX[3], devY[3], devX[2], devY[2], clipX, clipY,
606                             &u2, &v2, &w2)) {
607         // Bad triangles, skip cropping
608         return false;
609     }
610 
611     // clipDevRect is completely inside this quad if each corner is in at least one of two triangles
612     mask4 inTri1 = inside_triangle(u1, v1, w1);
613     mask4 inTri2 = inside_triangle(u2, v2, w2);
614     if (all(inTri1 | inTri2)) {
615         // We can crop to exactly the clipDevRect.
616         // FIXME (michaelludwig) - there are other ways to have determined quad covering the clip
617         // rect, but the barycentric coords will be useful to derive local coordinates in the future
618 
619         // Since we are cropped to exactly clipDevRect, we have discarded any perspective and the
620         // type becomes kRect. If updated locals were requested, they will incorporate perspective.
621         // FIXME (michaelludwig) - once we have local coordinates handled, it may be desirable to
622         // keep the draw as perspective so that the hardware does perspective interpolation instead
623         // of pushing it into a local coord w and having the shader do an extra divide.
624         clipX.store(quad->fDevice.xs());
625         clipY.store(quad->fDevice.ys());
626         quad->fDevice.setQuadType(GrQuad::Type::kAxisAligned);
627 
628         // Update the edge flags to match the clip setting since all 4 edges have been clipped
629         quad->fEdgeFlags = cropAA == GrAA::kYes ? GrQuadAAFlags::kAll : GrQuadAAFlags::kNone;
630 
631         return true;
632     }
633 
634     // FIXME (michaelludwig) - use TessellationHelper's inset/outset math to move
635     // edges to the closest clip corner they are outside of
636 
637     return false;
638 }
639 
WillUseHairline(const GrQuad & quad,GrAAType aaType,GrQuadAAFlags edgeFlags)640 bool WillUseHairline(const GrQuad& quad, GrAAType aaType, GrQuadAAFlags edgeFlags) {
641     if (aaType != GrAAType::kCoverage || edgeFlags != GrQuadAAFlags::kAll) {
642         // Non-aa or msaa don't do any outsetting so they will not be hairlined; mixed edge flags
643         // could be hairlined in theory, but applying hairline bloat would extend beyond the
644         // original tiled shape.
645         return false;
646     }
647 
648     if (quad.quadType() == GrQuad::Type::kAxisAligned) {
649         // Fast path that avoids computing edge properties via TessellationHelper.
650         // Taking the absolute value of the diagonals always produces the minimum of width or
651         // height given that this is axis-aligned, regardless of mirror or 90/180-degree rotations.
652         float d = std::min(std::abs(quad.x(3) - quad.x(0)), std::abs(quad.y(3) - quad.y(0)));
653         return d < 1.f;
654     } else {
655         TessellationHelper helper;
656         helper.reset(quad, nullptr);
657         return helper.isSubpixel();
658     }
659 }
660 
661 ///////////////////////////////////////////////////////////////////////////////////////////////////
662 // TessellationHelper implementation and helper struct implementations
663 ///////////////////////////////////////////////////////////////////////////////////////////////////
664 
665 //** EdgeVectors implementation
666 
reset(const skvx::Vec<4,float> & xs,const skvx::Vec<4,float> & ys,const skvx::Vec<4,float> & ws,GrQuad::Type quadType)667 void TessellationHelper::EdgeVectors::reset(const skvx::Vec<4, float>& xs,
668                                             const skvx::Vec<4, float>& ys,
669                                             const skvx::Vec<4, float>& ws,
670                                             GrQuad::Type quadType) {
671     // Calculate all projected edge vector values for this quad.
672     if (quadType == GrQuad::Type::kPerspective) {
673         float4 iw = 1.f / ws;
674         fX2D = xs * iw;
675         fY2D = ys * iw;
676     } else {
677         fX2D = xs;
678         fY2D = ys;
679     }
680 
681     fDX = next_ccw(fX2D) - fX2D;
682     fDY = next_ccw(fY2D) - fY2D;
683     fInvLengths = 1.f / sqrt(fDX*fDX + fDY*fDY);
684 
685     // Normalize edge vectors
686     fDX *= fInvLengths;
687     fDY *= fInvLengths;
688 
689     // Calculate angles between vectors
690     if (quadType <= GrQuad::Type::kRectilinear) {
691         fCosTheta = 0.f;
692         fInvSinTheta = 1.f;
693     } else {
694         fCosTheta = fDX*next_cw(fDX) + fDY*next_cw(fDY);
695         // NOTE: if cosTheta is close to 1, inset/outset math will avoid the fast paths that rely
696         // on thefInvSinTheta since it will approach infinity.
697         fInvSinTheta = 1.f / sqrt(1.f - fCosTheta * fCosTheta);
698     }
699 }
700 
701 //** EdgeEquations implementation
702 
reset(const EdgeVectors & edgeVectors)703 void TessellationHelper::EdgeEquations::reset(const EdgeVectors& edgeVectors) {
704     float4 dx = edgeVectors.fDX;
705     float4 dy = edgeVectors.fDY;
706     // Correct for bad edges by copying adjacent edge information into the bad component
707     correct_bad_edges(edgeVectors.fInvLengths >= kInvDistTolerance, &dx, &dy, nullptr);
708 
709     float4 c = dx*edgeVectors.fY2D - dy*edgeVectors.fX2D;
710     // Make sure normals point into the shape
711     float4 test = dy * next_cw(edgeVectors.fX2D) + (-dx * next_cw(edgeVectors.fY2D) + c);
712     if (any(test < -kDistTolerance)) {
713         fA = -dy;
714         fB = dx;
715         fC = -c;
716     } else {
717         fA = dy;
718         fB = -dx;
719         fC = c;
720     }
721 }
722 
estimateCoverage(const float4 & x2d,const float4 & y2d) const723 float4 TessellationHelper::EdgeEquations::estimateCoverage(const float4& x2d,
724                                                            const float4& y2d) const {
725     // Calculate distance of the 4 inset points (px, py) to the 4 edges
726     float4 d0 = fA[0]*x2d + (fB[0]*y2d + fC[0]);
727     float4 d1 = fA[1]*x2d + (fB[1]*y2d + fC[1]);
728     float4 d2 = fA[2]*x2d + (fB[2]*y2d + fC[2]);
729     float4 d3 = fA[3]*x2d + (fB[3]*y2d + fC[3]);
730 
731     // For each point, pretend that there's a rectangle that touches e0 and e3 on the horizontal
732     // axis, so its width is "approximately" d0 + d3, and it touches e1 and e2 on the vertical axis
733     // so its height is d1 + d2. Pin each of these dimensions to [0, 1] and approximate the coverage
734     // at each point as clamp(d0+d3, 0, 1) x clamp(d1+d2, 0, 1). For rectilinear quads this is an
735     // accurate calculation of its area clipped to an aligned pixel. For arbitrary quads it is not
736     // mathematically accurate but qualitatively provides a stable value proportional to the size of
737     // the shape.
738     float4 w = max(0.f, min(1.f, d0 + d3));
739     float4 h = max(0.f, min(1.f, d1 + d2));
740     return w * h;
741 }
742 
isSubpixel(const float4 & x2d,const float4 & y2d) const743 bool TessellationHelper::EdgeEquations::isSubpixel(const float4& x2d, const float4& y2d) const {
744     // Compute the minimum distances from vertices to opposite edges. If all 4 minimum distances
745     // are less than 1px, then the inset geometry would be a point or line and quad rendering
746     // will switch to hairline mode.
747     float4 d = min(x2d * skvx::shuffle<1,2,1,2>(fA) + y2d * skvx::shuffle<1,2,1,2>(fB)
748                            + skvx::shuffle<1,2,1,2>(fC),
749                    x2d * skvx::shuffle<3,3,0,0>(fA) + y2d * skvx::shuffle<3,3,0,0>(fB)
750                            + skvx::shuffle<3,3,0,0>(fC));
751     return all(d < 1.f);
752 }
753 
computeDegenerateQuad(const float4 & signedEdgeDistances,float4 * x2d,float4 * y2d,mask4 * aaMask) const754 int TessellationHelper::EdgeEquations::computeDegenerateQuad(const float4& signedEdgeDistances,
755                                                              float4* x2d, float4* y2d,
756                                                              mask4* aaMask) const {
757     // If the original points form a line in the 2D projection then give up on antialiasing.
758     for (int i = 0; i < 4; ++i) {
759         float4 d = (*x2d)*fA[i] + (*y2d)*fB[i] + fC[i];
760         if (all(abs(d) < kDistTolerance)) {
761             *aaMask = mask4(0);
762             return 4;
763         }
764     }
765 
766     *aaMask = signedEdgeDistances != 0.f;
767 
768     // Move the edge by the signed edge adjustment.
769     float4 oc = fC + signedEdgeDistances;
770 
771     // There are 6 points that we care about to determine the final shape of the polygon, which
772     // are the intersections between (e0,e2), (e1,e0), (e2,e3), (e3,e1) (corresponding to the
773     // 4 corners), and (e1, e2), (e0, e3) (representing the intersections of opposite edges).
774     float4 denom = fA * next_cw(fB) - fB * next_cw(fA);
775     float4 px = (fB * next_cw(oc) - oc * next_cw(fB)) / denom;
776     float4 py = (oc * next_cw(fA) - fA * next_cw(oc)) / denom;
777     correct_bad_coords(abs(denom) < kTolerance, &px, &py, nullptr);
778 
779     // Calculate the signed distances from these 4 corners to the other two edges that did not
780     // define the intersection. So p(0) is compared to e3,e1, p(1) to e3,e2 , p(2) to e0,e1, and
781     // p(3) to e0,e2
782     float4 dists1 = px * skvx::shuffle<3, 3, 0, 0>(fA) +
783                     py * skvx::shuffle<3, 3, 0, 0>(fB) +
784                     skvx::shuffle<3, 3, 0, 0>(oc);
785     float4 dists2 = px * skvx::shuffle<1, 2, 1, 2>(fA) +
786                     py * skvx::shuffle<1, 2, 1, 2>(fB) +
787                     skvx::shuffle<1, 2, 1, 2>(oc);
788 
789     // If all the distances are >= 0, the 4 corners form a valid quadrilateral, so use them as
790     // the 4 points. If any point is on the wrong side of both edges, the interior has collapsed
791     // and we need to use a central point to represent it. If all four points are only on the
792     // wrong side of 1 edge, one edge has crossed over another and we use a line to represent it.
793     // Otherwise, use a triangle that replaces the bad points with the intersections of
794     // (e1, e2) or (e0, e3) as needed.
795     mask4 d1v0 = dists1 < kDistTolerance;
796     mask4 d2v0 = dists2 < kDistTolerance;
797     mask4 d1And2 = d1v0 & d2v0;
798     mask4 d1Or2 = d1v0 | d2v0;
799 
800     if (!any(d1Or2)) {
801         // Every dists1 and dists2 >= kTolerance so it's not degenerate, use all 4 corners as-is
802         // and use full coverage
803         *x2d = px;
804         *y2d = py;
805         return 4;
806     } else if (any(d1And2)) {
807         // A point failed against two edges, so reduce the shape to a single point, which we take as
808         // the center of the original quad to ensure it is contained in the intended geometry. Since
809         // it has collapsed, we know the shape cannot cover a pixel so update the coverage.
810         SkPoint center = {0.25f * ((*x2d)[0] + (*x2d)[1] + (*x2d)[2] + (*x2d)[3]),
811                           0.25f * ((*y2d)[0] + (*y2d)[1] + (*y2d)[2] + (*y2d)[3])};
812         *x2d = center.fX;
813         *y2d = center.fY;
814         *aaMask = any(*aaMask);
815         return 1;
816     } else if (all(d1Or2)) {
817         // Degenerates to a line. Compare p[2] and p[3] to edge 0. If they are on the wrong side,
818         // that means edge 0 and 3 crossed, and otherwise edge 1 and 2 crossed.
819         if (dists1[2] < kDistTolerance && dists1[3] < kDistTolerance) {
820             // Edges 0 and 3 have crossed over, so make the line from average of (p0,p2) and (p1,p3)
821             *x2d = 0.5f * (skvx::shuffle<0, 1, 0, 1>(px) + skvx::shuffle<2, 3, 2, 3>(px));
822             *y2d = 0.5f * (skvx::shuffle<0, 1, 0, 1>(py) + skvx::shuffle<2, 3, 2, 3>(py));
823             // If edges 0 and 3 crossed then one must have AA but we moved both 2D points on the
824             // edge so we need moveTo() to be able to move both 3D points along the shared edge. So
825             // ensure both have AA.
826             *aaMask = *aaMask | mask4({1, 0, 0, 1});
827         } else {
828             // Edges 1 and 2 have crossed over, so make the line from average of (p0,p1) and (p2,p3)
829             *x2d = 0.5f * (skvx::shuffle<0, 0, 2, 2>(px) + skvx::shuffle<1, 1, 3, 3>(px));
830             *y2d = 0.5f * (skvx::shuffle<0, 0, 2, 2>(py) + skvx::shuffle<1, 1, 3, 3>(py));
831             *aaMask = *aaMask | mask4({0, 1, 1, 0});
832         }
833         return 2;
834     } else {
835         // This turns into a triangle. Replace corners as needed with the intersections between
836         // (e0,e3) and (e1,e2), which must now be calculated. Because of kDistTolarance we can
837         // have cases where the intersection lies far outside the quad. For example, consider top
838         // and bottom edges that are nearly parallel and their intersections with the right edge are
839         // nearly but not quite swapped (top edge intersection is barely above bottom edge
840         // intersection). In this case we replace the point with the average of itself and the point
841         // calculated using the edge equation it failed (in the example case this would be the
842         // average of the points calculated by the top and bottom edges intersected with the right
843         // edge.)
844         using V2f = skvx::Vec<2, float>;
845         V2f eDenom = skvx::shuffle<0, 1>(fA) * skvx::shuffle<3, 2>(fB) -
846                      skvx::shuffle<0, 1>(fB) * skvx::shuffle<3, 2>(fA);
847         V2f ex = (skvx::shuffle<0, 1>(fB) * skvx::shuffle<3, 2>(oc) -
848                   skvx::shuffle<0, 1>(oc) * skvx::shuffle<3, 2>(fB)) / eDenom;
849         V2f ey = (skvx::shuffle<0, 1>(oc) * skvx::shuffle<3, 2>(fA) -
850                   skvx::shuffle<0, 1>(fA) * skvx::shuffle<3, 2>(oc)) / eDenom;
851 
852         float4 avgX = 0.5f * (skvx::shuffle<0, 1, 0, 2>(px) + skvx::shuffle<2, 3, 1, 3>(px));
853         float4 avgY = 0.5f * (skvx::shuffle<0, 1, 0, 2>(py) + skvx::shuffle<2, 3, 1, 3>(py));
854         for (int i = 0; i < 4; ++i) {
855             // Note that we would not have taken this branch if any point failed both of its edges
856             // tests. That is, it can't be the case that d1v0[i] and d2v0[i] are both true.
857             if (dists1[i] < -kDistTolerance && std::abs(eDenom[0]) > kTolerance) {
858                 px[i] = ex[0];
859                 py[i] = ey[0];
860             } else if (d1v0[i]) {
861                 px[i] = avgX[i % 2];
862                 py[i] = avgY[i % 2];
863             } else if (dists2[i] < -kDistTolerance && std::abs(eDenom[1]) > kTolerance) {
864                 px[i] = ex[1];
865                 py[i] = ey[1];
866             } else if (d2v0[i]) {
867                 px[i] = avgX[i / 2 + 2];
868                 py[i] = avgY[i / 2 + 2];
869             }
870         }
871 
872         // If we replace a vertex with an intersection then it will not fall along the
873         // edges that intersect at the original vertex. When we apply AA later to the
874         // original points we move along the original 3d edges to move towards the 2d
875         // points we're computing here. If we have an AA edge and a non-AA edge we
876         // can only move along 1 edge, but now the point we're moving toward isn't
877         // on that edge. Thus, we provide an additional degree of freedom by turning
878         // AA on for both edges if either edge is AA at each point.
879         *aaMask = *aaMask | (d1Or2 & next_cw(*aaMask)) | (next_ccw(d1Or2) & next_ccw(*aaMask));
880         *x2d = px;
881         *y2d = py;
882         return 3;
883     }
884 }
885 
886 //** OutsetRequest implementation
887 
reset(const EdgeVectors & edgeVectors,GrQuad::Type quadType,const skvx::Vec<4,float> & edgeDistances)888 void TessellationHelper::OutsetRequest::reset(const EdgeVectors& edgeVectors, GrQuad::Type quadType,
889                                               const skvx::Vec<4, float>& edgeDistances) {
890     fEdgeDistances = edgeDistances;
891 
892     // Based on the edge distances, determine if it's acceptable to use fInvSinTheta to
893     // calculate the inset or outset geometry.
894     if (quadType <= GrQuad::Type::kRectilinear) {
895         // Since it's rectangular, the width (edge[1] or edge[2]) collapses if subtracting
896         // (dist[0] + dist[3]) makes the new width negative (minus for inset, outsetting will
897         // never be degenerate in this case). The same applies for height (edge[0] or edge[3])
898         // and (dist[1] + dist[2]).
899         fOutsetDegenerate = false;
900         float widthChange = edgeDistances[0] + edgeDistances[3];
901         float heightChange = edgeDistances[1] + edgeDistances[2];
902         // (1/len > 1/(edge sum) implies len - edge sum < 0.
903         fInsetDegenerate =
904                 (widthChange > 0.f  && edgeVectors.fInvLengths[1] > 1.f / widthChange) ||
905                 (heightChange > 0.f && edgeVectors.fInvLengths[0] > 1.f / heightChange);
906     } else if (any(edgeVectors.fInvLengths >= kInvDistTolerance)) {
907         // Have an edge that is effectively length 0, so we're dealing with a triangle, which
908         // must always go through the degenerate code path.
909         fOutsetDegenerate = true;
910         fInsetDegenerate = true;
911     } else {
912         // If possible, the corners will move +/-edgeDistances * 1/sin(theta). The entire
913         // request is degenerate if 1/sin(theta) -> infinity (or cos(theta) -> 1).
914         if (any(abs(edgeVectors.fCosTheta) >= 0.9f)) {
915             fOutsetDegenerate = true;
916             fInsetDegenerate = true;
917         } else {
918             // With an edge-centric view, an edge's length changes by
919             // edgeDistance * cos(pi - theta) / sin(theta) for each of its corners (the second
920             // corner uses ccw theta value). An edge's length also changes when its adjacent
921             // edges move, in which case it's updated by edgeDistance / sin(theta)
922             // (or cos(theta) for the other edge).
923 
924             // cos(pi - theta) = -cos(theta)
925             float4 halfTanTheta = -edgeVectors.fCosTheta * edgeVectors.fInvSinTheta;
926             float4 edgeAdjust = edgeDistances * (halfTanTheta + next_ccw(halfTanTheta)) +
927                                 next_ccw(edgeDistances) * next_ccw(edgeVectors.fInvSinTheta) +
928                                 next_cw(edgeDistances) * edgeVectors.fInvSinTheta;
929 
930             // If either outsetting (plus edgeAdjust) or insetting (minus edgeAdjust) make
931             // the edge lengths negative, then it's degenerate.
932             float4 threshold = 0.1f - (1.f / edgeVectors.fInvLengths);
933             fOutsetDegenerate = any(edgeAdjust < threshold);
934             fInsetDegenerate = any(edgeAdjust > -threshold);
935         }
936     }
937 }
938 
939 //** Vertices implementation
940 
reset(const GrQuad & deviceQuad,const GrQuad * localQuad)941 void TessellationHelper::Vertices::reset(const GrQuad& deviceQuad, const GrQuad* localQuad) {
942     // Set vertices to match the device and local quad
943     fX = deviceQuad.x4f();
944     fY = deviceQuad.y4f();
945     fW = deviceQuad.w4f();
946 
947     if (localQuad) {
948         fU = localQuad->x4f();
949         fV = localQuad->y4f();
950         fR = localQuad->w4f();
951         fUVRCount = localQuad->hasPerspective() ? 3 : 2;
952     } else {
953         fUVRCount = 0;
954     }
955 }
956 
asGrQuads(GrQuad * deviceOut,GrQuad::Type deviceType,GrQuad * localOut,GrQuad::Type localType) const957 void TessellationHelper::Vertices::asGrQuads(GrQuad* deviceOut, GrQuad::Type deviceType,
958                                              GrQuad* localOut, GrQuad::Type localType) const {
959     SkASSERT(deviceOut);
960     SkASSERT(fUVRCount == 0 || localOut);
961 
962     fX.store(deviceOut->xs());
963     fY.store(deviceOut->ys());
964     if (deviceType == GrQuad::Type::kPerspective) {
965         fW.store(deviceOut->ws());
966     }
967     deviceOut->setQuadType(deviceType); // This sets ws == 1 when device type != perspective
968 
969     if (fUVRCount > 0) {
970         fU.store(localOut->xs());
971         fV.store(localOut->ys());
972         if (fUVRCount == 3) {
973             fR.store(localOut->ws());
974         }
975         localOut->setQuadType(localType);
976     }
977 }
978 
moveAlong(const EdgeVectors & edgeVectors,const float4 & signedEdgeDistances)979 void TessellationHelper::Vertices::moveAlong(const EdgeVectors& edgeVectors,
980                                              const float4& signedEdgeDistances) {
981     // This shouldn't be called if fInvSinTheta is close to infinity (cosTheta close to 1).
982     // FIXME (michaelludwig) - Temporarily allow NaNs on debug builds here, for crbug:224618's GM
983     // Once W clipping is implemented, shouldn't see NaNs unless it's actually time to fail.
984     SkASSERT(all(abs(edgeVectors.fCosTheta) < 0.9f) ||
985              any(edgeVectors.fCosTheta != edgeVectors.fCosTheta));
986 
987     // When the projected device quad is not degenerate, the vertex corners can move
988     // cornerOutsetLen along their edge and their cw-rotated edge. The vertex's edge points
989     // inwards and the cw-rotated edge points outwards, hence the minus-sign.
990     // The edge distances are rotated compared to the corner outsets and (dx, dy), since if
991     // the edge is "on" both its corners need to be moved along their other edge vectors.
992     float4 signedOutsets = -edgeVectors.fInvSinTheta * next_cw(signedEdgeDistances);
993     float4 signedOutsetsCW = edgeVectors.fInvSinTheta * signedEdgeDistances;
994 
995     // x = x + outset * mask * next_cw(xdiff) - outset * next_cw(mask) * xdiff
996     fX += signedOutsetsCW * next_cw(edgeVectors.fDX) + signedOutsets * edgeVectors.fDX;
997     fY += signedOutsetsCW * next_cw(edgeVectors.fDY) + signedOutsets * edgeVectors.fDY;
998     if (fUVRCount > 0) {
999         // We want to extend the texture coords by the same proportion as the positions.
1000         signedOutsets *= edgeVectors.fInvLengths;
1001         signedOutsetsCW *= next_cw(edgeVectors.fInvLengths);
1002         float4 du = next_ccw(fU) - fU;
1003         float4 dv = next_ccw(fV) - fV;
1004         fU += signedOutsetsCW * next_cw(du) + signedOutsets * du;
1005         fV += signedOutsetsCW * next_cw(dv) + signedOutsets * dv;
1006         if (fUVRCount == 3) {
1007             float4 dr = next_ccw(fR) - fR;
1008             fR += signedOutsetsCW * next_cw(dr) + signedOutsets * dr;
1009         }
1010     }
1011 }
1012 
moveTo(const float4 & x2d,const float4 & y2d,const mask4 & mask)1013 void TessellationHelper::Vertices::moveTo(const float4& x2d, const float4& y2d, const mask4& mask) {
1014     // Left to right, in device space, for each point
1015     float4 e1x = skvx::shuffle<2, 3, 2, 3>(fX) - skvx::shuffle<0, 1, 0, 1>(fX);
1016     float4 e1y = skvx::shuffle<2, 3, 2, 3>(fY) - skvx::shuffle<0, 1, 0, 1>(fY);
1017     float4 e1w = skvx::shuffle<2, 3, 2, 3>(fW) - skvx::shuffle<0, 1, 0, 1>(fW);
1018     mask4 e1Bad = e1x*e1x + e1y*e1y < kDist2Tolerance;
1019     correct_bad_edges(e1Bad, &e1x, &e1y, &e1w);
1020 
1021     // // Top to bottom, in device space, for each point
1022     float4 e2x = skvx::shuffle<1, 1, 3, 3>(fX) - skvx::shuffle<0, 0, 2, 2>(fX);
1023     float4 e2y = skvx::shuffle<1, 1, 3, 3>(fY) - skvx::shuffle<0, 0, 2, 2>(fY);
1024     float4 e2w = skvx::shuffle<1, 1, 3, 3>(fW) - skvx::shuffle<0, 0, 2, 2>(fW);
1025     mask4 e2Bad = e2x*e2x + e2y*e2y < kDist2Tolerance;
1026     correct_bad_edges(e2Bad, &e2x, &e2y, &e2w);
1027 
1028     // Can only move along e1 and e2 to reach the new 2D point, so we have
1029     // x2d = (x + a*e1x + b*e2x) / (w + a*e1w + b*e2w) and
1030     // y2d = (y + a*e1y + b*e2y) / (w + a*e1w + b*e2w) for some a, b
1031     // This can be rewritten to a*c1x + b*c2x + c3x = 0; a * c1y + b*c2y + c3y = 0, where
1032     // the cNx and cNy coefficients are:
1033     float4 c1x = e1w * x2d - e1x;
1034     float4 c1y = e1w * y2d - e1y;
1035     float4 c2x = e2w * x2d - e2x;
1036     float4 c2y = e2w * y2d - e2y;
1037     float4 c3x = fW * x2d - fX;
1038     float4 c3y = fW * y2d - fY;
1039 
1040     // Solve for a and b
1041     float4 a, b, denom;
1042     if (all(mask)) {
1043         // When every edge is outset/inset, each corner can use both edge vectors
1044         denom = c1x * c2y - c2x * c1y;
1045         a = (c2x * c3y - c3x * c2y) / denom;
1046         b = (c3x * c1y - c1x * c3y) / denom;
1047     } else {
1048         // Force a or b to be 0 if that edge cannot be used due to non-AA
1049         mask4 aMask = skvx::shuffle<0, 0, 3, 3>(mask);
1050         mask4 bMask = skvx::shuffle<2, 1, 2, 1>(mask);
1051 
1052         // When aMask[i]&bMask[i], then a[i], b[i], denom[i] match the kAll case.
1053         // When aMask[i]&!bMask[i], then b[i] = 0, a[i] = -c3x/c1x or -c3y/c1y, using better denom
1054         // When !aMask[i]&bMask[i], then a[i] = 0, b[i] = -c3x/c2x or -c3y/c2y, ""
1055         // When !aMask[i]&!bMask[i], then both a[i] = 0 and b[i] = 0
1056         mask4 useC1x = abs(c1x) > abs(c1y);
1057         mask4 useC2x = abs(c2x) > abs(c2y);
1058 
1059         denom = if_then_else(aMask,
1060                         if_then_else(bMask,
1061                                 c1x * c2y - c2x * c1y,            /* A & B   */
1062                                 if_then_else(useC1x, c1x, c1y)),  /* A & !B  */
1063                         if_then_else(bMask,
1064                                 if_then_else(useC2x, c2x, c2y),   /* !A & B  */
1065                                 float4(1.f)));                    /* !A & !B */
1066 
1067         a = if_then_else(aMask,
1068                     if_then_else(bMask,
1069                             c2x * c3y - c3x * c2y,                /* A & B   */
1070                             if_then_else(useC1x, -c3x, -c3y)),    /* A & !B  */
1071                     float4(0.f)) / denom;                         /* !A      */
1072         b = if_then_else(bMask,
1073                     if_then_else(aMask,
1074                             c3x * c1y - c1x * c3y,                /* A & B   */
1075                             if_then_else(useC2x, -c3x, -c3y)),    /* !A & B  */
1076                     float4(0.f)) / denom;                         /* !B      */
1077     }
1078 
1079     fX += a * e1x + b * e2x;
1080     fY += a * e1y + b * e2y;
1081     fW += a * e1w + b * e2w;
1082 
1083     // If fW has gone negative, flip the point to the other side of w=0. This only happens if the
1084     // edge was approaching a vanishing point and it was physically impossible to outset 1/2px in
1085     // screen space w/o going behind the viewer and being mirrored. Scaling by -1 preserves the
1086     // computed screen space position but moves the 3D point off of the original quad. So far, this
1087     // seems to be a reasonable compromise.
1088     if (any(fW < 0.f)) {
1089         float4 scale = if_then_else(fW < 0.f, float4(-1.f), float4(1.f));
1090         fX *= scale;
1091         fY *= scale;
1092         fW *= scale;
1093     }
1094 
1095     correct_bad_coords(abs(denom) < kTolerance, &fX, &fY, &fW);
1096 
1097     if (fUVRCount > 0) {
1098         // Calculate R here so it can be corrected with U and V in case it's needed later
1099         float4 e1u = skvx::shuffle<2, 3, 2, 3>(fU) - skvx::shuffle<0, 1, 0, 1>(fU);
1100         float4 e1v = skvx::shuffle<2, 3, 2, 3>(fV) - skvx::shuffle<0, 1, 0, 1>(fV);
1101         float4 e1r = skvx::shuffle<2, 3, 2, 3>(fR) - skvx::shuffle<0, 1, 0, 1>(fR);
1102         correct_bad_edges(e1Bad, &e1u, &e1v, &e1r);
1103 
1104         float4 e2u = skvx::shuffle<1, 1, 3, 3>(fU) - skvx::shuffle<0, 0, 2, 2>(fU);
1105         float4 e2v = skvx::shuffle<1, 1, 3, 3>(fV) - skvx::shuffle<0, 0, 2, 2>(fV);
1106         float4 e2r = skvx::shuffle<1, 1, 3, 3>(fR) - skvx::shuffle<0, 0, 2, 2>(fR);
1107         correct_bad_edges(e2Bad, &e2u, &e2v, &e2r);
1108 
1109         fU += a * e1u + b * e2u;
1110         fV += a * e1v + b * e2v;
1111         if (fUVRCount == 3) {
1112             fR += a * e1r + b * e2r;
1113             correct_bad_coords(abs(denom) < kTolerance, &fU, &fV, &fR);
1114         } else {
1115             correct_bad_coords(abs(denom) < kTolerance, &fU, &fV, nullptr);
1116         }
1117     }
1118 }
1119 
1120 //** TessellationHelper implementation
1121 
reset(const GrQuad & deviceQuad,const GrQuad * localQuad)1122 void TessellationHelper::reset(const GrQuad& deviceQuad, const GrQuad* localQuad) {
1123     // Record basic state that isn't recorded on the Vertices struct itself
1124     fDeviceType = deviceQuad.quadType();
1125     fLocalType = localQuad ? localQuad->quadType() : GrQuad::Type::kAxisAligned;
1126 
1127     // Reset metadata validity
1128     fOutsetRequestValid = false;
1129     fEdgeEquationsValid = false;
1130 
1131     // Compute vertex properties that are always needed for a quad, so no point in doing it lazily.
1132     fOriginal.reset(deviceQuad, localQuad);
1133     fEdgeVectors.reset(fOriginal.fX, fOriginal.fY, fOriginal.fW, fDeviceType);
1134 
1135     fVerticesValid = true;
1136 }
1137 
inset(const skvx::Vec<4,float> & edgeDistances,GrQuad * deviceInset,GrQuad * localInset)1138 float4 TessellationHelper::inset(const skvx::Vec<4, float>& edgeDistances,
1139                                  GrQuad* deviceInset, GrQuad* localInset) {
1140     SkASSERT(fVerticesValid);
1141 
1142     Vertices inset = fOriginal;
1143     const OutsetRequest& request = this->getOutsetRequest(edgeDistances);
1144     int vertexCount;
1145     if (request.fInsetDegenerate) {
1146         vertexCount = this->adjustDegenerateVertices(-request.fEdgeDistances, &inset);
1147     } else {
1148         this->adjustVertices(-request.fEdgeDistances, &inset);
1149         vertexCount = 4;
1150     }
1151 
1152     inset.asGrQuads(deviceInset, fDeviceType, localInset, fLocalType);
1153     if (vertexCount < 3) {
1154         // The interior has less than a full pixel's area so estimate reduced coverage using
1155         // the distance of the inset's projected corners to the original edges.
1156         return this->getEdgeEquations().estimateCoverage(inset.fX / inset.fW,
1157                                                          inset.fY / inset.fW);
1158     } else {
1159         return 1.f;
1160     }
1161 }
1162 
outset(const skvx::Vec<4,float> & edgeDistances,GrQuad * deviceOutset,GrQuad * localOutset)1163 void TessellationHelper::outset(const skvx::Vec<4, float>& edgeDistances,
1164                                 GrQuad* deviceOutset, GrQuad* localOutset) {
1165     SkASSERT(fVerticesValid);
1166 
1167     Vertices outset = fOriginal;
1168     const OutsetRequest& request = this->getOutsetRequest(edgeDistances);
1169     if (request.fOutsetDegenerate) {
1170         this->adjustDegenerateVertices(request.fEdgeDistances, &outset);
1171     } else {
1172         this->adjustVertices(request.fEdgeDistances, &outset);
1173     }
1174 
1175     outset.asGrQuads(deviceOutset, fDeviceType, localOutset, fLocalType);
1176 }
1177 
getEdgeEquations(skvx::Vec<4,float> * a,skvx::Vec<4,float> * b,skvx::Vec<4,float> * c)1178 void TessellationHelper::getEdgeEquations(skvx::Vec<4, float>* a,
1179                                           skvx::Vec<4, float>* b,
1180                                           skvx::Vec<4, float>* c) {
1181     SkASSERT(a && b && c);
1182     SkASSERT(fVerticesValid);
1183     const EdgeEquations& eq = this->getEdgeEquations();
1184     *a = eq.fA;
1185     *b = eq.fB;
1186     *c = eq.fC;
1187 }
1188 
getEdgeLengths()1189 skvx::Vec<4, float> TessellationHelper::getEdgeLengths() {
1190     SkASSERT(fVerticesValid);
1191     return 1.f / fEdgeVectors.fInvLengths;
1192 }
1193 
getOutsetRequest(const skvx::Vec<4,float> & edgeDistances)1194 const TessellationHelper::OutsetRequest& TessellationHelper::getOutsetRequest(
1195         const skvx::Vec<4, float>& edgeDistances) {
1196     // Much of the code assumes that we start from positive distances and apply it unmodified to
1197     // create an outset; knowing that it's outset simplifies degeneracy checking.
1198     SkASSERT(all(edgeDistances >= 0.f));
1199 
1200     // Rebuild outset request if invalid or if the edge distances have changed.
1201     if (!fOutsetRequestValid || any(edgeDistances != fOutsetRequest.fEdgeDistances)) {
1202         fOutsetRequest.reset(fEdgeVectors, fDeviceType, edgeDistances);
1203         fOutsetRequestValid = true;
1204     }
1205     return fOutsetRequest;
1206 }
1207 
isSubpixel()1208 bool TessellationHelper::isSubpixel() {
1209     SkASSERT(fVerticesValid);
1210     if (fDeviceType <= GrQuad::Type::kRectilinear) {
1211         // Check the edge lengths, if the shortest is less than 1px it's degenerate, which is the
1212         // same as if the max 1/length is greater than 1px.
1213         return any(fEdgeVectors.fInvLengths > 1.f);
1214     } else {
1215         // Compute edge equations and then distance from each vertex to the opposite edges.
1216         return this->getEdgeEquations().isSubpixel(fEdgeVectors.fX2D, fEdgeVectors.fY2D);
1217     }
1218 }
1219 
getEdgeEquations()1220 const TessellationHelper::EdgeEquations& TessellationHelper::getEdgeEquations() {
1221     if (!fEdgeEquationsValid) {
1222         fEdgeEquations.reset(fEdgeVectors);
1223         fEdgeEquationsValid = true;
1224     }
1225     return fEdgeEquations;
1226 }
1227 
adjustVertices(const skvx::Vec<4,float> & signedEdgeDistances,Vertices * vertices)1228 void TessellationHelper::adjustVertices(const skvx::Vec<4, float>& signedEdgeDistances,
1229                                         Vertices* vertices) {
1230     SkASSERT(vertices);
1231     SkASSERT(vertices->fUVRCount == 0 || vertices->fUVRCount == 2 || vertices->fUVRCount == 3);
1232 
1233     if (fDeviceType < GrQuad::Type::kPerspective) {
1234         // For non-perspective, non-degenerate quads, moveAlong is correct and most efficient
1235         vertices->moveAlong(fEdgeVectors, signedEdgeDistances);
1236     } else {
1237         // For perspective, non-degenerate quads, use moveAlong for the projected points and then
1238         // reconstruct Ws with moveTo.
1239         Vertices projected = { fEdgeVectors.fX2D, fEdgeVectors.fY2D, /*w*/ 1.f, 0.f, 0.f, 0.f, 0 };
1240         projected.moveAlong(fEdgeVectors, signedEdgeDistances);
1241         vertices->moveTo(projected.fX, projected.fY, signedEdgeDistances != 0.f);
1242     }
1243 }
1244 
adjustDegenerateVertices(const skvx::Vec<4,float> & signedEdgeDistances,Vertices * vertices)1245 int TessellationHelper::adjustDegenerateVertices(const skvx::Vec<4, float>& signedEdgeDistances,
1246                                                  Vertices* vertices) {
1247     SkASSERT(vertices);
1248     SkASSERT(vertices->fUVRCount == 0 || vertices->fUVRCount == 2 || vertices->fUVRCount == 3);
1249 
1250     if (fDeviceType <= GrQuad::Type::kRectilinear) {
1251         // For rectilinear, degenerate quads, can use moveAlong if the edge distances are adjusted
1252         // to not cross over each other.
1253         SkASSERT(all(signedEdgeDistances <= 0.f)); // Only way rectilinear can degenerate is insets
1254         float4 halfLengths = -0.5f / next_cw(fEdgeVectors.fInvLengths); // Negate to inset
1255         mask4 crossedEdges = halfLengths > signedEdgeDistances;
1256         float4 safeInsets = if_then_else(crossedEdges, halfLengths, signedEdgeDistances);
1257         vertices->moveAlong(fEdgeVectors, safeInsets);
1258 
1259         // A degenerate rectilinear quad is either a point (both w and h crossed), or a line
1260         return all(crossedEdges) ? 1 : 2;
1261     } else {
1262         // Degenerate non-rectangular shape, must go through slowest path (which automatically
1263         // handles perspective).
1264         float4 x2d = fEdgeVectors.fX2D;
1265         float4 y2d = fEdgeVectors.fY2D;
1266 
1267         mask4 aaMask;
1268         int vertexCount = this->getEdgeEquations().computeDegenerateQuad(signedEdgeDistances,
1269                                                                          &x2d, &y2d, &aaMask);
1270         vertices->moveTo(x2d, y2d, aaMask);
1271         return vertexCount;
1272     }
1273 }
1274 
1275 } // namespace GrQuadUtils
1276