xref: /aosp_15_r20/external/skia/src/gpu/tessellate/Tessellation.cpp (revision c8dee2aa9b3f27cf6c858bd81872bdeb2c07ed17)
1 /*
2  * Copyright 2021 Google LLC.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 #include "src/gpu/tessellate/Tessellation.h"
8 
9 #include "include/core/SkPath.h"
10 #include "include/core/SkPathTypes.h"
11 #include "include/core/SkRect.h"
12 #include "include/private/base/SkFloatingPoint.h"
13 #include "include/private/base/SkTArray.h"
14 #include "src/base/SkUtils.h"
15 #include "src/base/SkVx.h"
16 #include "src/core/SkGeometry.h"
17 #include "src/core/SkPathPriv.h"
18 #include "src/gpu/tessellate/CullTest.h"
19 #include "src/gpu/tessellate/WangsFormula.h"
20 
21 using namespace skia_private;
22 
23 namespace skgpu::tess {
24 
25 namespace {
26 
27 using float2 = skvx::float2;
28 using float4 = skvx::float4;
29 
30 // This value only protects us against getting stuck in infinite recursion due to fp32 precision
31 // issues. Mathematically, every curve should reduce to manageable visible sections in O(log N)
32 // chops, where N is the the magnitude of its control points.
33 //
34 // But, to define a protective upper bound, a cubic can enter or exit the viewport as many as 6
35 // times. So we may need to refine the curve (via binary search chopping at T=.5) up to 6 times.
36 //
37 // Furthermore, chopping a cubic at T=.5 may only reduce its length by 1/8 (.5^3), so we may require
38 // up to 6 chops in order to reduce the length by 1/2.
39 constexpr static int kMaxChopsPerCurve = 128/*magnitude of +fp32_max - -fp32_max*/ *
40                                          6/*max number of chops to reduce the length by half*/ *
41                                          6/*max number of viewport boundary crosses*/;
42 
43 // Writes a new path, chopping as necessary so no verbs require more segments than
44 // kMaxTessellationSegmentsPerCurve. Curves completely outside the viewport are flattened into
45 // lines.
46 class PathChopper {
47 public:
PathChopper(float tessellationPrecision,const SkMatrix & matrix,const SkRect & viewport)48     PathChopper(float tessellationPrecision, const SkMatrix& matrix, const SkRect& viewport)
49             : fTessellationPrecision(tessellationPrecision)
50             , fCullTest(viewport, matrix)
51             , fVectorXform(matrix) {
52         fPath.setIsVolatile(true);
53     }
54 
path() const55     SkPath path() const { return fPath; }
56 
moveTo(SkPoint p)57     void moveTo(SkPoint p) { fPath.moveTo(p); }
lineTo(const SkPoint p[2])58     void lineTo(const SkPoint p[2]) { fPath.lineTo(p[1]); }
close()59     void close() { fPath.close(); }
60 
quadTo(const SkPoint quad[3])61     void quadTo(const SkPoint quad[3]) {
62         SkASSERT(fPointStack.empty());
63         // Use a heap stack to recursively chop the quad into manageable, on-screen segments.
64         fPointStack.push_back_n(3, quad);
65         int numChops = 0;
66         while (!fPointStack.empty()) {
67             const SkPoint* p = fPointStack.end() - 3;
68             if (!fCullTest.areVisible3(p)) {
69                 fPath.lineTo(p[2]);
70             } else {
71                 float n4 = wangs_formula::quadratic_p4(fTessellationPrecision, p, fVectorXform);
72                 if (n4 > kMaxSegmentsPerCurve_p4 && numChops < kMaxChopsPerCurve) {
73                     SkPoint chops[5];
74                     SkChopQuadAtHalf(p, chops);
75                     fPointStack.pop_back_n(3);
76                     fPointStack.push_back_n(3, chops+2);
77                     fPointStack.push_back_n(3, chops);
78                     ++numChops;
79                     continue;
80                 }
81                 fPath.quadTo(p[1], p[2]);
82             }
83             fPointStack.pop_back_n(3);
84         }
85     }
86 
conicTo(const SkPoint conic[3],float weight)87     void conicTo(const SkPoint conic[3], float weight) {
88         SkASSERT(fPointStack.empty());
89         SkASSERT(fWeightStack.empty());
90         // Use a heap stack to recursively chop the conic into manageable, on-screen segments.
91         fPointStack.push_back_n(3, conic);
92         fWeightStack.push_back(weight);
93         int numChops = 0;
94         while (!fPointStack.empty()) {
95             const SkPoint* p = fPointStack.end() - 3;
96             float w = fWeightStack.back();
97             if (!fCullTest.areVisible3(p)) {
98                 fPath.lineTo(p[2]);
99             } else {
100                 float n2 = wangs_formula::conic_p2(fTessellationPrecision, p, w, fVectorXform);
101                 if (n2 > kMaxSegmentsPerCurve_p2 && numChops < kMaxChopsPerCurve) {
102                     SkConic chops[2];
103                     if (!SkConic(p,w).chopAt(.5, chops)) {
104                         SkPoint line[2] = {p[0], p[2]};
105                         this->lineTo(line);
106                         continue;
107                     }
108                     fPointStack.pop_back_n(3);
109                     fWeightStack.pop_back();
110                     fPointStack.push_back_n(3, chops[1].fPts);
111                     fWeightStack.push_back(chops[1].fW);
112                     fPointStack.push_back_n(3, chops[0].fPts);
113                     fWeightStack.push_back(chops[0].fW);
114                     ++numChops;
115                     continue;
116                 }
117                 fPath.conicTo(p[1], p[2], w);
118             }
119             fPointStack.pop_back_n(3);
120             fWeightStack.pop_back();
121         }
122         SkASSERT(fWeightStack.empty());
123     }
124 
cubicTo(const SkPoint cubic[4])125     void cubicTo(const SkPoint cubic[4]) {
126         SkASSERT(fPointStack.empty());
127         // Use a heap stack to recursively chop the cubic into manageable, on-screen segments.
128         fPointStack.push_back_n(4, cubic);
129         int numChops = 0;
130         while (!fPointStack.empty()) {
131             SkPoint* p = fPointStack.end() - 4;
132             if (!fCullTest.areVisible4(p)) {
133                 fPath.lineTo(p[3]);
134             } else {
135                 float n4 = wangs_formula::cubic_p4(fTessellationPrecision, p, fVectorXform);
136                 if (n4 > kMaxSegmentsPerCurve_p4 && numChops < kMaxChopsPerCurve) {
137                     SkPoint chops[7];
138                     SkChopCubicAtHalf(p, chops);
139                     fPointStack.pop_back_n(4);
140                     fPointStack.push_back_n(4, chops+3);
141                     fPointStack.push_back_n(4, chops);
142                     ++numChops;
143                     continue;
144                 }
145                 fPath.cubicTo(p[1], p[2], p[3]);
146             }
147             fPointStack.pop_back_n(4);
148         }
149     }
150 
151 private:
152     const float fTessellationPrecision;
153     const CullTest fCullTest;
154     const wangs_formula::VectorXform fVectorXform;
155     SkPath fPath;
156 
157     // Used for stack-based recursion (instead of using the runtime stack).
158     STArray<8, SkPoint> fPointStack;
159     STArray<2, float> fWeightStack;
160 };
161 
162 }  // namespace
163 
PreChopPathCurves(float tessellationPrecision,const SkPath & path,const SkMatrix & matrix,const SkRect & viewport)164 SkPath PreChopPathCurves(float tessellationPrecision,
165                          const SkPath& path,
166                          const SkMatrix& matrix,
167                          const SkRect& viewport) {
168     // If the viewport is exceptionally large, we could end up blowing out memory with an unbounded
169     // number of of chops. Therefore, we require that the viewport is manageable enough that a fully
170     // contained curve can be tessellated in kMaxTessellationSegmentsPerCurve or fewer. (Any larger
171     // and that amount of pixels wouldn't fit in memory anyway.)
172     SkASSERT(wangs_formula::worst_case_cubic(
173                      tessellationPrecision,
174                      viewport.width(),
175                      viewport.height()) <= kMaxSegmentsPerCurve);
176     PathChopper chopper(tessellationPrecision, matrix, viewport);
177     for (auto [verb, p, w] : SkPathPriv::Iterate(path)) {
178         switch (verb) {
179             case SkPathVerb::kMove:
180                 chopper.moveTo(p[0]);
181                 break;
182             case SkPathVerb::kLine:
183                 chopper.lineTo(p);
184                 break;
185             case SkPathVerb::kQuad:
186                 chopper.quadTo(p);
187                 break;
188             case SkPathVerb::kConic:
189                 chopper.conicTo(p, *w);
190                 break;
191             case SkPathVerb::kCubic:
192                 chopper.cubicTo(p);
193                 break;
194             case SkPathVerb::kClose:
195                 chopper.close();
196                 break;
197         }
198     }
199     // Must preserve the input path's fill type (see crbug.com/1472747)
200     SkPath chopped = chopper.path();
201     chopped.setFillType(path.getFillType());
202     return chopped;
203 }
204 
FindCubicConvex180Chops(const SkPoint pts[],float T[2],bool * areCusps)205 int FindCubicConvex180Chops(const SkPoint pts[], float T[2], bool* areCusps) {
206     SkASSERT(pts);
207     SkASSERT(T);
208     SkASSERT(areCusps);
209 
210     // If a chop falls within a distance of "kEpsilon" from 0 or 1, throw it out. Tangents become
211     // unstable when we chop too close to the boundary. This works out because the tessellation
212     // shaders don't allow more than 2^10 parametric segments, and they snap the beginning and
213     // ending edges at 0 and 1. So if we overstep an inflection or point of 180-degree rotation by a
214     // fraction of a tessellation segment, it just gets snapped.
215     constexpr static float kEpsilon = 1.f / (1 << 11);
216     // Floating-point representation of "1 - 2*kEpsilon".
217     constexpr static uint32_t kIEEE_one_minus_2_epsilon = (127 << 23) - 2 * (1 << (24 - 11));
218     // Unfortunately we don't have a way to static_assert this, but we can runtime assert that the
219     // kIEEE_one_minus_2_epsilon bits are correct.
220     SkASSERT(sk_bit_cast<float>(kIEEE_one_minus_2_epsilon) == 1 - 2*kEpsilon);
221 
222     float2 p0 = sk_bit_cast<float2>(pts[0]);
223     float2 p1 = sk_bit_cast<float2>(pts[1]);
224     float2 p2 = sk_bit_cast<float2>(pts[2]);
225     float2 p3 = sk_bit_cast<float2>(pts[3]);
226 
227     // Find the cubic's power basis coefficients. These define the bezier curve as:
228     //
229     //                                    |T^3|
230     //     Cubic(T) = x,y = |A  3B  3C| * |T^2| + P0
231     //                      |.   .   .|   |T  |
232     //
233     // And the tangent direction (scaled by a uniform 1/3) will be:
234     //
235     //                                                 |T^2|
236     //     Tangent_Direction(T) = dx,dy = |A  2B  C| * |T  |
237     //                                    |.   .  .|   |1  |
238     //
239     float2 C = p1 - p0;
240     float2 D = p2 - p1;
241     float2 E = p3 - p0;
242     float2 B = D - C;
243     float2 A = -3*D + E;
244 
245     // Now find the cubic's inflection function. There are inflections where F' x F'' == 0.
246     // We formulate this as a quadratic equation:  F' x F'' == aT^2 + bT + c == 0.
247     // See: https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/p1000-loop.pdf
248     // NOTE: We only need the roots, so a uniform scale factor does not affect the solution.
249     float a = cross(A,B);
250     float b = cross(A,C);
251     float c = cross(B,C);
252     float b_over_minus_2 = -.5f * b;
253     float discr_over_4 = b_over_minus_2*b_over_minus_2 - a*c;
254 
255     // If -cuspThreshold <= discr_over_4 <= cuspThreshold, it means the two roots are within
256     // kEpsilon of one another (in parametric space). This is close enough for our purposes to
257     // consider them a single cusp.
258     float cuspThreshold = a * (kEpsilon/2);
259     cuspThreshold *= cuspThreshold;
260 
261     if (discr_over_4 < -cuspThreshold) {
262         // The curve does not inflect or cusp. This means it might rotate more than 180 degrees
263         // instead. Chop were rotation == 180 deg. (This is the 2nd root where the tangent is
264         // parallel to tan0.)
265         //
266         //      Tangent_Direction(T) x tan0 == 0
267         //      (AT^2 x tan0) + (2BT x tan0) + (C x tan0) == 0
268         //      (A x C)T^2 + (2B x C)T + (C x C) == 0  [[because tan0 == P1 - P0 == C]]
269         //      bT^2 + 2cT + 0 == 0  [[because A x C == b, B x C == c]]
270         //      T = [0, -2c/b]
271         //
272         // NOTE: if C == 0, then C != tan0. But this is fine because the curve is definitely
273         // convex-180 if any points are colocated, and T[0] will equal NaN which returns 0 chops.
274         *areCusps = false;
275         float root = sk_ieee_float_divide(c, b_over_minus_2);
276         // Is "root" inside the range [kEpsilon, 1 - kEpsilon)?
277         if (sk_bit_cast<uint32_t>(root - kEpsilon) < kIEEE_one_minus_2_epsilon) {
278             T[0] = root;
279             return 1;
280         }
281         return 0;
282     }
283 
284     *areCusps = (discr_over_4 <= cuspThreshold);
285     if (*areCusps) {
286         // The two roots are close enough that we can consider them a single cusp.
287         if (a != 0 || b_over_minus_2 != 0 || c != 0) {
288             // Pick the average of both roots.
289             float root = sk_ieee_float_divide(b_over_minus_2, a);
290             // Is "root" inside the range [kEpsilon, 1 - kEpsilon)?
291             if (sk_bit_cast<uint32_t>(root - kEpsilon) < kIEEE_one_minus_2_epsilon) {
292                 T[0] = root;
293                 return 1;
294             }
295             return 0;
296         }
297 
298         // The curve is a flat line. The standard inflection function doesn't detect cusps from flat
299         // lines. Find cusps by searching instead for points where the tangent is perpendicular to
300         // tan0. This will find any cusp point.
301         //
302         //     dot(tan0, Tangent_Direction(T)) == 0
303         //
304         //                         |T^2|
305         //     tan0 * |A  2B  C| * |T  | == 0
306         //            |.   .  .|   |1  |
307         //
308         float2 tan0 = skvx::if_then_else(C != 0, C, p2 - p0);
309         a = dot(tan0, A);
310         b_over_minus_2 = -dot(tan0, B);
311         c = dot(tan0, C);
312         discr_over_4 = std::max(b_over_minus_2*b_over_minus_2 - a*c, 0.f);
313     }
314 
315     // Solve our quadratic equation to find where to chop. See the quadratic formula from
316     // Numerical Recipes in C.
317     float q = sqrtf(discr_over_4);
318     q = copysignf(q, b_over_minus_2);
319     q = q + b_over_minus_2;
320     float2 roots = float2{q,c} / float2{a,q};
321 
322     auto inside = (roots > kEpsilon) & (roots < (1 - kEpsilon));
323     if (inside[0]) {
324         if (inside[1] && roots[0] != roots[1]) {
325             if (roots[0] > roots[1]) {
326                 roots = skvx::shuffle<1,0>(roots);  // Sort.
327             }
328             roots.store(T);
329             return 2;
330         }
331         T[0] = roots[0];
332         return 1;
333     }
334     if (inside[1]) {
335         T[0] = roots[1];
336         return 1;
337     }
338     return 0;
339 }
340 
341 }  // namespace skgpu::tess
342