1 /*
2 * Copyright 2021 Google LLC
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #ifndef skgpu_UniformManager_DEFINED
9 #define skgpu_UniformManager_DEFINED
10
11 #include "include/core/SkM44.h"
12 #include "include/core/SkMatrix.h"
13 #include "include/core/SkPoint.h"
14 #include "include/core/SkPoint3.h"
15 #include "include/core/SkRect.h"
16 #include "include/core/SkRefCnt.h"
17 #include "include/core/SkSize.h"
18 #include "include/core/SkSpan.h"
19 #include "include/private/SkColorData.h"
20 #include "include/private/base/SkAlign.h"
21 #include "include/private/base/SkTDArray.h"
22 #include "src/base/SkHalf.h"
23 #include "src/base/SkMathPriv.h"
24 #include "src/core/SkMatrixPriv.h"
25 #include "src/core/SkSLTypeShared.h"
26 #include "src/gpu/graphite/ResourceTypes.h"
27 #include "src/gpu/graphite/Uniform.h"
28
29 #include <algorithm>
30 #include <memory>
31
32 namespace skgpu::graphite {
33
34 class UniformDataBlock;
35
36 /**
37 * Layout::kStd140
38 * ===============
39 *
40 * From OpenGL Specification Section 7.6.2.2 "Standard Uniform Block Layout"
41 * [https://registry.khronos.org/OpenGL/specs/gl/glspec45.core.pdf#page=159]:
42 * 1. If the member is a scalar consuming N basic machine units, the base alignment is N.
43 * 2. If the member is a two- or four-component vector with components consuming N basic machine
44 * units, the base alignment is 2N or 4N, respectively.
45 * 3. If the member is a three-component vector with components consuming N
46 * basic machine units, the base alignment is 4N.
47 * 4. If the member is an array of scalars or vectors, the base alignment and array
48 * stride are set to match the base alignment of a single array element, according
49 * to rules (1), (2), and (3), and rounded up to the base alignment of a vec4. The
50 * array may have padding at the end; the base offset of the member following
51 * the array is rounded up to the next multiple of the base alignment.
52 * 5. If the member is a column-major matrix with C columns and R rows, the
53 * matrix is stored identically to an array of C column vectors with R components each,
54 * according to rule (4).
55 * 6. If the member is an array of S column-major matrices with C columns and
56 * R rows, the matrix is stored identically to a row of S × C column vectors
57 * with R components each, according to rule (4).
58 * 7. If the member is a row-major matrix with C columns and R rows, the matrix
59 * is stored identically to an array of R row vectors with C components each,
60 * according to rule (4).
61 * 8. If the member is an array of S row-major matrices with C columns and R
62 * rows, the matrix is stored identically to a row of S × R row vectors with C
63 * components each, according to rule (4).
64 * 9. If the member is a structure, the base alignment of the structure is N, where
65 * N is the largest base alignment value of any of its members, and rounded
66 * up to the base alignment of a vec4. The individual members of this substructure are then
67 * assigned offsets by applying this set of rules recursively,
68 * where the base offset of the first member of the sub-structure is equal to the
69 * aligned offset of the structure. The structure may have padding at the end;
70 * the base offset of the member following the sub-structure is rounded up to
71 * the next multiple of the base alignment of the structure.
72 * 10. If the member is an array of S structures, the S elements of the array are laid
73 * out in order, according to rule (9).
74 *
75 * Layout::kStd430
76 * ===============
77 *
78 * When using the std430 storage layout, shader storage blocks will be laid out in buffer storage
79 * identically to uniform and shader storage blocks using the std140 layout, except that the base
80 * alignment and stride of arrays of scalars and vectors in rule 4 and of structures in rule 9 are
81 * not rounded up a multiple of the base alignment of a vec4.
82 *
83 * NOTE: While not explicitly stated, the layout rules for WebGPU and WGSL are identical to std430
84 * for SSBOs and nearly identical to std140 for UBOs. The default mat2x2 type is treated as two
85 * float2's (not an array), so its size is 16 and alignment is 8 (vs. a size of 32 and alignment of
86 * 16 in std140). When emitting WGSL from SkSL, prepareUniformPolyfillsForInterfaceBlock() defined
87 * in WGSLCodeGenerator, will modify the type declaration to match std140 exactly. This allows the
88 * UniformManager and UniformOffsetCalculator to avoid having WebGPU-specific layout rules
89 * (whereas SkSL::MemoryLayout has more complete rules).
90 *
91 * Layout::kMetal
92 * ===============
93 *
94 * SkSL converts its types to the non-packed SIMD vector types in MSL. The size and alignment rules
95 * are equivalent to std430 with the exception of half3 and float3. In std430, the size consumed
96 * by non-array uniforms of these types is 3N while Metal consumes 4N (which is equal to the
97 * alignment of a vec3 in both Layouts).
98 *
99 * Half vs. Float Uniforms
100 * =======================
101 *
102 * Regardless of the precision when the shader is executed, std140 and std430 layouts consume
103 * "half"-based uniforms in full 32-bit precision. Metal consumes "half"-based uniforms expecting
104 * them to have already been converted to f16. WebGPU has an extension to support f16 types, which
105 * behave like this, but we do not currently utilize it.
106 *
107 * The rules for std430 can be easily extended to f16 by applying N = 2 instead of N = 4 for the
108 * base primitive alignment.
109 *
110 * NOTE: This could also apply to the int vs. short or uint vs. ushort types, but these smaller
111 * integer types are not supported on all platforms as uniforms. We disallow short integer uniforms
112 * entirely, and if the data savings are required, packing should be implemented manually.
113 * Short integer vertex attributes are supported when the vector type lets it pack into 32 bits
114 * (e.g. int16x2 or int8x4).
115 *
116 *
117 * Generalized Layout Rules
118 * ========================
119 *
120 * From the Layout descriptions above, the following simpler rules are sufficient:
121 *
122 * 1. If the base primitive type is "half" and the Layout expects half floats, N = 2; else, N = 4.
123 *
124 * 2. For arrays of scalars or vectors (with # of components, M = 1,2,3,4):
125 * a. If arrays must be aligned on vec4 boundaries OR M=3, then align and stride = 4*N.
126 * b. Otherwise, the align and stride = M*N.
127 *
128 * In both cases, the total size required for the uniform is "array size"*stride.
129 *
130 * 3. For single scalars or vectors (M = 1,2,3,4), the align is SkNextPow2(M)*N (e.g. N,2N,4N,4N).
131 * a. If M = 3 and the Layout aligns the size with the alignment, the size is 4*N and N
132 * padding bytes must be zero'ed out afterwards.
133 * b. Otherwise, the align and size = M*N
134 *
135 * 4. The starting offset to write data is the current offset aligned to the calculated align value.
136 * The current offset is then incremented by the total size of the uniform.
137 *
138 * For arrays and padded vec3's, the padding is included in the stride and total size, meeting
139 * the requirements of the original rule 4 in std140. When a single float3 that is not padded
140 * is written, the next offset only advances 12 bytes allowing a smaller type to pack tightly
141 * next to the Z coordinate.
142 *
143 * When N = 4, the CPU and GPU primitives are compatible, regardless of being float, int, or uint.
144 * Contiguous ranges between any padding (for alignment or for array stride) can be memcpy'ed.
145 * When N = 2, the CPU data is float and the GPU data f16, so values must be converted one primitive
146 * at a time using SkFloatToHalf or skvx::to_half.
147 *
148 * The UniformManager will zero out any padding bytes (either prepended for starting alignment,
149 * or appended for stride alignment). This is so that the final byte array can be hashed for uniform
150 * value de-duplication before uploading to the GPU.
151 *
152 * While SkSL supports non-square matrices, the SkSLType enum and Graphite only expose support for
153 * square matrices. Graphite assumes all matrix uniforms are in column-major order. This matches the
154 * data layout of SkM44 already and UniformManager automatically transposes SkMatrix (which is in
155 * row-major data) to be column-major. Thus, for layout purposes, a matrix or an array of matrices
156 * can be laid out equivalently to an array of the column type with an array count multiplied by the
157 * number of columns.
158 *
159 * Graphite does not embed structs within structs for its UBO or SSBO declarations for paint or
160 * RenderSteps. However, when the "uniforms" are defined for use with SSBO random access, the
161 * ordered set of uniforms is actually defining a struct instead of just a top-level interface.
162 * As such, once all uniforms are recorded, the size must be rounded up to the maximum alignment
163 * encountered for its members to satisfy alignment rules for all Layouts.
164 *
165 * If Graphite starts to define sub-structs, UniformOffsetCalculator can be used recursively.
166 */
167 namespace LayoutRules {
168 // The three diverging behaviors across the different Layouts:
PadVec3Size(Layout layout)169 static constexpr bool PadVec3Size(Layout layout) { return layout == Layout::kMetal; }
AlignArraysAsVec4(Layout layout)170 static constexpr bool AlignArraysAsVec4(Layout layout) { return layout == Layout::kStd140; }
UseFullPrecision(Layout layout)171 static constexpr bool UseFullPrecision(Layout layout) { return layout != Layout::kMetal; }
172 }
173
174 class UniformOffsetCalculator {
175 public:
176 UniformOffsetCalculator() = default;
177
178 static UniformOffsetCalculator ForTopLevel(Layout layout, int offset = 0) {
179 return UniformOffsetCalculator(layout, offset, /*reqAlignment=*/1);
180 }
181
ForStruct(Layout layout)182 static UniformOffsetCalculator ForStruct(Layout layout) {
183 const int reqAlignment = LayoutRules::AlignArraysAsVec4(layout) ? 16 : 1;
184 return UniformOffsetCalculator(layout, /*offset=*/0, reqAlignment);
185 }
186
layout()187 Layout layout() const { return fLayout; }
188
189 // NOTE: The returned size represents the last consumed byte (if the recorded
190 // uniforms are embedded within a struct, this will need to be rounded up to a multiple of
191 // requiredAlignment()).
size()192 int size() const { return fOffset; }
requiredAlignment()193 int requiredAlignment() const { return fReqAlignment; }
194
195 // Returns the correctly aligned offset to accommodate `count` instances of `type` and
196 // advances the internal offset.
197 //
198 // After a call to this method, `size()` will return the offset to the end of `count` instances
199 // of `type` (while the return value equals the aligned start offset). Subsequent calls will
200 // calculate the new start offset starting at `size()`.
201 int advanceOffset(SkSLType type, int count = Uniform::kNonArray);
202
203 // Returns the correctly aligned offset to accommodate `count` instances of a custom struct
204 // type that has had its own fields passed into the `substruct` offset calculator.
205 //
206 // After a call to this method, `size()` will return the offset to the end of `count` instances
207 // of the struct types (while the return value equals the aligned start offset). This includes
208 // any required padding of the struct size per rule #9.
209 int advanceStruct(const UniformOffsetCalculator& substruct, int count = Uniform::kNonArray);
210
211 private:
UniformOffsetCalculator(Layout layout,int offset,int reqAlignment)212 UniformOffsetCalculator(Layout layout, int offset, int reqAlignment)
213 : fLayout(layout), fOffset(offset), fReqAlignment((reqAlignment)) {}
214
215 Layout fLayout = Layout::kInvalid;
216 int fOffset = 0;
217 int fReqAlignment = 1;
218 };
219
220 class UniformManager {
221 public:
UniformManager(Layout layout)222 UniformManager(Layout layout) { this->resetWithNewLayout(layout); }
223
finish()224 SkSpan<const char> finish() {
225 this->alignTo(fReqAlignment);
226 return SkSpan(fStorage);
227 }
228
size()229 size_t size() const { return fStorage.size(); }
230
231 void resetWithNewLayout(Layout layout);
reset()232 void reset() { this->resetWithNewLayout(fLayout); }
233
234 // scalars
write(float f)235 void write(float f) { this->write<SkSLType::kFloat>(&f); }
write(int32_t i)236 void write(int32_t i) { this->write<SkSLType::kInt >(&i); }
writeHalf(float f)237 void writeHalf(float f) { this->write<SkSLType::kHalf >(&f); }
238
239 // [i|h]vec4 and arrays thereof (just add overloads as needed)
write(const SkPMColor4f & c)240 void write(const SkPMColor4f& c) { this->write<SkSLType::kFloat4>(c.vec()); }
write(const SkRect & r)241 void write(const SkRect& r) { this->write<SkSLType::kFloat4>(r.asScalars()); }
write(const SkV4 & v)242 void write(const SkV4& v) { this->write<SkSLType::kFloat4>(v.ptr()); }
243
write(const SkIRect & r)244 void write(const SkIRect& r) { this->write<SkSLType::kInt4>(&r); }
245
writeHalf(const SkPMColor4f & c)246 void writeHalf(const SkPMColor4f& c) { this->write<SkSLType::kHalf4>(c.vec()); }
writeHalf(const SkRect & r)247 void writeHalf(const SkRect& r) { this->write<SkSLType::kHalf4>(r.asScalars()); }
writeHalf(const SkV4 & v)248 void writeHalf(const SkV4& v) { this->write<SkSLType::kHalf4>(v.ptr()); }
249
writeArray(SkSpan<const SkV4> v)250 void writeArray(SkSpan<const SkV4> v) {
251 this->writeArray<SkSLType::kFloat4>(v.data(), v.size());
252 }
writeArray(SkSpan<const SkPMColor4f> c)253 void writeArray(SkSpan<const SkPMColor4f> c) {
254 this->writeArray<SkSLType::kFloat4>(c.data(), c.size());
255 }
writeHalfArray(SkSpan<const SkPMColor4f> c)256 void writeHalfArray(SkSpan<const SkPMColor4f> c) {
257 this->writeArray<SkSLType::kHalf4>(c.data(), c.size());
258 }
259
260 // [i|h]vec3
write(const SkV3 & v)261 void write(const SkV3& v) { this->write<SkSLType::kFloat3>(v.ptr()); }
write(const SkPoint3 & p)262 void write(const SkPoint3& p) { this->write<SkSLType::kFloat3>(&p); }
263
writeHalf(const SkV3 & v)264 void writeHalf(const SkV3& v) { this->write<SkSLType::kHalf3>(v.ptr()); }
writeHalf(const SkPoint3 & p)265 void writeHalf(const SkPoint3& p) { this->write<SkSLType::kHalf3>(&p); }
266
267 // NOTE: 3-element vectors never pack efficiently in arrays, so avoid using them
268
269 // [i|h]vec2
write(const SkV2 & v)270 void write(const SkV2& v) { this->write<SkSLType::kFloat2>(v.ptr()); }
write(const SkSize & s)271 void write(const SkSize& s) { this->write<SkSLType::kFloat2>(&s); }
write(const SkPoint & p)272 void write(const SkPoint& p) { this->write<SkSLType::kFloat2>(&p); }
273
write(const SkISize & s)274 void write(const SkISize& s) { this->write<SkSLType::kInt2>(&s); }
275
writeHalf(const SkV2 & v)276 void writeHalf(const SkV2& v) { this->write<SkSLType::kHalf2>(v.ptr()); }
writeHalf(const SkSize & s)277 void writeHalf(const SkSize& s) { this->write<SkSLType::kHalf2>(&s); }
writeHalf(const SkPoint & p)278 void writeHalf(const SkPoint& p) { this->write<SkSLType::kHalf2>(&p); }
279
280 // NOTE: 2-element vectors don't pack efficiently in std140, so avoid using them
281
282 // matrices
write(const SkM44 & m)283 void write(const SkM44& m) {
284 // All Layouts treat a 4x4 column-major matrix as an array of vec4's, which is exactly how
285 // SkM44 already stores its data.
286 this->writeArray<SkSLType::kFloat4>(SkMatrixPriv::M44ColMajor(m), 4);
287 }
288
writeHalf(const SkM44 & m)289 void writeHalf(const SkM44& m) {
290 this->writeArray<SkSLType::kHalf4>(SkMatrixPriv::M44ColMajor(m), 4);
291 }
292
write(const SkMatrix & m)293 void write(const SkMatrix& m) {
294 // SkMatrix is row-major, so rewrite to column major. All Layouts treat a 3x3 column
295 // major matrix as an array of vec3's.
296 float colMajor[9] = {m[0], m[3], m[6],
297 m[1], m[4], m[7],
298 m[2], m[5], m[8]};
299 this->writeArray<SkSLType::kFloat3>(colMajor, 3);
300 }
writeHalf(const SkMatrix & m)301 void writeHalf(const SkMatrix& m) {
302 float colMajor[9] = {m[0], m[3], m[6],
303 m[1], m[4], m[7],
304 m[2], m[5], m[8]};
305 this->writeArray<SkSLType::kHalf3>(colMajor, 3);
306 }
307
308 // NOTE: 2x2 matrices can be manually packed the same or better as a vec4, so prefer that
309
310 // This is a specialized uniform writing entry point intended to deduplicate the paint
311 // color. If a more general system is required, the deduping logic can be added to the
312 // other write methods (and this specialized method would be removed).
writePaintColor(const SkPMColor4f & color)313 void writePaintColor(const SkPMColor4f& color) {
314 if (fWrotePaintColor) {
315 // Validate expected uniforms, but don't write a second copy since the paint color
316 // uniform can only ever be declared once in the final SkSL program.
317 SkASSERT(this->checkExpected(/*dst=*/nullptr, SkSLType::kFloat4, Uniform::kNonArray));
318 } else {
319 this->write<SkSLType::kFloat4>(&color);
320 fWrotePaintColor = true;
321 }
322 }
323
324 // Copy from `src` using Uniform array-count semantics.
325 void write(const Uniform&, const void* src);
326
327 // UniformManager has basic support for writing substructs with the caveats:
328 // 1. The base alignment of the substruct must be known a priori so the first member can be
329 // written immediately.
330 // 2. Nested substructs are not supported (but could be if the padded-struct size was also
331 // provided to endStruct()).
332 //
333 // Call beginStruct(baseAlignment) before writing the first field. Then call the regular
334 // write functions for each of the substruct's fields in order. Lastly, call endStruct() to
335 // go back to writing fields in the top-level interface block.
beginStruct(int baseAlignment)336 void beginStruct(int baseAlignment) {
337 SkASSERT(this->checkBeginStruct(baseAlignment)); // verifies baseAlignment matches layout
338
339 this->alignTo(baseAlignment);
340 fStructBaseAlignment = baseAlignment;
341 fReqAlignment = std::max(fReqAlignment, baseAlignment);
342 }
endStruct()343 void endStruct() {
344 SkASSERT(fStructBaseAlignment >= 1); // Must have started a struct
345 this->alignTo(fStructBaseAlignment);
346 SkASSERT(this->checkEndStruct()); // validate after padding out to struct's alignment
347 fStructBaseAlignment = 0;
348 }
349
350 // Debug-only functions to control uniform expectations.
351 #ifdef SK_DEBUG
352 bool isReset() const;
353 void setExpectedUniforms(SkSpan<const Uniform> expected, bool isSubstruct);
354 void doneWithExpectedUniforms();
355 #endif // SK_DEBUG
356
357 private:
358 // All public write() functions in UniformManager already match scalar/vector SkSLTypes or have
359 // explicitly converted matrix SkSLTypes to a writeArray<column type> so this does not need to
360 // check anything beyond half[2,3,4].
IsHalfVector(SkSLType type)361 static constexpr bool IsHalfVector(SkSLType type) {
362 return type >= SkSLType::kHalf && type <= SkSLType::kHalf4;
363 }
364
365 // Other than validation, actual layout doesn't care about 'type' and the logic can be
366 // based on vector length and whether or not it's half or full precision.
367 template <int N, bool Half> void write(const void* src, SkSLType type);
368 template <int N, bool Half> void writeArray(const void* src, int count, SkSLType type);
369
370 // Helpers to select dimensionality and convert to full precision if required by the Layout.
write(const void * src)371 template <SkSLType Type> void write(const void* src) {
372 static constexpr int N = SkSLTypeVecLength(Type);
373 if (IsHalfVector(Type) && !LayoutRules::UseFullPrecision(fLayout)) {
374 this->write<N, /*Half=*/true>(src, Type);
375 } else {
376 this->write<N, /*Half=*/false>(src, Type);
377 }
378 }
writeArray(const void * src,int count)379 template <SkSLType Type> void writeArray(const void* src, int count) {
380 static constexpr int N = SkSLTypeVecLength(Type);
381 if (IsHalfVector(Type) && !LayoutRules::UseFullPrecision(fLayout)) {
382 this->writeArray<N, /*Half=*/true>(src, count, Type);
383 } else {
384 this->writeArray<N, /*Half=*/false>(src, count, Type);
385 }
386 }
387
388 // This is marked 'inline' so that it can be defined below with write() and writeArray() and
389 // still link correctly.
390 inline char* append(int alignment, int size);
391 inline void alignTo(int alignment);
392
393 SkTDArray<char> fStorage;
394
395 Layout fLayout;
396 int fReqAlignment = 0;
397 int fStructBaseAlignment = 0;
398 // The paint color is treated special and we only add its uniform once.
399 bool fWrotePaintColor = false;
400
401 // Debug-only verification that UniformOffsetCalculator is consistent and that write() calls
402 // match the expected uniform declaration order.
403 #ifdef SK_DEBUG
404 UniformOffsetCalculator fOffsetCalculator; // should match implicit offsets from append()
405 UniformOffsetCalculator fSubstructCalculator; // 0-based, used when inside a substruct
406 int fSubstructStartingOffset = -1; // offset within fOffsetCalculator of first field
407
408 SkSpan<const Uniform> fExpectedUniforms;
409 int fExpectedUniformIndex = 0;
410
411 bool checkExpected(const void* dst, SkSLType, int count);
412 bool checkBeginStruct(int baseAlignment);
413 bool checkEndStruct();
414 #endif // SK_DEBUG
415 };
416
417 ///////////////////////////////////////////////////////////////////////////////////////////////////
418 // Definitions
419
420 // Shared helper for both write() and writeArray()
421 template <int N, bool Half>
422 struct LayoutTraits {
423 static_assert(1 <= N && N <= 4);
424
425 static constexpr int kElemSize = Half ? sizeof(SkHalf) : sizeof(float);
426 static constexpr int kSize = N * kElemSize;
427 static constexpr int kAlign = SkNextPow2_portable(N) * kElemSize;
428
429 // Reads kSize bytes from 'src' and copies or converts (float->half) the N values
430 // into 'dst'. Does not add any other padding that may depend on usage and Layout.
CopyLayoutTraits431 static void Copy(const void* src, void* dst) {
432 if constexpr (Half) {
433 using VecF = skvx::Vec<SkNextPow2_portable(N), float>;
434 VecF srcData;
435 if constexpr (N == 3) {
436 // Load the 3 values into a float4 to take advantage of vectorized conversion.
437 // The 4th value will not be copied to dst.
438 const float* srcF = static_cast<const float*>(src);
439 srcData = VecF{srcF[0], srcF[1], srcF[2], 0.f};
440 } else {
441 srcData = VecF::Load(src);
442 }
443
444 auto dstData = to_half(srcData);
445 // NOTE: this is identical to Vec::store() for N=1,2,4 and correctly drops the 4th
446 // lane when N=3.
447 memcpy(dst, &dstData, kSize);
448 } else {
449 memcpy(dst, src, kSize);
450 }
451 }
452
453 #ifdef SK_DEBUG
ValidateLayoutTraits454 static void Validate(const void* src, SkSLType type, Layout layout) {
455 // Src validation
456 SkASSERT(src);
457 // All primitives on the CPU side should be 4 byte aligned
458 SkASSERT(SkIsAlign4(reinterpret_cast<intptr_t>(src)));
459
460 // Type and validation layout
461 SkASSERT(SkSLTypeCanBeUniformValue(type));
462 SkASSERT(SkSLTypeVecLength(type) == N); // Matrix types should have been flattened already
463 if constexpr (Half) {
464 SkASSERT(SkSLTypeIsFloatType(type));
465 SkASSERT(!SkSLTypeIsFullPrecisionNumericType(type));
466 SkASSERT(!LayoutRules::UseFullPrecision(layout));
467 } else {
468 SkASSERT(SkSLTypeIsFullPrecisionNumericType(type) ||
469 LayoutRules::UseFullPrecision(layout));
470 }
471 }
472 #endif
473 };
474
475 template<int N, bool Half>
write(const void * src,SkSLType type)476 void UniformManager::write(const void* src, SkSLType type) {
477 using L = LayoutTraits<N, Half>;
478 SkDEBUGCODE(L::Validate(src, type, fLayout);)
479
480 // Layouts diverge in how vec3 size is determined for non-array usage
481 char* dst = (N == 3 && LayoutRules::PadVec3Size(fLayout))
482 ? this->append(L::kAlign, L::kSize + L::kElemSize)
483 : this->append(L::kAlign, L::kSize);
484 SkASSERT(this->checkExpected(dst, type, Uniform::kNonArray));
485
486 L::Copy(src, dst);
487 if (N == 3 && LayoutRules::PadVec3Size(fLayout)) {
488 memset(dst + L::kSize, 0, L::kElemSize);
489 }
490 }
491
492 template<int N, bool Half>
writeArray(const void * src,int count,SkSLType type)493 void UniformManager::writeArray(const void* src, int count, SkSLType type) {
494 using L = LayoutTraits<N, Half>;
495 static constexpr int kSrcStride = N * 4; // Source data is always in multiples of 4 bytes.
496
497 SkDEBUGCODE(L::Validate(src, type, fLayout);)
498 SkASSERT(count > 0);
499
500 if (Half || N == 3 || (N != 4 && LayoutRules::AlignArraysAsVec4(fLayout))) {
501 // A non-dense array (N == 3 is always padded to vec4, or the Layout requires it),
502 // or we have to perform half conversion so iterate over each element.
503 static constexpr int kStride = Half ? L::kAlign : 4*L::kElemSize;
504 SkASSERT(!(Half && LayoutRules::AlignArraysAsVec4(fLayout))); // should be exclusive
505
506 const char* srcBytes = reinterpret_cast<const char*>(src);
507 char* dst = this->append(kStride, kStride*count);
508 SkASSERT(this->checkExpected(dst, type, count));
509
510 for (int i = 0; i < count; ++i) {
511 L::Copy(srcBytes, dst);
512 if constexpr (kStride - L::kSize > 0) {
513 memset(dst + L::kSize, 0, kStride - L::kSize);
514 }
515
516 dst += kStride;
517 srcBytes += kSrcStride;
518 }
519 } else {
520 // A dense array with no type conversion, so copy in one go.
521 SkASSERT(L::kAlign == L::kSize && kSrcStride == L::kSize);
522 char* dst = this->append(L::kAlign, L::kSize*count);
523 SkASSERT(this->checkExpected(dst, type, count));
524
525 memcpy(dst, src, L::kSize*count);
526 }
527 }
528
alignTo(int alignment)529 void UniformManager::alignTo(int alignment) {
530 SkASSERT(alignment >= 1 && SkIsPow2(alignment));
531 if ((fStorage.size() & (alignment - 1)) != 0) {
532 this->append(alignment, /*size=*/0);
533 }
534 }
535
append(int alignment,int size)536 char* UniformManager::append(int alignment, int size) {
537 // The base alignment for a struct should have been calculated for the current layout using
538 // UniformOffsetCalculator, so every field appended within the struct should have an alignment
539 // less than or equal to that base alignment.
540 SkASSERT(fStructBaseAlignment <= 0 || alignment <= fStructBaseAlignment);
541
542 const int offset = fStorage.size();
543 const int padding = SkAlignTo(offset, alignment) - offset;
544
545 // These are just asserts not aborts because SkSL compilation imposes limits on the size of
546 // runtime effect arrays, and internal shaders should not be using excessive lengths.
547 SkASSERT(std::numeric_limits<int>::max() - alignment >= offset);
548 SkASSERT(std::numeric_limits<int>::max() - size >= padding);
549
550 char* dst = fStorage.append(size + padding);
551 if (padding > 0) {
552 memset(dst, 0, padding);
553 dst += padding;
554 }
555
556 fReqAlignment = std::max(fReqAlignment, alignment);
557 return dst;
558 }
559
560 } // namespace skgpu::graphite
561
562 #endif // skgpu_UniformManager_DEFINED
563