xref: /aosp_15_r20/external/skia/src/pathops/SkOpAngle.cpp (revision c8dee2aa9b3f27cf6c858bd81872bdeb2c07ed17)
1 /*
2  * Copyright 2012 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 #include "src/pathops/SkOpAngle.h"
8 
9 #include "include/core/SkPoint.h"
10 #include "include/core/SkScalar.h"
11 #include "include/private/base/SkFloatingPoint.h"
12 #include "include/private/base/SkTemplates.h"
13 #include "src/base/SkTSort.h"
14 #include "src/pathops/SkIntersections.h"
15 #include "src/pathops/SkOpSegment.h"
16 #include "src/pathops/SkOpSpan.h"
17 #include "src/pathops/SkPathOpsCubic.h"
18 #include "src/pathops/SkPathOpsCurve.h"
19 #include "src/pathops/SkPathOpsLine.h"
20 #include "src/pathops/SkPathOpsPoint.h"
21 
22 #include <algorithm>
23 #include <cmath>
24 
25 /* Angles are sorted counterclockwise. The smallest angle has a positive x and the smallest
26    positive y. The largest angle has a positive x and a zero y. */
27 
28 #if DEBUG_ANGLE
CompareResult(const char * func,SkString * bugOut,SkString * bugPart,int append,bool compare)29     static bool CompareResult(const char* func, SkString* bugOut, SkString* bugPart, int append,
30              bool compare) {
31         SkDebugf("%s %c %d\n", bugOut->c_str(), compare ? 'T' : 'F', append);
32         SkDebugf("%sPart %s\n", func, bugPart[0].c_str());
33         SkDebugf("%sPart %s\n", func, bugPart[1].c_str());
34         SkDebugf("%sPart %s\n", func, bugPart[2].c_str());
35         return compare;
36     }
37 
38     #define COMPARE_RESULT(append, compare) CompareResult(__FUNCTION__, &bugOut, bugPart, append, \
39             compare)
40 #else
41     #define COMPARE_RESULT(append, compare) compare
42 #endif
43 
44 /*             quarter angle values for sector
45 
46 31   x > 0, y == 0              horizontal line (to the right)
47 0    x > 0, y == epsilon        quad/cubic horizontal tangent eventually going +y
48 1    x > 0, y > 0, x > y        nearer horizontal angle
49 2                  x + e == y   quad/cubic 45 going horiz
50 3    x > 0, y > 0, x == y       45 angle
51 4                  x == y + e   quad/cubic 45 going vert
52 5    x > 0, y > 0, x < y        nearer vertical angle
53 6    x == epsilon, y > 0        quad/cubic vertical tangent eventually going +x
54 7    x == 0, y > 0              vertical line (to the top)
55 
56                                       8  7  6
57                                  9       |       5
58                               10         |          4
59                             11           |            3
60                           12  \          |           / 2
61                          13              |              1
62                         14               |               0
63                         15 --------------+------------- 31
64                         16               |              30
65                          17              |             29
66                           18  /          |          \ 28
67                             19           |           27
68                               20         |         26
69                                  21      |      25
70                                      22 23 24
71 */
72 
73 // return true if lh < this < rh
after(SkOpAngle * test)74 bool SkOpAngle::after(SkOpAngle* test) {
75     SkOpAngle* lh = test;
76     SkOpAngle* rh = lh->fNext;
77     SkASSERT(lh != rh);
78     fPart.fCurve = fOriginalCurvePart;
79     // Adjust lh and rh to share the same origin (floating point error in intersections can mean
80     // they aren't exactly the same).
81     lh->fPart.fCurve = lh->fOriginalCurvePart;
82     lh->fPart.fCurve[0] = fPart.fCurve[0];
83     rh->fPart.fCurve = rh->fOriginalCurvePart;
84     rh->fPart.fCurve[0] = fPart.fCurve[0];
85 
86 #if DEBUG_ANGLE
87     SkString bugOut;
88     bugOut.printf("%s [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g"
89                   " < [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g"
90                   " < [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g ", __FUNCTION__,
91             lh->segment()->debugID(), lh->debugID(), lh->fSectorStart, lh->fSectorEnd,
92             lh->fStart->t(), lh->fEnd->t(),
93             segment()->debugID(), debugID(), fSectorStart, fSectorEnd, fStart->t(), fEnd->t(),
94             rh->segment()->debugID(), rh->debugID(), rh->fSectorStart, rh->fSectorEnd,
95             rh->fStart->t(), rh->fEnd->t());
96     SkString bugPart[3] = { lh->debugPart(), this->debugPart(), rh->debugPart() };
97 #endif
98     if (lh->fComputeSector && !lh->computeSector()) {
99         return COMPARE_RESULT(1, true);
100     }
101     if (fComputeSector && !this->computeSector()) {
102         return COMPARE_RESULT(2, true);
103     }
104     if (rh->fComputeSector && !rh->computeSector()) {
105         return COMPARE_RESULT(3, true);
106     }
107 #if DEBUG_ANGLE  // reset bugOut with computed sectors
108     bugOut.printf("%s [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g"
109                   " < [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g"
110                   " < [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g ", __FUNCTION__,
111             lh->segment()->debugID(), lh->debugID(), lh->fSectorStart, lh->fSectorEnd,
112             lh->fStart->t(), lh->fEnd->t(),
113             segment()->debugID(), debugID(), fSectorStart, fSectorEnd, fStart->t(), fEnd->t(),
114             rh->segment()->debugID(), rh->debugID(), rh->fSectorStart, rh->fSectorEnd,
115             rh->fStart->t(), rh->fEnd->t());
116 #endif
117     bool ltrOverlap = (lh->fSectorMask | rh->fSectorMask) & fSectorMask;
118     bool lrOverlap = lh->fSectorMask & rh->fSectorMask;
119     int lrOrder;  // set to -1 if either order works
120     if (!lrOverlap) {  // no lh/rh sector overlap
121         if (!ltrOverlap) {  // no lh/this/rh sector overlap
122             return COMPARE_RESULT(4,  (lh->fSectorEnd > rh->fSectorStart)
123                     ^ (fSectorStart > lh->fSectorEnd) ^ (fSectorStart > rh->fSectorStart));
124         }
125         int lrGap = (rh->fSectorStart - lh->fSectorStart + 32) & 0x1f;
126         /* A tiny change can move the start +/- 4. The order can only be determined if
127            lr gap is not 12 to 20 or -12 to -20.
128                -31 ..-21      1
129                -20 ..-12     -1
130                -11 .. -1      0
131                  0          shouldn't get here
132                 11 ..  1      1
133                 12 .. 20     -1
134                 21 .. 31      0
135          */
136         lrOrder = lrGap > 20 ? 0 : lrGap > 11 ? -1 : 1;
137     } else {
138         lrOrder = lh->orderable(rh);
139         if (!ltrOverlap && lrOrder >= 0) {
140             return COMPARE_RESULT(5, !lrOrder);
141         }
142     }
143     int ltOrder;
144     SkASSERT((lh->fSectorMask & fSectorMask) || (rh->fSectorMask & fSectorMask) || -1 == lrOrder);
145     if (lh->fSectorMask & fSectorMask) {
146         ltOrder = lh->orderable(this);
147     } else {
148         int ltGap = (fSectorStart - lh->fSectorStart + 32) & 0x1f;
149         ltOrder = ltGap > 20 ? 0 : ltGap > 11 ? -1 : 1;
150     }
151     int trOrder;
152     if (rh->fSectorMask & fSectorMask) {
153         trOrder = this->orderable(rh);
154     } else {
155         int trGap = (rh->fSectorStart - fSectorStart + 32) & 0x1f;
156         trOrder = trGap > 20 ? 0 : trGap > 11 ? -1 : 1;
157     }
158     this->alignmentSameSide(lh, &ltOrder);
159     this->alignmentSameSide(rh, &trOrder);
160     if (lrOrder >= 0 && ltOrder >= 0 && trOrder >= 0) {
161         return COMPARE_RESULT(7, lrOrder ? (ltOrder & trOrder) : (ltOrder | trOrder));
162     }
163 //    SkASSERT(lrOrder >= 0 || ltOrder >= 0 || trOrder >= 0);
164 // There's not enough information to sort. Get the pairs of angles in opposite planes.
165 // If an order is < 0, the pair is already in an opposite plane. Check the remaining pairs.
166     // FIXME : once all variants are understood, rewrite this more simply
167     if (ltOrder == 0 && lrOrder == 0) {
168         SkASSERT(trOrder < 0);
169         // FIXME : once this is verified to work, remove one opposite angle call
170         SkDEBUGCODE(bool lrOpposite = lh->oppositePlanes(rh));
171         bool ltOpposite = lh->oppositePlanes(this);
172         SkOPASSERT(lrOpposite != ltOpposite);
173         return COMPARE_RESULT(8, ltOpposite);
174     } else if (ltOrder == 1 && trOrder == 0) {
175         SkASSERT(lrOrder < 0);
176         bool trOpposite = oppositePlanes(rh);
177         return COMPARE_RESULT(9, trOpposite);
178     } else if (lrOrder == 1 && trOrder == 1) {
179         SkASSERT(ltOrder < 0);
180 //        SkDEBUGCODE(bool trOpposite = oppositePlanes(rh));
181         bool lrOpposite = lh->oppositePlanes(rh);
182 //        SkASSERT(lrOpposite != trOpposite);
183         return COMPARE_RESULT(10, lrOpposite);
184     }
185     // If a pair couldn't be ordered, there's not enough information to determine the sort.
186     // Refer to:  https://docs.google.com/drawings/d/1KV-8SJTedku9fj4K6fd1SB-8divuV_uivHVsSgwXICQ
187     if (fUnorderable || lh->fUnorderable || rh->fUnorderable) {
188         // limit to lines; should work with curves, but wait for a failing test to verify
189         if (!fPart.isCurve() && !lh->fPart.isCurve() && !rh->fPart.isCurve()) {
190             // see if original raw data is orderable
191             // if two share a point, check if third has both points in same half plane
192             int ltShare = lh->fOriginalCurvePart[0] == fOriginalCurvePart[0];
193             int lrShare = lh->fOriginalCurvePart[0] == rh->fOriginalCurvePart[0];
194             int trShare = fOriginalCurvePart[0] == rh->fOriginalCurvePart[0];
195             // if only one pair are the same, the third point touches neither of the pair
196             if (ltShare + lrShare + trShare == 1) {
197                 if (lrShare) {
198                     int ltOOrder = lh->linesOnOriginalSide(this);
199                     int rtOOrder = rh->linesOnOriginalSide(this);
200                     if ((rtOOrder ^ ltOOrder) == 1) {
201                         return ltOOrder;
202                     }
203                 } else if (trShare) {
204                     int tlOOrder = this->linesOnOriginalSide(lh);
205                     int rlOOrder = rh->linesOnOriginalSide(lh);
206                     if ((tlOOrder ^ rlOOrder) == 1) {
207                         return rlOOrder;
208                     }
209                 } else {
210                     SkASSERT(ltShare);
211                     int trOOrder = rh->linesOnOriginalSide(this);
212                     int lrOOrder = lh->linesOnOriginalSide(rh);
213                     // result must be 0 and 1 or 1 and 0 to be valid
214                     if ((lrOOrder ^ trOOrder) == 1) {
215                         return trOOrder;
216                     }
217                 }
218             }
219         }
220     }
221     if (lrOrder < 0) {
222         if (ltOrder < 0) {
223             return COMPARE_RESULT(11, trOrder);
224         }
225         return COMPARE_RESULT(12, ltOrder);
226     }
227     return COMPARE_RESULT(13, !lrOrder);
228 }
229 
lineOnOneSide(const SkDPoint & origin,const SkDVector & line,const SkOpAngle * test,bool useOriginal) const230 int SkOpAngle::lineOnOneSide(const SkDPoint& origin, const SkDVector& line, const SkOpAngle* test,
231         bool useOriginal) const {
232     double crosses[3];
233     SkPath::Verb testVerb = test->segment()->verb();
234     int iMax = SkPathOpsVerbToPoints(testVerb);
235 //    SkASSERT(origin == test.fCurveHalf[0]);
236     const SkDCurve& testCurve = useOriginal ? test->fOriginalCurvePart : test->fPart.fCurve;
237     for (int index = 1; index <= iMax; ++index) {
238         double xy1 = line.fX * (testCurve[index].fY - origin.fY);
239         double xy2 = line.fY * (testCurve[index].fX - origin.fX);
240         crosses[index - 1] = AlmostBequalUlps(xy1, xy2) ? 0 : xy1 - xy2;
241     }
242     if (crosses[0] * crosses[1] < 0) {
243         return -1;
244     }
245     if (SkPath::kCubic_Verb == testVerb) {
246         if (crosses[0] * crosses[2] < 0 || crosses[1] * crosses[2] < 0) {
247             return -1;
248         }
249     }
250     if (crosses[0]) {
251         return crosses[0] < 0;
252     }
253     if (crosses[1]) {
254         return crosses[1] < 0;
255     }
256     if (SkPath::kCubic_Verb == testVerb && crosses[2]) {
257         return crosses[2] < 0;
258     }
259     return -2;
260 }
261 
262 // given a line, see if the opposite curve's convex hull is all on one side
263 // returns -1=not on one side    0=this CW of test   1=this CCW of test
lineOnOneSide(const SkOpAngle * test,bool useOriginal)264 int SkOpAngle::lineOnOneSide(const SkOpAngle* test, bool useOriginal) {
265     SkASSERT(!fPart.isCurve());
266     SkASSERT(test->fPart.isCurve());
267     SkDPoint origin = fPart.fCurve[0];
268     SkDVector line = fPart.fCurve[1] - origin;
269     int result = this->lineOnOneSide(origin, line, test, useOriginal);
270     if (-2 == result) {
271         fUnorderable = true;
272         result = -1;
273     }
274     return result;
275 }
276 
277 // experiment works only with lines for now
linesOnOriginalSide(const SkOpAngle * test)278 int SkOpAngle::linesOnOriginalSide(const SkOpAngle* test) {
279     SkASSERT(!fPart.isCurve());
280     SkASSERT(!test->fPart.isCurve());
281     SkDPoint origin = fOriginalCurvePart[0];
282     SkDVector line = fOriginalCurvePart[1] - origin;
283     double dots[2];
284     double crosses[2];
285     const SkDCurve& testCurve = test->fOriginalCurvePart;
286     for (int index = 0; index < 2; ++index) {
287         SkDVector testLine = testCurve[index] - origin;
288         double xy1 = line.fX * testLine.fY;
289         double xy2 = line.fY * testLine.fX;
290         dots[index] = line.fX * testLine.fX + line.fY * testLine.fY;
291         crosses[index] = AlmostBequalUlps(xy1, xy2) ? 0 : xy1 - xy2;
292     }
293     if (crosses[0] * crosses[1] < 0) {
294         return -1;
295     }
296     if (crosses[0]) {
297         return crosses[0] < 0;
298     }
299     if (crosses[1]) {
300         return crosses[1] < 0;
301     }
302     if ((!dots[0] && dots[1] < 0) || (dots[0] < 0 && !dots[1])) {
303         return 2;  // 180 degrees apart
304     }
305     fUnorderable = true;
306     return -1;
307 }
308 
309 // To sort the angles, all curves are translated to have the same starting point.
310 // If the curve's control point in its original position is on one side of a compared line,
311 // and translated is on the opposite side, reverse the previously computed order.
alignmentSameSide(const SkOpAngle * test,int * order) const312 void SkOpAngle::alignmentSameSide(const SkOpAngle* test, int* order) const {
313     if (*order < 0) {
314         return;
315     }
316     if (fPart.isCurve()) {
317         // This should support all curve types, but only bug that requires this has lines
318         // Turning on for curves causes existing tests to fail
319         return;
320     }
321     if (test->fPart.isCurve()) {
322         return;
323     }
324     const SkDPoint& xOrigin = test->fPart.fCurve.fLine[0];
325     const SkDPoint& oOrigin = test->fOriginalCurvePart.fLine[0];
326     if (xOrigin == oOrigin) {
327         return;
328     }
329     int iMax = SkPathOpsVerbToPoints(this->segment()->verb());
330     SkDVector xLine = test->fPart.fCurve.fLine[1] - xOrigin;
331     SkDVector oLine = test->fOriginalCurvePart.fLine[1] - oOrigin;
332     for (int index = 1; index <= iMax; ++index) {
333         const SkDPoint& testPt = fPart.fCurve[index];
334         double xCross = oLine.crossCheck(testPt - xOrigin);
335         double oCross = xLine.crossCheck(testPt - oOrigin);
336         if (oCross * xCross < 0) {
337             *order ^= 1;
338             break;
339         }
340     }
341 }
342 
checkCrossesZero() const343 bool SkOpAngle::checkCrossesZero() const {
344     int start = std::min(fSectorStart, fSectorEnd);
345     int end = std::max(fSectorStart, fSectorEnd);
346     bool crossesZero = end - start > 16;
347     return crossesZero;
348 }
349 
checkParallel(SkOpAngle * rh)350 bool SkOpAngle::checkParallel(SkOpAngle* rh) {
351     SkDVector scratch[2];
352     const SkDVector* sweep, * tweep;
353     if (this->fPart.isOrdered()) {
354         sweep = this->fPart.fSweep;
355     } else {
356         scratch[0] = this->fPart.fCurve[1] - this->fPart.fCurve[0];
357         sweep = &scratch[0];
358     }
359     if (rh->fPart.isOrdered()) {
360         tweep = rh->fPart.fSweep;
361     } else {
362         scratch[1] = rh->fPart.fCurve[1] - rh->fPart.fCurve[0];
363         tweep = &scratch[1];
364     }
365     double s0xt0 = sweep->crossCheck(*tweep);
366     if (tangentsDiverge(rh, s0xt0)) {
367         return s0xt0 < 0;
368     }
369     // compute the perpendicular to the endpoints and see where it intersects the opposite curve
370     // if the intersections within the t range, do a cross check on those
371     bool inside;
372     if (!fEnd->contains(rh->fEnd)) {
373         if (this->endToSide(rh, &inside)) {
374             return inside;
375         }
376         if (rh->endToSide(this, &inside)) {
377             return !inside;
378         }
379     }
380     if (this->midToSide(rh, &inside)) {
381         return inside;
382     }
383     if (rh->midToSide(this, &inside)) {
384         return !inside;
385     }
386     // compute the cross check from the mid T values (last resort)
387     SkDVector m0 = segment()->dPtAtT(this->midT()) - this->fPart.fCurve[0];
388     SkDVector m1 = rh->segment()->dPtAtT(rh->midT()) - rh->fPart.fCurve[0];
389     double m0xm1 = m0.crossCheck(m1);
390     if (m0xm1 == 0) {
391         this->fUnorderable = true;
392         rh->fUnorderable = true;
393         return true;
394     }
395     return m0xm1 < 0;
396 }
397 
398 // the original angle is too short to get meaningful sector information
399 // lengthen it until it is long enough to be meaningful or leave it unset if lengthening it
400 // would cause it to intersect one of the adjacent angles
computeSector()401 bool SkOpAngle::computeSector() {
402     if (fComputedSector) {
403         return !fUnorderable;
404     }
405     fComputedSector = true;
406     bool stepUp = fStart->t() < fEnd->t();
407     SkOpSpanBase* checkEnd = fEnd;
408     if (checkEnd->final() && stepUp) {
409         fUnorderable = true;
410         return false;
411     }
412     do {
413 // advance end
414         const SkOpSegment* other = checkEnd->segment();
415         const SkOpSpanBase* oSpan = other->head();
416         do {
417             if (oSpan->segment() != segment()) {
418                 continue;
419             }
420             if (oSpan == checkEnd) {
421                 continue;
422             }
423             if (!approximately_equal(oSpan->t(), checkEnd->t())) {
424                 continue;
425             }
426             goto recomputeSector;
427         } while (!oSpan->final() && (oSpan = oSpan->upCast()->next()));
428         checkEnd = stepUp ? !checkEnd->final()
429                 ? checkEnd->upCast()->next() : nullptr
430                 : checkEnd->prev();
431     } while (checkEnd);
432 recomputeSector:
433     SkOpSpanBase* computedEnd = stepUp ? checkEnd ? checkEnd->prev() : fEnd->segment()->head()
434             : checkEnd ? checkEnd->upCast()->next() : fEnd->segment()->tail();
435     if (checkEnd == fEnd || computedEnd == fEnd || computedEnd == fStart) {
436         fUnorderable = true;
437         return false;
438     }
439     if (stepUp != (fStart->t() < computedEnd->t())) {
440         fUnorderable = true;
441         return false;
442     }
443     SkOpSpanBase* saveEnd = fEnd;
444     fComputedEnd = fEnd = computedEnd;
445     setSpans();
446     setSector();
447     fEnd = saveEnd;
448     return !fUnorderable;
449 }
450 
convexHullOverlaps(const SkOpAngle * rh)451 int SkOpAngle::convexHullOverlaps(const SkOpAngle* rh) {
452     const SkDVector* sweep = this->fPart.fSweep;
453     const SkDVector* tweep = rh->fPart.fSweep;
454     double s0xs1 = sweep[0].crossCheck(sweep[1]);
455     double s0xt0 = sweep[0].crossCheck(tweep[0]);
456     double s1xt0 = sweep[1].crossCheck(tweep[0]);
457     bool tBetweenS = s0xs1 > 0 ? s0xt0 > 0 && s1xt0 < 0 : s0xt0 < 0 && s1xt0 > 0;
458     double s0xt1 = sweep[0].crossCheck(tweep[1]);
459     double s1xt1 = sweep[1].crossCheck(tweep[1]);
460     tBetweenS |= s0xs1 > 0 ? s0xt1 > 0 && s1xt1 < 0 : s0xt1 < 0 && s1xt1 > 0;
461     double t0xt1 = tweep[0].crossCheck(tweep[1]);
462     if (tBetweenS) {
463         return -1;
464     }
465     if ((s0xt0 == 0 && s1xt1 == 0) || (s1xt0 == 0 && s0xt1 == 0)) {  // s0 to s1 equals t0 to t1
466         return -1;
467     }
468     bool sBetweenT = t0xt1 > 0 ? s0xt0 < 0 && s0xt1 > 0 : s0xt0 > 0 && s0xt1 < 0;
469     sBetweenT |= t0xt1 > 0 ? s1xt0 < 0 && s1xt1 > 0 : s1xt0 > 0 && s1xt1 < 0;
470     if (sBetweenT) {
471         return -1;
472     }
473     // if all of the sweeps are in the same half plane, then the order of any pair is enough
474     if (s0xt0 >= 0 && s0xt1 >= 0 && s1xt0 >= 0 && s1xt1 >= 0) {
475         return 0;
476     }
477     if (s0xt0 <= 0 && s0xt1 <= 0 && s1xt0 <= 0 && s1xt1 <= 0) {
478         return 1;
479     }
480     // if the outside sweeps are greater than 180 degress:
481         // first assume the inital tangents are the ordering
482         // if the midpoint direction matches the inital order, that is enough
483     SkDVector m0 = this->segment()->dPtAtT(this->midT()) - this->fPart.fCurve[0];
484     SkDVector m1 = rh->segment()->dPtAtT(rh->midT()) - rh->fPart.fCurve[0];
485     double m0xm1 = m0.crossCheck(m1);
486     if (s0xt0 > 0 && m0xm1 > 0) {
487         return 0;
488     }
489     if (s0xt0 < 0 && m0xm1 < 0) {
490         return 1;
491     }
492     if (tangentsDiverge(rh, s0xt0)) {
493         return s0xt0 < 0;
494     }
495     return m0xm1 < 0;
496 }
497 
498 // OPTIMIZATION: longest can all be either lazily computed here or precomputed in setup
distEndRatio(double dist) const499 double SkOpAngle::distEndRatio(double dist) const {
500     double longest = 0;
501     const SkOpSegment& segment = *this->segment();
502     int ptCount = SkPathOpsVerbToPoints(segment.verb());
503     const SkPoint* pts = segment.pts();
504     for (int idx1 = 0; idx1 <= ptCount - 1; ++idx1) {
505         for (int idx2 = idx1 + 1; idx2 <= ptCount; ++idx2) {
506             if (idx1 == idx2) {
507                 continue;
508             }
509             SkDVector v;
510             v.set(pts[idx2] - pts[idx1]);
511             double lenSq = v.lengthSquared();
512             longest = std::max(longest, lenSq);
513         }
514     }
515     return sqrt(longest) / dist;
516 }
517 
endsIntersect(SkOpAngle * rh)518 bool SkOpAngle::endsIntersect(SkOpAngle* rh) {
519     SkPath::Verb lVerb = this->segment()->verb();
520     SkPath::Verb rVerb = rh->segment()->verb();
521     int lPts = SkPathOpsVerbToPoints(lVerb);
522     int rPts = SkPathOpsVerbToPoints(rVerb);
523     SkDLine rays[] = {{{this->fPart.fCurve[0], rh->fPart.fCurve[rPts]}},
524             {{this->fPart.fCurve[0], this->fPart.fCurve[lPts]}}};
525     if (this->fEnd->contains(rh->fEnd)) {
526         return checkParallel(rh);
527     }
528     double smallTs[2] = {-1, -1};
529     bool limited[2] = {false, false};
530     for (int index = 0; index < 2; ++index) {
531         SkPath::Verb cVerb = index ? rVerb : lVerb;
532         // if the curve is a line, then the line and the ray intersect only at their crossing
533         if (cVerb == SkPath::kLine_Verb) {
534             continue;
535         }
536         const SkOpSegment& segment = index ? *rh->segment() : *this->segment();
537         SkIntersections i;
538         (*CurveIntersectRay[cVerb])(segment.pts(), segment.weight(), rays[index], &i);
539         double tStart = index ? rh->fStart->t() : this->fStart->t();
540         double tEnd = index ? rh->fComputedEnd->t() : this->fComputedEnd->t();
541         bool testAscends = tStart < (index ? rh->fComputedEnd->t() : this->fComputedEnd->t());
542         double t = testAscends ? 0 : 1;
543         for (int idx2 = 0; idx2 < i.used(); ++idx2) {
544             double testT = i[0][idx2];
545             if (!approximately_between_orderable(tStart, testT, tEnd)) {
546                 continue;
547             }
548             if (approximately_equal_orderable(tStart, testT)) {
549                 continue;
550             }
551             smallTs[index] = t = testAscends ? std::max(t, testT) : std::min(t, testT);
552             limited[index] = approximately_equal_orderable(t, tEnd);
553         }
554     }
555     bool sRayLonger = false;
556     SkDVector sCept = {0, 0};
557     double sCeptT = -1;
558     int sIndex = -1;
559     bool useIntersect = false;
560     for (int index = 0; index < 2; ++index) {
561         if (smallTs[index] < 0) {
562             continue;
563         }
564         const SkOpSegment& segment = index ? *rh->segment() : *this->segment();
565         const SkDPoint& dPt = segment.dPtAtT(smallTs[index]);
566         SkDVector cept = dPt - rays[index][0];
567         // If this point is on the curve, it should have been detected earlier by ordinary
568         // curve intersection. This may be hard to determine in general, but for lines,
569         // the point could be close to or equal to its end, but shouldn't be near the start.
570         if ((index ? lPts : rPts) == 1) {
571             SkDVector total = rays[index][1] - rays[index][0];
572             if (cept.lengthSquared() * 2 < total.lengthSquared()) {
573                 continue;
574             }
575         }
576         SkDVector end = rays[index][1] - rays[index][0];
577         if (cept.fX * end.fX < 0 || cept.fY * end.fY < 0) {
578             continue;
579         }
580         double rayDist = cept.length();
581         double endDist = end.length();
582         bool rayLonger = rayDist > endDist;
583         if (limited[0] && limited[1] && rayLonger) {
584             useIntersect = true;
585             sRayLonger = rayLonger;
586             sCept = cept;
587             sCeptT = smallTs[index];
588             sIndex = index;
589             break;
590         }
591         double delta = fabs(rayDist - endDist);
592         double minX, minY, maxX, maxY;
593         minX = minY = SK_ScalarInfinity;
594         maxX = maxY = -SK_ScalarInfinity;
595         const SkDCurve& curve = index ? rh->fPart.fCurve : this->fPart.fCurve;
596         int ptCount = index ? rPts : lPts;
597         for (int idx2 = 0; idx2 <= ptCount; ++idx2) {
598             minX = std::min(minX, curve[idx2].fX);
599             minY = std::min(minY, curve[idx2].fY);
600             maxX = std::max(maxX, curve[idx2].fX);
601             maxY = std::max(maxY, curve[idx2].fY);
602         }
603         double maxWidth = std::max(maxX - minX, maxY - minY);
604         delta = sk_ieee_double_divide(delta, maxWidth);
605         // FIXME: move these magic numbers
606         // This fixes skbug.com/8380
607         // Larger changes (like changing the constant in the next block) cause other
608         // tests to fail as documented in the bug.
609         // This could probably become a more general test: e.g., if translating the
610         // curve causes the cross product of any control point or end point to change
611         // sign with regard to the opposite curve's hull, treat the curves as parallel.
612 
613         // Moreso, this points to the general fragility of this approach of assigning
614         // winding by sorting the angles of curves sharing a common point, as mentioned
615         // in the bug.
616         if (delta < 4e-3 && delta > 1e-3 && !useIntersect && fPart.isCurve()
617                 && rh->fPart.isCurve() && fOriginalCurvePart[0] != fPart.fCurve.fLine[0]) {
618             // see if original curve is on one side of hull; translated is on the other
619             const SkDPoint& origin = rh->fOriginalCurvePart[0];
620             int count = SkPathOpsVerbToPoints(rh->segment()->verb());
621             const SkDVector line = rh->fOriginalCurvePart[count] - origin;
622             int originalSide = rh->lineOnOneSide(origin, line, this, true);
623             if (originalSide >= 0) {
624                 int translatedSide = rh->lineOnOneSide(origin, line, this, false);
625                 if (originalSide != translatedSide) {
626                     continue;
627                 }
628             }
629         }
630         if (delta > 1e-3 && (useIntersect ^= true)) {
631             sRayLonger = rayLonger;
632             sCept = cept;
633             sCeptT = smallTs[index];
634             sIndex = index;
635         }
636     }
637     if (useIntersect) {
638         const SkDCurve& curve = sIndex ? rh->fPart.fCurve : this->fPart.fCurve;
639         const SkOpSegment& segment = sIndex ? *rh->segment() : *this->segment();
640         double tStart = sIndex ? rh->fStart->t() : fStart->t();
641         SkDVector mid = segment.dPtAtT(tStart + (sCeptT - tStart) / 2) - curve[0];
642         double septDir = mid.crossCheck(sCept);
643         if (!septDir) {
644             return checkParallel(rh);
645         }
646         return sRayLonger ^ (sIndex == 0) ^ (septDir < 0);
647     } else {
648         return checkParallel(rh);
649     }
650 }
651 
endToSide(const SkOpAngle * rh,bool * inside) const652 bool SkOpAngle::endToSide(const SkOpAngle* rh, bool* inside) const {
653     const SkOpSegment* segment = this->segment();
654     SkPath::Verb verb = segment->verb();
655     SkDLine rayEnd;
656     rayEnd[0].set(this->fEnd->pt());
657     rayEnd[1] = rayEnd[0];
658     SkDVector slopeAtEnd = (*CurveDSlopeAtT[verb])(segment->pts(), segment->weight(),
659             this->fEnd->t());
660     rayEnd[1].fX += slopeAtEnd.fY;
661     rayEnd[1].fY -= slopeAtEnd.fX;
662     SkIntersections iEnd;
663     const SkOpSegment* oppSegment = rh->segment();
664     SkPath::Verb oppVerb = oppSegment->verb();
665     (*CurveIntersectRay[oppVerb])(oppSegment->pts(), oppSegment->weight(), rayEnd, &iEnd);
666     double endDist;
667     int closestEnd = iEnd.closestTo(rh->fStart->t(), rh->fEnd->t(), rayEnd[0], &endDist);
668     if (closestEnd < 0) {
669         return false;
670     }
671     if (!endDist) {
672         return false;
673     }
674     SkDPoint start;
675     start.set(this->fStart->pt());
676     // OPTIMIZATION: multiple times in the code we find the max scalar
677     double minX, minY, maxX, maxY;
678     minX = minY = SK_ScalarInfinity;
679     maxX = maxY = -SK_ScalarInfinity;
680     const SkDCurve& curve = rh->fPart.fCurve;
681     int oppPts = SkPathOpsVerbToPoints(oppVerb);
682     for (int idx2 = 0; idx2 <= oppPts; ++idx2) {
683         minX = std::min(minX, curve[idx2].fX);
684         minY = std::min(minY, curve[idx2].fY);
685         maxX = std::max(maxX, curve[idx2].fX);
686         maxY = std::max(maxY, curve[idx2].fY);
687     }
688     double maxWidth = std::max(maxX - minX, maxY - minY);
689     endDist = sk_ieee_double_divide(endDist, maxWidth);
690     if (!(endDist >= 5e-12)) {  // empirically found
691         return false; // ! above catches NaN
692     }
693     const SkDPoint* endPt = &rayEnd[0];
694     SkDPoint oppPt = iEnd.pt(closestEnd);
695     SkDVector vLeft = *endPt - start;
696     SkDVector vRight = oppPt - start;
697     double dir = vLeft.crossNoNormalCheck(vRight);
698     if (!dir) {
699         return false;
700     }
701     *inside = dir < 0;
702     return true;
703 }
704 
705 /*      y<0 y==0 y>0  x<0 x==0 x>0 xy<0 xy==0 xy>0
706     0    x                      x               x
707     1    x                      x          x
708     2    x                      x    x
709     3    x                  x        x
710     4    x             x             x
711     5    x             x                   x
712     6    x             x                        x
713     7         x        x                        x
714     8             x    x                        x
715     9             x    x                   x
716     10            x    x             x
717     11            x         x        x
718     12            x             x    x
719     13            x             x          x
720     14            x             x               x
721     15        x                 x               x
722 */
findSector(SkPath::Verb verb,double x,double y) const723 int SkOpAngle::findSector(SkPath::Verb verb, double x, double y) const {
724     double absX = fabs(x);
725     double absY = fabs(y);
726     double xy = SkPath::kLine_Verb == verb || !AlmostEqualUlps(absX, absY) ? absX - absY : 0;
727     // If there are four quadrants and eight octants, and since the Latin for sixteen is sedecim,
728     // one could coin the term sedecimant for a space divided into 16 sections.
729    // http://english.stackexchange.com/questions/133688/word-for-something-partitioned-into-16-parts
730     static const int sedecimant[3][3][3] = {
731     //       y<0           y==0           y>0
732     //   x<0 x==0 x>0  x<0 x==0 x>0  x<0 x==0 x>0
733         {{ 4,  3,  2}, { 7, -1, 15}, {10, 11, 12}},  // abs(x) <  abs(y)
734         {{ 5, -1,  1}, {-1, -1, -1}, { 9, -1, 13}},  // abs(x) == abs(y)
735         {{ 6,  3,  0}, { 7, -1, 15}, { 8, 11, 14}},  // abs(x) >  abs(y)
736     };
737     int sector = sedecimant[(xy >= 0) + (xy > 0)][(y >= 0) + (y > 0)][(x >= 0) + (x > 0)] * 2 + 1;
738 //    SkASSERT(SkPath::kLine_Verb == verb || sector >= 0);
739     return sector;
740 }
741 
globalState() const742 SkOpGlobalState* SkOpAngle::globalState() const {
743     return this->segment()->globalState();
744 }
745 
746 
747 // OPTIMIZE: if this loops to only one other angle, after first compare fails, insert on other side
748 // OPTIMIZE: return where insertion succeeded. Then, start next insertion on opposite side
insert(SkOpAngle * angle)749 bool SkOpAngle::insert(SkOpAngle* angle) {
750     if (angle->fNext) {
751         if (loopCount() >= angle->loopCount()) {
752             if (!merge(angle)) {
753                 return true;
754             }
755         } else if (fNext) {
756             if (!angle->merge(this)) {
757                 return true;
758             }
759         } else {
760             angle->insert(this);
761         }
762         return true;
763     }
764     bool singleton = nullptr == fNext;
765     if (singleton) {
766         fNext = this;
767     }
768     SkOpAngle* next = fNext;
769     if (next->fNext == this) {
770         if (singleton || angle->after(this)) {
771             this->fNext = angle;
772             angle->fNext = next;
773         } else {
774             next->fNext = angle;
775             angle->fNext = this;
776         }
777         debugValidateNext();
778         return true;
779     }
780     SkOpAngle* last = this;
781     bool flipAmbiguity = false;
782     do {
783         SkASSERT(last->fNext == next);
784         if (angle->after(last) ^ (angle->tangentsAmbiguous() & flipAmbiguity)) {
785             last->fNext = angle;
786             angle->fNext = next;
787             debugValidateNext();
788             break;
789         }
790         last = next;
791         if (last == this) {
792             FAIL_IF(flipAmbiguity);
793             // We're in a loop. If a sort was ambiguous, flip it to end the loop.
794             flipAmbiguity = true;
795         }
796         next = next->fNext;
797     } while (true);
798     return true;
799 }
800 
lastMarked() const801 SkOpSpanBase* SkOpAngle::lastMarked() const {
802     if (fLastMarked) {
803         if (fLastMarked->chased()) {
804             return nullptr;
805         }
806         fLastMarked->setChased(true);
807     }
808     return fLastMarked;
809 }
810 
loopContains(const SkOpAngle * angle) const811 bool SkOpAngle::loopContains(const SkOpAngle* angle) const {
812     if (!fNext) {
813         return false;
814     }
815     const SkOpAngle* first = this;
816     const SkOpAngle* loop = this;
817     const SkOpSegment* tSegment = angle->fStart->segment();
818     double tStart = angle->fStart->t();
819     double tEnd = angle->fEnd->t();
820     do {
821         const SkOpSegment* lSegment = loop->fStart->segment();
822         if (lSegment != tSegment) {
823             continue;
824         }
825         double lStart = loop->fStart->t();
826         if (lStart != tEnd) {
827             continue;
828         }
829         double lEnd = loop->fEnd->t();
830         if (lEnd == tStart) {
831             return true;
832         }
833     } while ((loop = loop->fNext) != first);
834     return false;
835 }
836 
loopCount() const837 int SkOpAngle::loopCount() const {
838     int count = 0;
839     const SkOpAngle* first = this;
840     const SkOpAngle* next = this;
841     do {
842         next = next->fNext;
843         ++count;
844     } while (next && next != first);
845     return count;
846 }
847 
merge(SkOpAngle * angle)848 bool SkOpAngle::merge(SkOpAngle* angle) {
849     SkASSERT(fNext);
850     SkASSERT(angle->fNext);
851     SkOpAngle* working = angle;
852     do {
853         if (this == working) {
854             return false;
855         }
856         working = working->fNext;
857     } while (working != angle);
858     do {
859         SkOpAngle* next = working->fNext;
860         working->fNext = nullptr;
861         insert(working);
862         working = next;
863     } while (working != angle);
864     // it's likely that a pair of the angles are unorderable
865     debugValidateNext();
866     return true;
867 }
868 
midT() const869 double SkOpAngle::midT() const {
870     return (fStart->t() + fEnd->t()) / 2;
871 }
872 
midToSide(const SkOpAngle * rh,bool * inside) const873 bool SkOpAngle::midToSide(const SkOpAngle* rh, bool* inside) const {
874     const SkOpSegment* segment = this->segment();
875     SkPath::Verb verb = segment->verb();
876     const SkPoint& startPt = this->fStart->pt();
877     const SkPoint& endPt = this->fEnd->pt();
878     SkDPoint dStartPt;
879     dStartPt.set(startPt);
880     SkDLine rayMid;
881     rayMid[0].fX = (startPt.fX + endPt.fX) / 2;
882     rayMid[0].fY = (startPt.fY + endPt.fY) / 2;
883     rayMid[1].fX = rayMid[0].fX + (endPt.fY - startPt.fY);
884     rayMid[1].fY = rayMid[0].fY - (endPt.fX - startPt.fX);
885     SkIntersections iMid;
886     (*CurveIntersectRay[verb])(segment->pts(), segment->weight(), rayMid, &iMid);
887     int iOutside = iMid.mostOutside(this->fStart->t(), this->fEnd->t(), dStartPt);
888     if (iOutside < 0) {
889         return false;
890     }
891     const SkOpSegment* oppSegment = rh->segment();
892     SkPath::Verb oppVerb = oppSegment->verb();
893     SkIntersections oppMid;
894     (*CurveIntersectRay[oppVerb])(oppSegment->pts(), oppSegment->weight(), rayMid, &oppMid);
895     int oppOutside = oppMid.mostOutside(rh->fStart->t(), rh->fEnd->t(), dStartPt);
896     if (oppOutside < 0) {
897         return false;
898     }
899     SkDVector iSide = iMid.pt(iOutside) - dStartPt;
900     SkDVector oppSide = oppMid.pt(oppOutside) - dStartPt;
901     double dir = iSide.crossCheck(oppSide);
902     if (!dir) {
903         return false;
904     }
905     *inside = dir < 0;
906     return true;
907 }
908 
oppositePlanes(const SkOpAngle * rh) const909 bool SkOpAngle::oppositePlanes(const SkOpAngle* rh) const {
910     int startSpan = SkTAbs(rh->fSectorStart - fSectorStart);
911     return startSpan >= 8;
912 }
913 
orderable(SkOpAngle * rh)914 int SkOpAngle::orderable(SkOpAngle* rh) {
915     int result;
916     if (!fPart.isCurve()) {
917         if (!rh->fPart.isCurve()) {
918             double leftX = fTangentHalf.dx();
919             double leftY = fTangentHalf.dy();
920             double rightX = rh->fTangentHalf.dx();
921             double rightY = rh->fTangentHalf.dy();
922             double x_ry = leftX * rightY;
923             double rx_y = rightX * leftY;
924             if (x_ry == rx_y) {
925                 if (leftX * rightX < 0 || leftY * rightY < 0) {
926                     return 1;  // exactly 180 degrees apart
927                 }
928                 goto unorderable;
929             }
930             SkASSERT(x_ry != rx_y); // indicates an undetected coincidence -- worth finding earlier
931             return x_ry < rx_y ? 1 : 0;
932         }
933         if ((result = this->lineOnOneSide(rh, false)) >= 0) {
934             return result;
935         }
936         if (fUnorderable || approximately_zero(rh->fSide)) {
937             goto unorderable;
938         }
939     } else if (!rh->fPart.isCurve()) {
940         if ((result = rh->lineOnOneSide(this, false)) >= 0) {
941             return result ? 0 : 1;
942         }
943         if (rh->fUnorderable || approximately_zero(fSide)) {
944             goto unorderable;
945         }
946     } else if ((result = this->convexHullOverlaps(rh)) >= 0) {
947         return result;
948     }
949     return this->endsIntersect(rh) ? 1 : 0;
950 unorderable:
951     fUnorderable = true;
952     rh->fUnorderable = true;
953     return -1;
954 }
955 
956 // OPTIMIZE: if this shows up in a profile, add a previous pointer
957 // as is, this should be rarely called
previous() const958 SkOpAngle* SkOpAngle::previous() const {
959     SkOpAngle* last = fNext;
960     do {
961         SkOpAngle* next = last->fNext;
962         if (next == this) {
963             return last;
964         }
965         last = next;
966     } while (true);
967 }
968 
segment() const969 SkOpSegment* SkOpAngle::segment() const {
970     return fStart->segment();
971 }
972 
set(SkOpSpanBase * start,SkOpSpanBase * end)973 void SkOpAngle::set(SkOpSpanBase* start, SkOpSpanBase* end) {
974     fStart = start;
975     fComputedEnd = fEnd = end;
976     SkASSERT(start != end);
977     fNext = nullptr;
978     fComputeSector = fComputedSector = fCheckCoincidence = fTangentsAmbiguous = false;
979     setSpans();
980     setSector();
981     SkDEBUGCODE(fID = start ? start->globalState()->nextAngleID() : -1);
982 }
983 
setSpans()984 void SkOpAngle::setSpans() {
985     fUnorderable = false;
986     fLastMarked = nullptr;
987     if (!fStart) {
988         fUnorderable = true;
989         return;
990     }
991     const SkOpSegment* segment = fStart->segment();
992     const SkPoint* pts = segment->pts();
993     SkDEBUGCODE(fPart.fCurve.fVerb = SkPath::kCubic_Verb);  // required for SkDCurve debug check
994     SkDEBUGCODE(fPart.fCurve[2].fX = fPart.fCurve[2].fY = fPart.fCurve[3].fX = fPart.fCurve[3].fY
995             = SK_ScalarNaN);   //  make the non-line part uninitialized
996     SkDEBUGCODE(fPart.fCurve.fVerb = segment->verb());  //  set the curve type for real
997     segment->subDivide(fStart, fEnd, &fPart.fCurve);  //  set at least the line part if not more
998     fOriginalCurvePart = fPart.fCurve;
999     const SkPath::Verb verb = segment->verb();
1000     fPart.setCurveHullSweep(verb);
1001     if (SkPath::kLine_Verb != verb && !fPart.isCurve()) {
1002         SkDLine lineHalf;
1003         fPart.fCurve[1] = fPart.fCurve[SkPathOpsVerbToPoints(verb)];
1004         fOriginalCurvePart[1] = fPart.fCurve[1];
1005         lineHalf[0].set(fPart.fCurve[0].asSkPoint());
1006         lineHalf[1].set(fPart.fCurve[1].asSkPoint());
1007         fTangentHalf.lineEndPoints(lineHalf);
1008         fSide = 0;
1009     }
1010     switch (verb) {
1011     case SkPath::kLine_Verb: {
1012         SkASSERT(fStart != fEnd);
1013         const SkPoint& cP1 = pts[fStart->t() < fEnd->t()];
1014         SkDLine lineHalf;
1015         lineHalf[0].set(fStart->pt());
1016         lineHalf[1].set(cP1);
1017         fTangentHalf.lineEndPoints(lineHalf);
1018         fSide = 0;
1019         } return;
1020     case SkPath::kQuad_Verb:
1021     case SkPath::kConic_Verb: {
1022         SkLineParameters tangentPart;
1023         (void) tangentPart.quadEndPoints(fPart.fCurve.fQuad);
1024         fSide = -tangentPart.pointDistance(fPart.fCurve[2]);  // not normalized -- compare sign only
1025         } break;
1026     case SkPath::kCubic_Verb: {
1027         SkLineParameters tangentPart;
1028         (void) tangentPart.cubicPart(fPart.fCurve.fCubic);
1029         fSide = -tangentPart.pointDistance(fPart.fCurve[3]);
1030         double testTs[4];
1031         // OPTIMIZATION: keep inflections precomputed with cubic segment?
1032         int testCount = SkDCubic::FindInflections(pts, testTs);
1033         double startT = fStart->t();
1034         double endT = fEnd->t();
1035         double limitT = endT;
1036         int index;
1037         for (index = 0; index < testCount; ++index) {
1038             if (!::between(startT, testTs[index], limitT)) {
1039                 testTs[index] = -1;
1040             }
1041         }
1042         testTs[testCount++] = startT;
1043         testTs[testCount++] = endT;
1044         SkTQSort<double>(testTs, testTs + testCount);
1045         double bestSide = 0;
1046         int testCases = (testCount << 1) - 1;
1047         index = 0;
1048         while (testTs[index] < 0) {
1049             ++index;
1050         }
1051         index <<= 1;
1052         for (; index < testCases; ++index) {
1053             int testIndex = index >> 1;
1054             double testT = testTs[testIndex];
1055             if (index & 1) {
1056                 testT = (testT + testTs[testIndex + 1]) / 2;
1057             }
1058             // OPTIMIZE: could avoid call for t == startT, endT
1059             SkDPoint pt = dcubic_xy_at_t(pts, segment->weight(), testT);
1060             SkLineParameters testPart;
1061             testPart.cubicEndPoints(fPart.fCurve.fCubic);
1062             double testSide = testPart.pointDistance(pt);
1063             if (fabs(bestSide) < fabs(testSide)) {
1064                 bestSide = testSide;
1065             }
1066         }
1067         fSide = -bestSide;  // compare sign only
1068         } break;
1069     default:
1070         SkASSERT(0);
1071     }
1072 }
1073 
setSector()1074 void SkOpAngle::setSector() {
1075     if (!fStart) {
1076         fUnorderable = true;
1077         return;
1078     }
1079     const SkOpSegment* segment = fStart->segment();
1080     SkPath::Verb verb = segment->verb();
1081     fSectorStart = this->findSector(verb, fPart.fSweep[0].fX, fPart.fSweep[0].fY);
1082     if (fSectorStart < 0) {
1083         goto deferTilLater;
1084     }
1085     if (!fPart.isCurve()) {  // if it's a line or line-like, note that both sectors are the same
1086         SkASSERT(fSectorStart >= 0);
1087         fSectorEnd = fSectorStart;
1088         fSectorMask = 1 << fSectorStart;
1089         return;
1090     }
1091     SkASSERT(SkPath::kLine_Verb != verb);
1092     fSectorEnd = this->findSector(verb, fPart.fSweep[1].fX, fPart.fSweep[1].fY);
1093     if (fSectorEnd < 0) {
1094 deferTilLater:
1095         fSectorStart = fSectorEnd = -1;
1096         fSectorMask = 0;
1097         fComputeSector = true;  // can't determine sector until segment length can be found
1098         return;
1099     }
1100     if (fSectorEnd == fSectorStart
1101             && (fSectorStart & 3) != 3) { // if the sector has no span, it can't be an exact angle
1102         fSectorMask = 1 << fSectorStart;
1103         return;
1104     }
1105     bool crossesZero = this->checkCrossesZero();
1106     int start = std::min(fSectorStart, fSectorEnd);
1107     bool curveBendsCCW = (fSectorStart == start) ^ crossesZero;
1108     // bump the start and end of the sector span if they are on exact compass points
1109     if ((fSectorStart & 3) == 3) {
1110         fSectorStart = (fSectorStart + (curveBendsCCW ? 1 : 31)) & 0x1f;
1111     }
1112     if ((fSectorEnd & 3) == 3) {
1113         fSectorEnd = (fSectorEnd + (curveBendsCCW ? 31 : 1)) & 0x1f;
1114     }
1115     crossesZero = this->checkCrossesZero();
1116     start = std::min(fSectorStart, fSectorEnd);
1117     int end = std::max(fSectorStart, fSectorEnd);
1118     if (!crossesZero) {
1119         fSectorMask = (unsigned) -1 >> (31 - end + start) << start;
1120     } else {
1121         fSectorMask = (unsigned) -1 >> (31 - start) | ((unsigned) -1 << end);
1122     }
1123 }
1124 
starter()1125 SkOpSpan* SkOpAngle::starter() {
1126     return fStart->starter(fEnd);
1127 }
1128 
tangentsDiverge(const SkOpAngle * rh,double s0xt0)1129 bool SkOpAngle::tangentsDiverge(const SkOpAngle* rh, double s0xt0) {
1130     if (s0xt0 == 0) {
1131         return false;
1132     }
1133     // if the ctrl tangents are not nearly parallel, use them
1134     // solve for opposite direction displacement scale factor == m
1135     // initial dir = v1.cross(v2) == v2.x * v1.y - v2.y * v1.x
1136     // displacement of q1[1] : dq1 = { -m * v1.y, m * v1.x } + q1[1]
1137     // straight angle when : v2.x * (dq1.y - q1[0].y) == v2.y * (dq1.x - q1[0].x)
1138     //                       v2.x * (m * v1.x + v1.y) == v2.y * (-m * v1.y + v1.x)
1139     // - m * (v2.x * v1.x + v2.y * v1.y) == v2.x * v1.y - v2.y * v1.x
1140     // m = (v2.y * v1.x - v2.x * v1.y) / (v2.x * v1.x + v2.y * v1.y)
1141     // m = v1.cross(v2) / v1.dot(v2)
1142     const SkDVector* sweep = fPart.fSweep;
1143     const SkDVector* tweep = rh->fPart.fSweep;
1144     double s0dt0 = sweep[0].dot(tweep[0]);
1145     if (!s0dt0) {
1146         return true;
1147     }
1148     SkASSERT(s0dt0 != 0);
1149     double m = s0xt0 / s0dt0;
1150     double sDist = sweep[0].length() * m;
1151     double tDist = tweep[0].length() * m;
1152     bool useS = fabs(sDist) < fabs(tDist);
1153     double mFactor = fabs(useS ? this->distEndRatio(sDist) : rh->distEndRatio(tDist));
1154     fTangentsAmbiguous = mFactor >= 50 && mFactor < 200;
1155     return mFactor < 50;   // empirically found limit
1156 }
1157