xref: /aosp_15_r20/external/skia/tests/BezierCurveTest.cpp (revision c8dee2aa9b3f27cf6c858bd81872bdeb2c07ed17)
1 /*
2  * Copyright 2023 Google LLC
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "include/private/base/SkFloatingPoint.h"
9 #include "include/private/base/SkSpan_impl.h"
10 #include "src/base/SkBezierCurves.h"
11 #include "src/base/SkQuads.h"
12 #include "tests/Test.h"
13 
14 #include <algorithm>
15 #include <cmath>
16 #include <cstddef>
17 #include <initializer_list>
18 #include <limits>
19 #include <set>
20 #include <string>
21 
22 // Grouping the test inputs into DoublePoints makes the test cases easier to read.
23 struct DoublePoint {
24     double x;
25     double y;
26 };
27 
nearly_equal(double expected,double actual)28 static bool nearly_equal(double expected, double actual) {
29     if (sk_double_nearly_zero(expected)) {
30         return sk_double_nearly_zero(actual);
31     }
32     return sk_doubles_nearly_equal_ulps(expected, actual, 64);
33 }
34 
testCubicEvalAtT(skiatest::Reporter * reporter,const std::string & name,SkSpan<const DoublePoint> curveInputs,double t,const DoublePoint & expectedXY)35 static void testCubicEvalAtT(skiatest::Reporter* reporter, const std::string& name,
36                              SkSpan<const DoublePoint> curveInputs, double t,
37                              const DoublePoint& expectedXY) {
38     skiatest::ReporterContext subtest(reporter, name);
39     REPORTER_ASSERT(reporter, curveInputs.size() == 4,
40                     "Invalid test case. Should have 4 input points.");
41     REPORTER_ASSERT(reporter, t >= 0.0 && t <= 1.0,
42                     "Invalid test case. t %f should be in [0, 1]", t);
43 
44     auto [x, y] = SkBezierCubic::EvalAt(reinterpret_cast<const double*>(curveInputs.data()), t);
45 
46     REPORTER_ASSERT(reporter, nearly_equal(expectedXY.x, x),
47                     "X wrong %1.16f != %1.16f", expectedXY.x, x);
48     REPORTER_ASSERT(reporter, nearly_equal(expectedXY.y, y),
49                     "Y wrong %1.16f != %1.16f", expectedXY.y, y);
50 }
51 
DEF_TEST(BezierCubicEvalAt,reporter)52 DEF_TEST(BezierCubicEvalAt, reporter) {
53     testCubicEvalAtT(reporter, "linear curve @0.1234",
54                      {{ 0, 0 }, { 0, 0 }, { 10, 10 }, { 10, 10 }},
55                      0.1234,
56                      { 0.4192451819200000, 0.4192451819200000 });
57 
58     testCubicEvalAtT(reporter, "linear curve @0.2345",
59                      {{ 0, 0 }, { 5, 5 }, { 5, 5 }, { 10, 10 }},
60                      0.2345,
61                      { 2.8215983862500000, 2.8215983862500000 });
62 
63     testCubicEvalAtT(reporter, "Arbitrary Cubic, t=0.0",
64                      {{ -10, -20 }, { -7, 5 }, { 14, -2 }, { 3, 13 }},
65                      0.0,
66                      { -10, -20 });
67 
68     testCubicEvalAtT(reporter, "Arbitrary Cubic, t=0.3456",
69                      {{ -10, -20 }, { -7, 5 }, { 14, -2 }, { 3, 13 }},
70                      0.3456,
71                      { -2.503786700800000, -3.31715344793600 });
72 
73     testCubicEvalAtT(reporter, "Arbitrary Cubic, t=0.5",
74                      {{ -10, -20 }, { -7, 5 }, { 14, -2 }, { 3, 13 }},
75                      0.5,
76                      { 1.75, 0.25 });
77 
78     testCubicEvalAtT(reporter, "Arbitrary Cubic, t=0.7891",
79                      {{ -10, -20 }, { -7, 5 }, { 14, -2 }, { 3, 13 }},
80                      0.7891,
81                      { 6.158763291450000, 5.938550084434000 });
82 
83     testCubicEvalAtT(reporter, "Arbitrary Cubic, t=1.0",
84                      {{ -10, -20 }, { -7, 5 }, { 14, -2 }, { 3, 13 }},
85                      1.0,
86                      { 3, 13 });
87 }
88 
testCubicConvertToPolynomial(skiatest::Reporter * reporter,const std::string & name,SkSpan<const DoublePoint> curveInputs,bool yValues,double expectedA,double expectedB,double expectedC,double expectedD)89 static void testCubicConvertToPolynomial(skiatest::Reporter* reporter, const std::string& name,
90                                          SkSpan<const DoublePoint> curveInputs, bool yValues,
91                                          double expectedA, double expectedB,
92                                          double expectedC, double expectedD) {
93     skiatest::ReporterContext subtest(reporter, name);
94     REPORTER_ASSERT(reporter, curveInputs.size() == 4,
95                     "Invalid test case. Need 4 points (start, control, control, end)");
96 
97     skiatest::ReporterContext subsubtest(reporter, "SkBezierCurve Implementation");
98     const double* input = &curveInputs[0].x;
99     auto [A, B, C, D] = SkBezierCubic::ConvertToPolynomial(input, yValues);
100 
101     REPORTER_ASSERT(reporter, nearly_equal(expectedA, A), "%f != %f", expectedA, A);
102     REPORTER_ASSERT(reporter, nearly_equal(expectedB, B), "%f != %f", expectedB, B);
103     REPORTER_ASSERT(reporter, nearly_equal(expectedC, C), "%f != %f", expectedC, C);
104     REPORTER_ASSERT(reporter, nearly_equal(expectedD, D), "%f != %f", expectedD, D);
105 }
106 
DEF_TEST(BezierCubicToPolynomials,reporter)107 DEF_TEST(BezierCubicToPolynomials, reporter) {
108     // See also tests/PathOpsDCubicTest.cpp->SkDCubicPolynomialCoefficients
109     testCubicConvertToPolynomial(reporter, "Arbitrary control points X direction",
110         {{1, 2}, {-3, 4}, {5, -6}, {7, 8}}, false, /*=yValues*/
111         -18, 36, -12, 1
112     );
113     testCubicConvertToPolynomial(reporter, "Arbitrary control points Y direction",
114         {{1, 2}, {-3, 4}, {5, -6}, {7, 8}}, true, /*=yValues*/
115         36, -36, 6, 2
116     );
117 }
118 
119 // Since, Roots and EvalAt are separately unit tested, make sure that the parametric pramater t
120 // is correctly in range, and checked.
DEF_TEST(QuadRoots_CheckTRange,reporter)121 DEF_TEST(QuadRoots_CheckTRange, reporter) {
122     // Pick interesting numbers around 0 and 1.
123     const double interestingRoots[] =
124             {-1000, -10, -1, -0.1, -0.0001, 0, 0.0001, 0.1, 0.9, 0.9999, 1, 1.0001, 1.1, 10, 1000};
125 
126     // Interesting scales to make the quadratic.
127     const double interestingScales[] =
128             {-1000, -10, -1, -0.1, -0.0001, 0.0001, 0.1, 1, 10, 1000};
129 
130     auto outsideTRange = [](double r) {
131         return r < 0 || 1 < r;
132     };
133 
134     auto insideTRange = [&] (double r) {
135         return !outsideTRange(r);
136     };
137 
138     // The original test for AddValidTs (which quad intersect was based on) used 1 float ulp of
139     // leeway for comparison. Tighten this up to half a float ulp.
140     auto equalAsFloat = [] (double a, double b) {
141         // When converted to float, a double will be rounded up to half a float ulp for a double
142         // value between two float values.
143         return sk_double_to_float(a) == sk_double_to_float(b);
144     };
145 
146     for (double r1 : interestingRoots) {
147         for (double r0 : interestingRoots) {
148             for (double s : interestingScales) {
149                 // Create a quadratic using the roots r0 and r1.
150                 // s(x-r0)(x-r1) = s(x^2 - r0*x - r1*x + r0*r1)
151                 const double A = s;
152                 // Normally B = -(r0 + r1) but this needs the modified B' = (r0 + r1) / 2.
153                 const double B = s * 0.5 * (r0 + r1);
154                 const double C = s*r0*r1;
155 
156                 float storage[2];
157                 // The X coefficients are set to return t's generated by root intersection.
158                 // The offset is set to 0, because an arbitrary offset is essentially encoded in C.
159                 auto intersections = SkBezierQuad::Intersect(0, -0.5, 0, A, B, C, 0, storage);
160 
161                 if (intersections.empty()) {
162                     // Either imaginary or both roots are outside [0, 1].
163                     REPORTER_ASSERT(reporter,
164                                     SkQuads::Discriminant(A, B, C) < 0
165                                     || (outsideTRange(r0) && outsideTRange(r1)));
166                 } else if (intersections.size() == 1) {
167                     // One of the roots is outside [0, 1]
168                     REPORTER_ASSERT(reporter, insideTRange(r0) || insideTRange(r1));
169                     const double insideRoot = insideTRange(r0) ? r0 : r1;
170                     REPORTER_ASSERT(reporter, equalAsFloat(insideRoot, intersections[0]));
171                 } else {
172                     REPORTER_ASSERT(reporter, intersections.size() == 2);
173                     REPORTER_ASSERT(reporter, insideTRange(r0) && insideTRange(r1));
174                     auto [smaller, bigger] = std::minmax(intersections[0], intersections[1]);
175                     auto [smallerRoot, biggerRoot] = std::minmax(r0, r1);
176                     REPORTER_ASSERT(reporter, equalAsFloat(smaller, smallerRoot));
177                     REPORTER_ASSERT(reporter, equalAsFloat(bigger, biggerRoot));
178                 }
179             }
180         }
181     }
182 
183     // Check when A == 0.
184     {
185         const double A = 0;
186 
187         // We need M = 4, so that will be a Kahan style B of -0.5 * M = -2.
188         const double B = -2;
189         const double C = -1;
190         float storage[2];
191 
192         // Assume the offset is already encoded in C.
193         auto intersections = SkBezierQuad::Intersect(0, -0.5, 0, A, B, C, 0, storage);
194         REPORTER_ASSERT(reporter, intersections.size() == 1);
195         REPORTER_ASSERT(reporter, intersections[0] == 0.25);
196     }
197 }
198 
199 // Since, Roots and EvalAt are separately unit tested, make sure that the parametric pramater t
200 // is correctly in range, and checked.
DEF_TEST(SkBezierCubic_CheckTRange,reporter)201 DEF_TEST(SkBezierCubic_CheckTRange, reporter) {
202     // Pick interesting numbers around 0 and 1.
203     const double interestingRoots[] =
204             {-10, -5, -2, -1, 0, 0.5, 1, 2, 5, 10};
205 
206     // Interesting scales to make the quadratic.
207     const double interestingScales[] =
208             {-1000, -10, -1, -0.1, -0.0001, 0.0001, 0.1, 1, 10, 1000};
209 
210     auto outsideTRange = [](double r) {
211         return r < 0 || 1 < r;
212     };
213 
214     auto insideTRange = [&] (double r) {
215         return !outsideTRange(r);
216     };
217 
218     auto specialEqual = [] (double actual, double test) {
219         // At least a floats worth of digits are correct.
220         const double errorFactor = std::numeric_limits<float>::epsilon();
221         return std::abs(test - actual) <= errorFactor * std::max(std::abs(test), std::abs(actual));
222     };
223 
224     for (double r2 : interestingRoots) {
225         for (double r1 : interestingRoots) {
226             for (double r0 : interestingRoots) {
227                 for (double s : interestingScales) {
228                     // Create a cubic using the roots r0, r1, and r2.
229                     // s(x-r0)(x-r1)(x-r2) = s(x^3 - (r0+r1+r2)x^2 + (r0r1+r1r2+r0r2)x - r0r1r2)
230                     const double A =  s,
231                                  B = -s * (r0+r1+r2),
232                                  C =  s * (r0*r1 + r1*r2 + r0*r2),
233                                  D = -s * r0 * r1 * r2;
234 
235                     // Accumulate all the valid t's.
236                     std::set<double> inRangeRoots;
237                     for (auto r : {r0, r1, r2}) {
238                         if (insideTRange(r)) {
239                             inRangeRoots.insert(r);
240                         }
241                     }
242 
243                     float storage[3];
244                     // The X coefficients are set to return t's generated by root intersection.
245                     // The offset is set to 0, because an arbitrary offset is essentially encoded
246                     // in C.
247                     auto intersections =
248                             SkBezierCubic::Intersect(0, 0, 1, 0, A, B, C, D, 0, storage);
249 
250                     size_t correct = 0;
251                     for (auto candidate : intersections) {
252                         for (auto answer : inRangeRoots) {
253                             if (specialEqual(candidate, answer)) {
254                                 correct += 1;
255                                 break;
256                             }
257                         }
258                     }
259                     REPORTER_ASSERT(reporter, correct == intersections.size());
260                 }
261             }
262         }
263     }
264 }
265 
266