xref: /aosp_15_r20/external/skia/src/utils/SkShadowUtils.cpp (revision c8dee2aa9b3f27cf6c858bd81872bdeb2c07ed17)
1 /*
2 * Copyright 2017 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7 
8 #include "include/utils/SkShadowUtils.h"
9 
10 #include "include/core/SkBlendMode.h"
11 #include "include/core/SkBlender.h"
12 #include "include/core/SkBlurTypes.h"
13 #include "include/core/SkCanvas.h"
14 #include "include/core/SkColorFilter.h"
15 #include "include/core/SkMaskFilter.h"
16 #include "include/core/SkMatrix.h"
17 #include "include/core/SkPaint.h"
18 #include "include/core/SkPath.h"
19 #include "include/core/SkPoint.h"
20 #include "include/core/SkPoint3.h"
21 #include "include/core/SkRect.h"
22 #include "include/core/SkRefCnt.h"
23 #include "include/core/SkVertices.h"
24 #include "include/private/SkIDChangeListener.h"
25 #include "include/private/base/SkFloatingPoint.h"
26 #include "include/private/base/SkTPin.h"
27 #include "include/private/base/SkTemplates.h"
28 #include "include/private/base/SkTo.h"
29 #include "src/base/SkRandom.h"
30 #include "src/core/SkBlurMask.h"
31 #include "src/core/SkColorFilterPriv.h"
32 #include "src/core/SkDevice.h"
33 #include "src/core/SkDrawShadowInfo.h"
34 #include "src/core/SkPathPriv.h"
35 #include "src/core/SkResourceCache.h"
36 #include "src/core/SkVerticesPriv.h"
37 
38 #if !defined(SK_ENABLE_OPTIMIZE_SIZE)
39 #include "src/utils/SkShadowTessellator.h"
40 #endif
41 
42 #if defined(SK_GANESH)
43 #include "src/gpu/ganesh/GrStyle.h"
44 #include "src/gpu/ganesh/geometry/GrStyledShape.h"
45 #endif
46 
47 #include <algorithm>
48 #include <cstring>
49 #include <functional>
50 #include <memory>
51 #include <new>
52 #include <utility>
53 
54 using namespace skia_private;
55 
56 class SkRRect;
57 
58 ///////////////////////////////////////////////////////////////////////////////////////////////////
59 
60 #if !defined(SK_ENABLE_OPTIMIZE_SIZE)
61 namespace {
62 
resource_cache_shared_id()63 uint64_t resource_cache_shared_id() {
64     return 0x2020776f64616873llu;  // 'shadow  '
65 }
66 
67 /** Factory for an ambient shadow mesh with particular shadow properties. */
68 struct AmbientVerticesFactory {
69     SkScalar fOccluderHeight = SK_ScalarNaN;  // NaN so that isCompatible will fail until init'ed.
70     bool fTransparent;
71     SkVector fOffset;
72 
isCompatible__anonee488b7b0111::AmbientVerticesFactory73     bool isCompatible(const AmbientVerticesFactory& that, SkVector* translate) const {
74         if (fOccluderHeight != that.fOccluderHeight || fTransparent != that.fTransparent) {
75             return false;
76         }
77         *translate = that.fOffset;
78         return true;
79     }
80 
makeVertices__anonee488b7b0111::AmbientVerticesFactory81     sk_sp<SkVertices> makeVertices(const SkPath& path, const SkMatrix& ctm,
82                                    SkVector* translate) const {
83         SkPoint3 zParams = SkPoint3::Make(0, 0, fOccluderHeight);
84         // pick a canonical place to generate shadow
85         SkMatrix noTrans(ctm);
86         if (!ctm.hasPerspective()) {
87             noTrans[SkMatrix::kMTransX] = 0;
88             noTrans[SkMatrix::kMTransY] = 0;
89         }
90         *translate = fOffset;
91         return SkShadowTessellator::MakeAmbient(path, noTrans, zParams, fTransparent);
92     }
93 };
94 
95 /** Factory for an spot shadow mesh with particular shadow properties. */
96 struct SpotVerticesFactory {
97     enum class OccluderType {
98         // The umbra cannot be dropped out because either the occluder is not opaque,
99         // or the center of the umbra is visible. Uses point light.
100         kPointTransparent,
101         // The umbra can be dropped where it is occluded. Uses point light.
102         kPointOpaquePartialUmbra,
103         // It is known that the entire umbra is occluded. Uses point light.
104         kPointOpaqueNoUmbra,
105         // Uses directional light.
106         kDirectional,
107         // The umbra can't be dropped out. Uses directional light.
108         kDirectionalTransparent,
109     };
110 
111     SkVector fOffset;
112     SkPoint  fLocalCenter;
113     SkScalar fOccluderHeight = SK_ScalarNaN; // NaN so that isCompatible will fail until init'ed.
114     SkPoint3 fDevLightPos;
115     SkScalar fLightRadius;
116     OccluderType fOccluderType;
117 
isCompatible__anonee488b7b0111::SpotVerticesFactory118     bool isCompatible(const SpotVerticesFactory& that, SkVector* translate) const {
119         if (fOccluderHeight != that.fOccluderHeight || fDevLightPos.fZ != that.fDevLightPos.fZ ||
120             fLightRadius != that.fLightRadius || fOccluderType != that.fOccluderType) {
121             return false;
122         }
123         switch (fOccluderType) {
124             case OccluderType::kPointTransparent:
125             case OccluderType::kPointOpaqueNoUmbra:
126                 // 'this' and 'that' will either both have no umbra removed or both have all the
127                 // umbra removed.
128                 *translate = that.fOffset;
129                 return true;
130             case OccluderType::kPointOpaquePartialUmbra:
131                 // In this case we partially remove the umbra differently for 'this' and 'that'
132                 // if the offsets don't match.
133                 if (fOffset == that.fOffset) {
134                     translate->set(0, 0);
135                     return true;
136                 }
137                 return false;
138             case OccluderType::kDirectional:
139             case OccluderType::kDirectionalTransparent:
140                 *translate = that.fOffset - fOffset;
141                 return true;
142         }
143         SK_ABORT("Uninitialized occluder type?");
144     }
145 
makeVertices__anonee488b7b0111::SpotVerticesFactory146     sk_sp<SkVertices> makeVertices(const SkPath& path, const SkMatrix& ctm,
147                                    SkVector* translate) const {
148         bool transparent = fOccluderType == OccluderType::kPointTransparent ||
149                            fOccluderType == OccluderType::kDirectionalTransparent;
150         bool directional = fOccluderType == OccluderType::kDirectional ||
151                            fOccluderType == OccluderType::kDirectionalTransparent;
152         SkPoint3 zParams = SkPoint3::Make(0, 0, fOccluderHeight);
153         if (directional) {
154             translate->set(0, 0);
155             return SkShadowTessellator::MakeSpot(path, ctm, zParams, fDevLightPos, fLightRadius,
156                                                  transparent, true);
157         } else if (ctm.hasPerspective() || OccluderType::kPointOpaquePartialUmbra == fOccluderType) {
158             translate->set(0, 0);
159             return SkShadowTessellator::MakeSpot(path, ctm, zParams, fDevLightPos, fLightRadius,
160                                                  transparent, false);
161         } else {
162             // pick a canonical place to generate shadow, with light centered over path
163             SkMatrix noTrans(ctm);
164             noTrans[SkMatrix::kMTransX] = 0;
165             noTrans[SkMatrix::kMTransY] = 0;
166             SkPoint devCenter(fLocalCenter);
167             noTrans.mapPoints(&devCenter, 1);
168             SkPoint3 centerLightPos = SkPoint3::Make(devCenter.fX, devCenter.fY, fDevLightPos.fZ);
169             *translate = fOffset;
170             return SkShadowTessellator::MakeSpot(path, noTrans, zParams,
171                                                  centerLightPos, fLightRadius, transparent, false);
172         }
173     }
174 };
175 
176 /**
177  * This manages a set of tessellations for a given shape in the cache. Because SkResourceCache
178  * records are immutable this is not itself a Rec. When we need to update it we return this on
179  * the FindVisitor and let the cache destroy the Rec. We'll update the tessellations and then add
180  * a new Rec with an adjusted size for any deletions/additions.
181  */
182 class CachedTessellations : public SkRefCnt {
183 public:
size() const184     size_t size() const { return fAmbientSet.size() + fSpotSet.size(); }
185 
find(const AmbientVerticesFactory & ambient,const SkMatrix & matrix,SkVector * translate) const186     sk_sp<SkVertices> find(const AmbientVerticesFactory& ambient, const SkMatrix& matrix,
187                            SkVector* translate) const {
188         return fAmbientSet.find(ambient, matrix, translate);
189     }
190 
add(const SkPath & devPath,const AmbientVerticesFactory & ambient,const SkMatrix & matrix,SkVector * translate)191     sk_sp<SkVertices> add(const SkPath& devPath, const AmbientVerticesFactory& ambient,
192                           const SkMatrix& matrix, SkVector* translate) {
193         return fAmbientSet.add(devPath, ambient, matrix, translate);
194     }
195 
find(const SpotVerticesFactory & spot,const SkMatrix & matrix,SkVector * translate) const196     sk_sp<SkVertices> find(const SpotVerticesFactory& spot, const SkMatrix& matrix,
197                            SkVector* translate) const {
198         return fSpotSet.find(spot, matrix, translate);
199     }
200 
add(const SkPath & devPath,const SpotVerticesFactory & spot,const SkMatrix & matrix,SkVector * translate)201     sk_sp<SkVertices> add(const SkPath& devPath, const SpotVerticesFactory& spot,
202                           const SkMatrix& matrix, SkVector* translate) {
203         return fSpotSet.add(devPath, spot, matrix, translate);
204     }
205 
206 private:
207     template <typename FACTORY, int MAX_ENTRIES>
208     class Set {
209     public:
size() const210         size_t size() const { return fSize; }
211 
find(const FACTORY & factory,const SkMatrix & matrix,SkVector * translate) const212         sk_sp<SkVertices> find(const FACTORY& factory, const SkMatrix& matrix,
213                                SkVector* translate) const {
214             for (int i = 0; i < MAX_ENTRIES; ++i) {
215                 if (fEntries[i].fFactory.isCompatible(factory, translate)) {
216                     const SkMatrix& m = fEntries[i].fMatrix;
217                     if (matrix.hasPerspective() || m.hasPerspective()) {
218                         if (matrix != fEntries[i].fMatrix) {
219                             continue;
220                         }
221                     } else if (matrix.getScaleX() != m.getScaleX() ||
222                                matrix.getSkewX() != m.getSkewX() ||
223                                matrix.getScaleY() != m.getScaleY() ||
224                                matrix.getSkewY() != m.getSkewY()) {
225                         continue;
226                     }
227                     return fEntries[i].fVertices;
228                 }
229             }
230             return nullptr;
231         }
232 
add(const SkPath & path,const FACTORY & factory,const SkMatrix & matrix,SkVector * translate)233         sk_sp<SkVertices> add(const SkPath& path, const FACTORY& factory, const SkMatrix& matrix,
234                               SkVector* translate) {
235             sk_sp<SkVertices> vertices = factory.makeVertices(path, matrix, translate);
236             if (!vertices) {
237                 return nullptr;
238             }
239             int i;
240             if (fCount < MAX_ENTRIES) {
241                 i = fCount++;
242             } else {
243                 i = fRandom.nextULessThan(MAX_ENTRIES);
244                 fSize -= fEntries[i].fVertices->approximateSize();
245             }
246             fEntries[i].fFactory = factory;
247             fEntries[i].fVertices = vertices;
248             fEntries[i].fMatrix = matrix;
249             fSize += vertices->approximateSize();
250             return vertices;
251         }
252 
253     private:
254         struct Entry {
255             FACTORY fFactory;
256             sk_sp<SkVertices> fVertices;
257             SkMatrix fMatrix;
258         };
259         Entry fEntries[MAX_ENTRIES];
260         int fCount = 0;
261         size_t fSize = 0;
262         SkRandom fRandom;
263     };
264 
265     Set<AmbientVerticesFactory, 4> fAmbientSet;
266     Set<SpotVerticesFactory, 4> fSpotSet;
267 };
268 
269 /**
270  * A record of shadow vertices stored in SkResourceCache of CachedTessellations for a particular
271  * path. The key represents the path's geometry and not any shadow params.
272  */
273 class CachedTessellationsRec : public SkResourceCache::Rec {
274 public:
CachedTessellationsRec(const SkResourceCache::Key & key,sk_sp<CachedTessellations> tessellations)275     CachedTessellationsRec(const SkResourceCache::Key& key,
276                            sk_sp<CachedTessellations> tessellations)
277             : fTessellations(std::move(tessellations)) {
278         fKey.reset(new uint8_t[key.size()]);
279         memcpy(fKey.get(), &key, key.size());
280     }
281 
getKey() const282     const Key& getKey() const override {
283         return *reinterpret_cast<SkResourceCache::Key*>(fKey.get());
284     }
285 
bytesUsed() const286     size_t bytesUsed() const override { return fTessellations->size(); }
287 
getCategory() const288     const char* getCategory() const override { return "tessellated shadow masks"; }
289 
refTessellations() const290     sk_sp<CachedTessellations> refTessellations() const { return fTessellations; }
291 
292     template <typename FACTORY>
find(const FACTORY & factory,const SkMatrix & matrix,SkVector * translate) const293     sk_sp<SkVertices> find(const FACTORY& factory, const SkMatrix& matrix,
294                            SkVector* translate) const {
295         return fTessellations->find(factory, matrix, translate);
296     }
297 
298 private:
299     std::unique_ptr<uint8_t[]> fKey;
300     sk_sp<CachedTessellations> fTessellations;
301 };
302 
303 /**
304  * Used by FindVisitor to determine whether a cache entry can be reused and if so returns the
305  * vertices and a translation vector. If the CachedTessellations does not contain a suitable
306  * mesh then we inform SkResourceCache to destroy the Rec and we return the CachedTessellations
307  * to the caller. The caller will update it and reinsert it back into the cache.
308  */
309 template <typename FACTORY>
310 struct FindContext {
FindContext__anonee488b7b0111::FindContext311     FindContext(const SkMatrix* viewMatrix, const FACTORY* factory)
312             : fViewMatrix(viewMatrix), fFactory(factory) {}
313     const SkMatrix* const fViewMatrix;
314     // If this is valid after Find is called then we found the vertices and they should be drawn
315     // with fTranslate applied.
316     sk_sp<SkVertices> fVertices;
317     SkVector fTranslate = {0, 0};
318 
319     // If this is valid after Find then the caller should add the vertices to the tessellation set
320     // and create a new CachedTessellationsRec and insert it into SkResourceCache.
321     sk_sp<CachedTessellations> fTessellationsOnFailure;
322 
323     const FACTORY* fFactory;
324 };
325 
326 /**
327  * Function called by SkResourceCache when a matching cache key is found. The FACTORY and matrix of
328  * the FindContext are used to determine if the vertices are reusable. If so the vertices and
329  * necessary translation vector are set on the FindContext.
330  */
331 template <typename FACTORY>
FindVisitor(const SkResourceCache::Rec & baseRec,void * ctx)332 bool FindVisitor(const SkResourceCache::Rec& baseRec, void* ctx) {
333     FindContext<FACTORY>* findContext = (FindContext<FACTORY>*)ctx;
334     const CachedTessellationsRec& rec = static_cast<const CachedTessellationsRec&>(baseRec);
335     findContext->fVertices =
336             rec.find(*findContext->fFactory, *findContext->fViewMatrix, &findContext->fTranslate);
337     if (findContext->fVertices) {
338         return true;
339     }
340     // We ref the tessellations and let the cache destroy the Rec. Once the tessellations have been
341     // manipulated we will add a new Rec.
342     findContext->fTessellationsOnFailure = rec.refTessellations();
343     return false;
344 }
345 
346 class ShadowedPath {
347 public:
ShadowedPath(const SkPath * path,const SkMatrix * viewMatrix)348     ShadowedPath(const SkPath* path, const SkMatrix* viewMatrix)
349             : fPath(path)
350             , fViewMatrix(viewMatrix)
351 #if defined(SK_GANESH)
352             , fShapeForKey(*path, GrStyle::SimpleFill())
353 #endif
354     {}
355 
path() const356     const SkPath& path() const { return *fPath; }
viewMatrix() const357     const SkMatrix& viewMatrix() const { return *fViewMatrix; }
358 #if defined(SK_GANESH)
359     /** Negative means the vertices should not be cached for this path. */
keyBytes() const360     int keyBytes() const { return fShapeForKey.unstyledKeySize() * sizeof(uint32_t); }
writeKey(void * key) const361     void writeKey(void* key) const {
362         fShapeForKey.writeUnstyledKey(reinterpret_cast<uint32_t*>(key));
363     }
isRRect(SkRRect * rrect)364     bool isRRect(SkRRect* rrect) { return fShapeForKey.asRRect(rrect, nullptr); }
365 #else
keyBytes() const366     int keyBytes() const { return -1; }
writeKey(void * key) const367     void writeKey(void* key) const { SK_ABORT("Should never be called"); }
isRRect(SkRRect * rrect)368     bool isRRect(SkRRect* rrect) { return false; }
369 #endif
370 
371 private:
372     const SkPath* fPath;
373     const SkMatrix* fViewMatrix;
374 #if defined(SK_GANESH)
375     GrStyledShape fShapeForKey;
376 #endif
377 };
378 
379 // This creates a domain of keys in SkResourceCache used by this file.
380 static void* kNamespace;
381 
382 // When the SkPathRef genID changes, invalidate a corresponding GrResource described by key.
383 class ShadowInvalidator : public SkIDChangeListener {
384 public:
ShadowInvalidator(const SkResourceCache::Key & key)385     ShadowInvalidator(const SkResourceCache::Key& key) {
386         fKey.reset(new uint8_t[key.size()]);
387         memcpy(fKey.get(), &key, key.size());
388     }
389 
390 private:
getKey() const391     const SkResourceCache::Key& getKey() const {
392         return *reinterpret_cast<SkResourceCache::Key*>(fKey.get());
393     }
394 
395     // always purge
FindVisitor(const SkResourceCache::Rec &,void *)396     static bool FindVisitor(const SkResourceCache::Rec&, void*) {
397         return false;
398     }
399 
changed()400     void changed() override {
401         SkResourceCache::Find(this->getKey(), ShadowInvalidator::FindVisitor, nullptr);
402     }
403 
404     std::unique_ptr<uint8_t[]> fKey;
405 };
406 
407 /**
408  * Draws a shadow to 'canvas'. The vertices used to draw the shadow are created by 'factory' unless
409  * they are first found in SkResourceCache.
410  */
411 template <typename FACTORY>
draw_shadow(const FACTORY & factory,std::function<void (const SkVertices *,SkBlendMode,const SkPaint &,SkScalar tx,SkScalar ty,bool)> drawProc,ShadowedPath & path,SkColor color)412 bool draw_shadow(const FACTORY& factory,
413                  std::function<void(const SkVertices*, SkBlendMode, const SkPaint&,
414                  SkScalar tx, SkScalar ty, bool)> drawProc, ShadowedPath& path, SkColor color) {
415     FindContext<FACTORY> context(&path.viewMatrix(), &factory);
416 
417     SkResourceCache::Key* key = nullptr;
418     constexpr int kMinBytes = 128;
419     // We need to make this array be of the cache's Key so the memory we create the Key in
420     // is properly aligned.
421     AutoSTArray<kMinBytes / sizeof(SkResourceCache::Key), SkResourceCache::Key> keyStorage;
422     int keyDataBytes = path.keyBytes();
423     if (keyDataBytes >= 0) {
424         // Store the key...
425         keyStorage.reset(keyDataBytes + sizeof(SkResourceCache::Key));
426         key = new (keyStorage.begin()) SkResourceCache::Key();
427         // ... followed by the bytes from path.
428         path.writeKey((uint32_t*)(((uint8_t*)keyStorage.begin()) + sizeof(SkResourceCache::Key)));
429         key->init(&kNamespace, resource_cache_shared_id(), keyDataBytes);
430         SkResourceCache::Find(*key, FindVisitor<FACTORY>, &context);
431     }
432 
433     sk_sp<SkVertices> vertices;
434     bool foundInCache = SkToBool(context.fVertices);
435     if (foundInCache) {
436         vertices = std::move(context.fVertices);
437     } else {
438         // TODO: handle transforming the path as part of the tessellator
439         if (key) {
440             // Update or initialize a tessellation set and add it to the cache.
441             sk_sp<CachedTessellations> tessellations;
442             if (context.fTessellationsOnFailure) {
443                 tessellations = std::move(context.fTessellationsOnFailure);
444             } else {
445                 tessellations.reset(new CachedTessellations());
446             }
447             vertices = tessellations->add(path.path(), factory, path.viewMatrix(),
448                                           &context.fTranslate);
449             if (!vertices) {
450                 return false;
451             }
452             auto rec = new CachedTessellationsRec(*key, std::move(tessellations));
453             SkPathPriv::AddGenIDChangeListener(path.path(), sk_make_sp<ShadowInvalidator>(*key));
454             SkResourceCache::Add(rec);
455         } else {
456             vertices = factory.makeVertices(path.path(), path.viewMatrix(),
457                                             &context.fTranslate);
458             if (!vertices) {
459                 return false;
460             }
461         }
462     }
463 
464     SkPaint paint;
465     // Run the vertex color through a GaussianColorFilter and then modulate the grayscale result of
466     // that against our 'color' param.
467     paint.setColorFilter(
468          SkColorFilters::Blend(color, SkBlendMode::kModulate)->makeComposed(
469                                                                 SkColorFilterPriv::MakeGaussian()));
470 
471     drawProc(vertices.get(), SkBlendMode::kModulate, paint,
472              context.fTranslate.fX, context.fTranslate.fY, path.viewMatrix().hasPerspective());
473 
474     return true;
475 }
476 }  // namespace
477 
tilted(const SkPoint3 & zPlaneParams)478 static bool tilted(const SkPoint3& zPlaneParams) {
479     return !SkScalarNearlyZero(zPlaneParams.fX) || !SkScalarNearlyZero(zPlaneParams.fY);
480 }
481 #endif // SK_ENABLE_OPTIMIZE_SIZE
482 
ComputeTonalColors(SkColor inAmbientColor,SkColor inSpotColor,SkColor * outAmbientColor,SkColor * outSpotColor)483 void SkShadowUtils::ComputeTonalColors(SkColor inAmbientColor, SkColor inSpotColor,
484                                        SkColor* outAmbientColor, SkColor* outSpotColor) {
485     // For tonal color we only compute color values for the spot shadow.
486     // The ambient shadow is greyscale only.
487 
488     // Ambient
489     *outAmbientColor = SkColorSetARGB(SkColorGetA(inAmbientColor), 0, 0, 0);
490 
491     // Spot
492     int spotR = SkColorGetR(inSpotColor);
493     int spotG = SkColorGetG(inSpotColor);
494     int spotB = SkColorGetB(inSpotColor);
495     int max = std::max(std::max(spotR, spotG), spotB);
496     int min = std::min(std::min(spotR, spotG), spotB);
497     SkScalar luminance = 0.5f*(max + min)/255.f;
498     SkScalar origA = SkColorGetA(inSpotColor)/255.f;
499 
500     // We compute a color alpha value based on the luminance of the color, scaled by an
501     // adjusted alpha value. We want the following properties to match the UX examples
502     // (assuming a = 0.25) and to ensure that we have reasonable results when the color
503     // is black and/or the alpha is 0:
504     //     f(0, a) = 0
505     //     f(luminance, 0) = 0
506     //     f(1, 0.25) = .5
507     //     f(0.5, 0.25) = .4
508     //     f(1, 1) = 1
509     // The following functions match this as closely as possible.
510     SkScalar alphaAdjust = (2.6f + (-2.66667f + 1.06667f*origA)*origA)*origA;
511     SkScalar colorAlpha = (3.544762f + (-4.891428f + 2.3466f*luminance)*luminance)*luminance;
512     colorAlpha = SkTPin(alphaAdjust*colorAlpha, 0.0f, 1.0f);
513 
514     // Similarly, we set the greyscale alpha based on luminance and alpha so that
515     //     f(0, a) = a
516     //     f(luminance, 0) = 0
517     //     f(1, 0.25) = 0.15
518     SkScalar greyscaleAlpha = SkTPin(origA*(1 - 0.4f*luminance), 0.0f, 1.0f);
519 
520     // The final color we want to emulate is generated by rendering a color shadow (C_rgb) using an
521     // alpha computed from the color's luminance (C_a), and then a black shadow with alpha (S_a)
522     // which is an adjusted value of 'a'.  Assuming SrcOver, a background color of B_rgb, and
523     // ignoring edge falloff, this becomes
524     //
525     //      (C_a - S_a*C_a)*C_rgb + (1 - (S_a + C_a - S_a*C_a))*B_rgb
526     //
527     // Assuming premultiplied alpha, this means we scale the color by (C_a - S_a*C_a) and
528     // set the alpha to (S_a + C_a - S_a*C_a).
529     SkScalar colorScale = colorAlpha*(SK_Scalar1 - greyscaleAlpha);
530     SkScalar tonalAlpha = colorScale + greyscaleAlpha;
531     SkScalar unPremulScale = colorScale / tonalAlpha;
532     *outSpotColor = SkColorSetARGB(tonalAlpha*255.999f,
533                                    unPremulScale*spotR,
534                                    unPremulScale*spotG,
535                                    unPremulScale*spotB);
536 }
537 
fill_shadow_rec(const SkPath & path,const SkPoint3 & zPlaneParams,const SkPoint3 & lightPos,SkScalar lightRadius,SkColor ambientColor,SkColor spotColor,uint32_t flags,const SkMatrix & ctm,SkDrawShadowRec * rec)538 static bool fill_shadow_rec(const SkPath& path, const SkPoint3& zPlaneParams,
539                             const SkPoint3& lightPos, SkScalar lightRadius,
540                             SkColor ambientColor, SkColor spotColor,
541                             uint32_t flags, const SkMatrix& ctm, SkDrawShadowRec* rec) {
542     SkPoint pt = { lightPos.fX, lightPos.fY };
543     if (!SkToBool(flags & kDirectionalLight_ShadowFlag)) {
544         // If light position is in device space, need to transform to local space
545         // before applying to SkCanvas.
546         SkMatrix inverse;
547         if (!ctm.invert(&inverse)) {
548             return false;
549         }
550         inverse.mapPoints(&pt, 1);
551     }
552 
553     rec->fZPlaneParams   = zPlaneParams;
554     rec->fLightPos       = { pt.fX, pt.fY, lightPos.fZ };
555     rec->fLightRadius    = lightRadius;
556     rec->fAmbientColor   = ambientColor;
557     rec->fSpotColor      = spotColor;
558     rec->fFlags          = flags;
559 
560     return true;
561 }
562 
563 // Draw an offset spot shadow and outlining ambient shadow for the given path.
DrawShadow(SkCanvas * canvas,const SkPath & path,const SkPoint3 & zPlaneParams,const SkPoint3 & lightPos,SkScalar lightRadius,SkColor ambientColor,SkColor spotColor,uint32_t flags)564 void SkShadowUtils::DrawShadow(SkCanvas* canvas, const SkPath& path, const SkPoint3& zPlaneParams,
565                                const SkPoint3& lightPos, SkScalar lightRadius,
566                                SkColor ambientColor, SkColor spotColor,
567                                uint32_t flags) {
568     SkDrawShadowRec rec;
569     if (!fill_shadow_rec(path, zPlaneParams, lightPos, lightRadius, ambientColor, spotColor,
570                          flags, canvas->getTotalMatrix(), &rec)) {
571         return;
572     }
573 
574     canvas->private_draw_shadow_rec(path, rec);
575 }
576 
GetLocalBounds(const SkMatrix & ctm,const SkPath & path,const SkPoint3 & zPlaneParams,const SkPoint3 & lightPos,SkScalar lightRadius,uint32_t flags,SkRect * bounds)577 bool SkShadowUtils::GetLocalBounds(const SkMatrix& ctm, const SkPath& path,
578                                    const SkPoint3& zPlaneParams, const SkPoint3& lightPos,
579                                    SkScalar lightRadius, uint32_t flags, SkRect* bounds) {
580     SkDrawShadowRec rec;
581     if (!fill_shadow_rec(path, zPlaneParams, lightPos, lightRadius, SK_ColorBLACK, SK_ColorBLACK,
582                          flags, ctm, &rec)) {
583         return false;
584     }
585 
586     SkDrawShadowMetrics::GetLocalBounds(path, rec, ctm, bounds);
587 
588     return true;
589 }
590 
591 //////////////////////////////////////////////////////////////////////////////////////////////
592 
validate_rec(const SkDrawShadowRec & rec)593 static bool validate_rec(const SkDrawShadowRec& rec) {
594     return rec.fLightPos.isFinite() && rec.fZPlaneParams.isFinite() &&
595            SkIsFinite(rec.fLightRadius);
596 }
597 
drawShadow(const SkPath & path,const SkDrawShadowRec & rec)598 void SkDevice::drawShadow(const SkPath& path, const SkDrawShadowRec& rec) {
599     if (!validate_rec(rec)) {
600         return;
601     }
602 
603     SkMatrix viewMatrix = this->localToDevice();
604     SkAutoDeviceTransformRestore adr(this, SkMatrix::I());
605 
606 #if !defined(SK_ENABLE_OPTIMIZE_SIZE)
607     auto drawVertsProc = [this](const SkVertices* vertices, SkBlendMode mode, const SkPaint& paint,
608                                 SkScalar tx, SkScalar ty, bool hasPerspective) {
609         if (vertices->priv().vertexCount()) {
610             // For perspective shadows we've already computed the shadow in world space,
611             // and we can't translate it without changing it. Otherwise we concat the
612             // change in translation from the cached version.
613             SkAutoDeviceTransformRestore adr(
614                     this,
615                     hasPerspective ? SkMatrix::I()
616                                    : this->localToDevice() * SkMatrix::Translate(tx, ty));
617             // The vertex colors for a tesselated shadow polygon are always either opaque black
618             // or transparent and their real contribution to the final blended color is via
619             // their alpha. We can skip expensive per-vertex color conversion for this.
620             this->drawVertices(vertices, SkBlender::Mode(mode), paint, /*skipColorXform=*/true);
621         }
622     };
623 
624     ShadowedPath shadowedPath(&path, &viewMatrix);
625 
626     bool tiltZPlane = tilted(rec.fZPlaneParams);
627     bool transparent = SkToBool(rec.fFlags & SkShadowFlags::kTransparentOccluder_ShadowFlag);
628     bool useBlur = SkToBool(rec.fFlags & SkShadowFlags::kConcaveBlurOnly_ShadowFlag) &&
629                    !path.isConvex();
630     bool uncached = tiltZPlane || path.isVolatile();
631 #endif
632     bool directional = SkToBool(rec.fFlags & SkShadowFlags::kDirectionalLight_ShadowFlag);
633 
634     SkPoint3 zPlaneParams = rec.fZPlaneParams;
635     SkPoint3 devLightPos = rec.fLightPos;
636     if (!directional) {
637         viewMatrix.mapPoints((SkPoint*)&devLightPos.fX, 1);
638     }
639     float lightRadius = rec.fLightRadius;
640 
641     if (SkColorGetA(rec.fAmbientColor) > 0) {
642         bool success = false;
643 #if !defined(SK_ENABLE_OPTIMIZE_SIZE)
644         if (uncached && !useBlur) {
645             sk_sp<SkVertices> vertices = SkShadowTessellator::MakeAmbient(path, viewMatrix,
646                                                                           zPlaneParams,
647                                                                           transparent);
648             if (vertices) {
649                 SkPaint paint;
650                 // Run the vertex color through a GaussianColorFilter and then modulate the
651                 // grayscale result of that against our 'color' param.
652                 paint.setColorFilter(
653                     SkColorFilters::Blend(rec.fAmbientColor,
654                                                   SkBlendMode::kModulate)->makeComposed(
655                                                                SkColorFilterPriv::MakeGaussian()));
656                 // The vertex colors for a tesselated shadow polygon are always either opaque black
657                 // or transparent and their real contribution to the final blended color is via
658                 // their alpha. We can skip expensive per-vertex color conversion for this.
659                 this->drawVertices(vertices.get(),
660                                    SkBlender::Mode(SkBlendMode::kModulate),
661                                    paint,
662                                    /*skipColorXform=*/true);
663                 success = true;
664             }
665         }
666 
667         if (!success && !useBlur) {
668             AmbientVerticesFactory factory;
669             factory.fOccluderHeight = zPlaneParams.fZ;
670             factory.fTransparent = transparent;
671             if (viewMatrix.hasPerspective()) {
672                 factory.fOffset.set(0, 0);
673             } else {
674                 factory.fOffset.fX = viewMatrix.getTranslateX();
675                 factory.fOffset.fY = viewMatrix.getTranslateY();
676             }
677 
678             success = draw_shadow(factory, drawVertsProc, shadowedPath, rec.fAmbientColor);
679         }
680 #endif // !defined(SK_ENABLE_OPTIMIZE_SIZE)
681 
682         // All else has failed, draw with blur
683         if (!success) {
684             // Pretransform the path to avoid transforming the stroke, below.
685             SkPath devSpacePath;
686             path.transform(viewMatrix, &devSpacePath);
687             devSpacePath.setIsVolatile(true);
688 
689             // The tesselator outsets by AmbientBlurRadius (or 'r') to get the outer ring of
690             // the tesselation, and sets the alpha on the path to 1/AmbientRecipAlpha (or 'a').
691             //
692             // We want to emulate this with a blur. The full blur width (2*blurRadius or 'f')
693             // can be calculated by interpolating:
694             //
695             //            original edge        outer edge
696             //         |       |<---------- r ------>|
697             //         |<------|--- f -------------->|
698             //         |       |                     |
699             //    alpha = 1  alpha = a          alpha = 0
700             //
701             // Taking ratios, f/1 = r/a, so f = r/a and blurRadius = f/2.
702             //
703             // We now need to outset the path to place the new edge in the center of the
704             // blur region:
705             //
706             //             original   new
707             //         |       |<------|--- r ------>|
708             //         |<------|--- f -|------------>|
709             //         |       |<- o ->|<--- f/2 --->|
710             //
711             //     r = o + f/2, so o = r - f/2
712             //
713             // We outset by using the stroker, so the strokeWidth is o/2.
714             //
715             SkScalar devSpaceOutset = SkDrawShadowMetrics::AmbientBlurRadius(zPlaneParams.fZ);
716             SkScalar oneOverA = SkDrawShadowMetrics::AmbientRecipAlpha(zPlaneParams.fZ);
717             SkScalar blurRadius = 0.5f*devSpaceOutset*oneOverA;
718             SkScalar strokeWidth = 0.5f*(devSpaceOutset - blurRadius);
719 
720             // Now draw with blur
721             SkPaint paint;
722             paint.setColor(rec.fAmbientColor);
723             paint.setStrokeWidth(strokeWidth);
724             paint.setStyle(SkPaint::kStrokeAndFill_Style);
725             SkScalar sigma = SkBlurMask::ConvertRadiusToSigma(blurRadius);
726             bool respectCTM = false;
727             paint.setMaskFilter(SkMaskFilter::MakeBlur(kNormal_SkBlurStyle, sigma, respectCTM));
728             this->drawPath(devSpacePath, paint);
729         }
730     }
731 
732     if (SkColorGetA(rec.fSpotColor) > 0) {
733         bool success = false;
734 #if !defined(SK_ENABLE_OPTIMIZE_SIZE)
735         if (uncached && !useBlur) {
736             sk_sp<SkVertices> vertices = SkShadowTessellator::MakeSpot(path, viewMatrix,
737                                                                        zPlaneParams,
738                                                                        devLightPos, lightRadius,
739                                                                        transparent,
740                                                                        directional);
741             if (vertices) {
742                 SkPaint paint;
743                 // Run the vertex color through a GaussianColorFilter and then modulate the
744                 // grayscale result of that against our 'color' param.
745                 paint.setColorFilter(
746                     SkColorFilters::Blend(rec.fSpotColor,
747                                                   SkBlendMode::kModulate)->makeComposed(
748                                                       SkColorFilterPriv::MakeGaussian()));
749                 // The vertex colors for a tesselated shadow polygon are always either opaque black
750                 // or transparent and their real contribution to the final blended color is via
751                 // their alpha. We can skip expensive per-vertex color conversion for this.
752                 this->drawVertices(vertices.get(),
753                                    SkBlender::Mode(SkBlendMode::kModulate),
754                                    paint,
755                                    /*skipColorXform=*/true);
756                 success = true;
757             }
758         }
759 
760         if (!success && !useBlur) {
761             SpotVerticesFactory factory;
762             factory.fOccluderHeight = zPlaneParams.fZ;
763             factory.fDevLightPos = devLightPos;
764             factory.fLightRadius = lightRadius;
765 
766             SkPoint center = SkPoint::Make(path.getBounds().centerX(), path.getBounds().centerY());
767             factory.fLocalCenter = center;
768             viewMatrix.mapPoints(&center, 1);
769             SkScalar radius, scale;
770             if (SkToBool(rec.fFlags & kDirectionalLight_ShadowFlag)) {
771                 SkDrawShadowMetrics::GetDirectionalParams(zPlaneParams.fZ, devLightPos.fX,
772                                                           devLightPos.fY, devLightPos.fZ,
773                                                           lightRadius, &radius, &scale,
774                                                           &factory.fOffset);
775             } else {
776                 SkDrawShadowMetrics::GetSpotParams(zPlaneParams.fZ, devLightPos.fX - center.fX,
777                                                    devLightPos.fY - center.fY, devLightPos.fZ,
778                                                    lightRadius, &radius, &scale, &factory.fOffset);
779             }
780 
781             SkRect devBounds;
782             viewMatrix.mapRect(&devBounds, path.getBounds());
783             if (transparent ||
784                 SkTAbs(factory.fOffset.fX) > 0.5f*devBounds.width() ||
785                 SkTAbs(factory.fOffset.fY) > 0.5f*devBounds.height()) {
786                 // if the translation of the shadow is big enough we're going to end up
787                 // filling the entire umbra, we can treat these as all the same
788                 if (directional) {
789                     factory.fOccluderType =
790                             SpotVerticesFactory::OccluderType::kDirectionalTransparent;
791                 } else {
792                     factory.fOccluderType = SpotVerticesFactory::OccluderType::kPointTransparent;
793                 }
794             } else if (directional) {
795                 factory.fOccluderType = SpotVerticesFactory::OccluderType::kDirectional;
796             } else if (factory.fOffset.length()*scale + scale < radius) {
797                 // if we don't translate more than the blur distance, can assume umbra is covered
798                 factory.fOccluderType = SpotVerticesFactory::OccluderType::kPointOpaqueNoUmbra;
799             } else if (path.isConvex()) {
800                 factory.fOccluderType = SpotVerticesFactory::OccluderType::kPointOpaquePartialUmbra;
801             } else {
802                 factory.fOccluderType = SpotVerticesFactory::OccluderType::kPointTransparent;
803             }
804             // need to add this after we classify the shadow
805             factory.fOffset.fX += viewMatrix.getTranslateX();
806             factory.fOffset.fY += viewMatrix.getTranslateY();
807 
808             SkColor color = rec.fSpotColor;
809 #ifdef DEBUG_SHADOW_CHECKS
810             switch (factory.fOccluderType) {
811                 case SpotVerticesFactory::OccluderType::kPointTransparent:
812                     color = 0xFFD2B48C;  // tan for transparent
813                     break;
814                 case SpotVerticesFactory::OccluderType::kPointOpaquePartialUmbra:
815                     color = 0xFFFFA500;   // orange for opaque
816                     break;
817                 case SpotVerticesFactory::OccluderType::kPointOpaqueNoUmbra:
818                     color = 0xFFE5E500;  // corn yellow for covered
819                     break;
820                 case SpotVerticesFactory::OccluderType::kDirectional:
821                 case SpotVerticesFactory::OccluderType::kDirectionalTransparent:
822                     color = 0xFF550000;  // dark red for directional
823                     break;
824             }
825 #endif
826             success = draw_shadow(factory, drawVertsProc, shadowedPath, color);
827         }
828 #endif // !defined(SK_ENABLE_OPTIMIZE_SIZE)
829 
830         // All else has failed, draw with blur
831         if (!success) {
832             SkMatrix shadowMatrix;
833             SkScalar radius;
834             if (!SkDrawShadowMetrics::GetSpotShadowTransform(devLightPos, lightRadius,
835                                                              viewMatrix, zPlaneParams,
836                                                              path.getBounds(), directional,
837                                                              &shadowMatrix, &radius)) {
838                 return;
839             }
840             SkAutoDeviceTransformRestore adr2(this, shadowMatrix);
841 
842             SkPaint paint;
843             paint.setColor(rec.fSpotColor);
844             SkScalar sigma = SkBlurMask::ConvertRadiusToSigma(radius);
845             bool respectCTM = false;
846             paint.setMaskFilter(SkMaskFilter::MakeBlur(kNormal_SkBlurStyle, sigma, respectCTM));
847             this->drawPath(path, paint);
848         }
849     }
850 }
851