xref: /aosp_15_r20/external/swiftshader/src/Pipeline/SpirvShaderSampling.cpp (revision 03ce13f70fcc45d86ee91b7ee4cab1936a95046e)
1 // Copyright 2019 The SwiftShader Authors. All Rights Reserved.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //    http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #include "SpirvShader.hpp"
16 
17 #include "SamplerCore.hpp"
18 #include "Device/Config.hpp"
19 #include "System/Debug.hpp"
20 #include "System/Math.hpp"
21 #include "Vulkan/VkDescriptorSetLayout.hpp"
22 #include "Vulkan/VkDevice.hpp"
23 #include "Vulkan/VkImageView.hpp"
24 #include "Vulkan/VkSampler.hpp"
25 
26 #include <spirv/unified1/spirv.hpp>
27 
28 #include <climits>
29 #include <mutex>
30 
31 namespace sw {
32 
getImageSampler(const vk::Device * device,uint32_t signature,uint32_t samplerId,uint32_t imageViewId)33 SpirvEmitter::ImageSampler *SpirvEmitter::getImageSampler(const vk::Device *device, uint32_t signature, uint32_t samplerId, uint32_t imageViewId)
34 {
35 	ImageInstructionSignature instruction(signature);
36 	ASSERT(imageViewId != 0 && (samplerId != 0 || instruction.samplerMethod == Fetch || instruction.samplerMethod == Write));
37 	ASSERT(device);
38 
39 	vk::Device::SamplingRoutineCache::Key key = { signature, samplerId, imageViewId };
40 
41 	auto createSamplingRoutine = [device](const vk::Device::SamplingRoutineCache::Key &key) {
42 		ImageInstructionSignature instruction(key.instruction);
43 		const vk::Identifier::State imageViewState = vk::Identifier(key.imageView).getState();
44 		const vk::SamplerState *vkSamplerState = (key.sampler != 0) ? device->findSampler(key.sampler) : nullptr;
45 
46 		auto type = imageViewState.imageViewType;
47 		auto samplerMethod = static_cast<SamplerMethod>(instruction.samplerMethod);
48 
49 		Sampler samplerState = {};
50 		samplerState.textureType = type;
51 		ASSERT(instruction.coordinates >= samplerState.dimensionality());  // "It may be a vector larger than needed, but all unused components appear after all used components."
52 		samplerState.textureFormat = imageViewState.format;
53 
54 		samplerState.addressingModeU = convertAddressingMode(0, vkSamplerState, type);
55 		samplerState.addressingModeV = convertAddressingMode(1, vkSamplerState, type);
56 		samplerState.addressingModeW = convertAddressingMode(2, vkSamplerState, type);
57 
58 		samplerState.mipmapFilter = convertMipmapMode(vkSamplerState);
59 		samplerState.swizzle = imageViewState.mapping;
60 		samplerState.gatherComponent = instruction.gatherComponent;
61 
62 		if(vkSamplerState)
63 		{
64 			samplerState.textureFilter = convertFilterMode(vkSamplerState, type, samplerMethod);
65 			samplerState.border = vkSamplerState->borderColor;
66 			samplerState.customBorder = vkSamplerState->customBorderColor;
67 
68 			samplerState.mipmapFilter = convertMipmapMode(vkSamplerState);
69 			samplerState.highPrecisionFiltering = vkSamplerState->highPrecisionFiltering;
70 
71 			samplerState.compareEnable = (vkSamplerState->compareEnable != VK_FALSE);
72 			samplerState.compareOp = vkSamplerState->compareOp;
73 			samplerState.unnormalizedCoordinates = (vkSamplerState->unnormalizedCoordinates != VK_FALSE);
74 
75 			samplerState.ycbcrModel = vkSamplerState->ycbcrModel;
76 			samplerState.studioSwing = vkSamplerState->studioSwing;
77 			samplerState.swappedChroma = vkSamplerState->swappedChroma;
78 			samplerState.chromaFilter = vkSamplerState->chromaFilter == VK_FILTER_LINEAR ?  FILTER_LINEAR : FILTER_POINT;
79 			samplerState.chromaXOffset = vkSamplerState->chromaXOffset;
80 			samplerState.chromaYOffset = vkSamplerState->chromaYOffset;
81 
82 			samplerState.mipLodBias = vkSamplerState->mipLodBias;
83 			samplerState.maxAnisotropy = vkSamplerState->maxAnisotropy;
84 			samplerState.minLod = vkSamplerState->minLod;
85 			samplerState.maxLod = vkSamplerState->maxLod;
86 
87 			// If there's a single mip level and filtering doesn't depend on the LOD level,
88 			// the sampler will need to compute the LOD to produce the proper result.
89 			// Otherwise, it can be ignored.
90 			// We can skip the LOD computation for all modes, except LOD query,
91 			// where we have to return the proper value even if nothing else requires it.
92 			if(imageViewState.singleMipLevel &&
93 			   (samplerState.textureFilter != FILTER_MIN_POINT_MAG_LINEAR) &&
94 			   (samplerState.textureFilter != FILTER_MIN_LINEAR_MAG_POINT) &&
95 			   (samplerMethod != Query))
96 			{
97 				samplerState.minLod = 0.0f;
98 				samplerState.maxLod = 0.0f;
99 			}
100 		}
101 		else if(samplerMethod == Fetch)
102 		{
103 			// OpImageFetch does not take a sampler descriptor, but for VK_EXT_image_robustness
104 			// requires replacing invalid texels with zero.
105 			// TODO(b/162327166): Only perform bounds checks when VK_EXT_image_robustness is enabled.
106 			samplerState.border = VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK;
107 
108 			// If there's a single mip level we can skip LOD computation.
109 			if(imageViewState.singleMipLevel)
110 			{
111 				samplerState.minLod = 0.0f;
112 				samplerState.maxLod = 0.0f;
113 			}
114 			// Otherwise make sure LOD is clamped for robustness
115 			else
116 			{
117 				samplerState.minLod = imageViewState.minLod;
118 				samplerState.maxLod = imageViewState.maxLod;
119 			}
120 		}
121 		else if(samplerMethod == Write)
122 		{
123 			return emitWriteRoutine(instruction, samplerState);
124 		}
125 		else
126 			ASSERT(false);
127 
128 		return emitSamplerRoutine(instruction, samplerState);
129 	};
130 
131 	vk::Device::SamplingRoutineCache *cache = device->getSamplingRoutineCache();
132 	auto routine = cache->getOrCreate(key, createSamplingRoutine);
133 
134 	return (ImageSampler *)(routine->getEntry());
135 }
136 
emitWriteRoutine(ImageInstructionSignature instruction,const Sampler & samplerState)137 std::shared_ptr<rr::Routine> SpirvEmitter::emitWriteRoutine(ImageInstructionSignature instruction, const Sampler &samplerState)
138 {
139 	// TODO(b/129523279): Hold a separate mutex lock for the sampler being built.
140 	rr::Function<Void(Pointer<Byte>, Pointer<SIMD::Float>, Pointer<SIMD::Float>, Pointer<Byte>)> function;
141 	{
142 		Pointer<Byte> descriptor = function.Arg<0>();
143 		Pointer<SIMD::Float> coord = function.Arg<1>();
144 		Pointer<SIMD::Float> texelAndMask = function.Arg<2>();
145 		Pointer<Byte> constants = function.Arg<3>();
146 
147 		WriteImage(instruction, descriptor, coord, texelAndMask, samplerState.textureFormat);
148 	}
149 
150 	return function("sampler");
151 }
152 
emitSamplerRoutine(ImageInstructionSignature instruction,const Sampler & samplerState)153 std::shared_ptr<rr::Routine> SpirvEmitter::emitSamplerRoutine(ImageInstructionSignature instruction, const Sampler &samplerState)
154 {
155 	// TODO(b/129523279): Hold a separate mutex lock for the sampler being built.
156 	rr::Function<Void(Pointer<Byte>, Pointer<SIMD::Float>, Pointer<SIMD::Float>, Pointer<Byte>)> function;
157 	{
158 		Pointer<Byte> texture = function.Arg<0>();
159 		Pointer<SIMD::Float> in = function.Arg<1>();
160 		Pointer<SIMD::Float> out = function.Arg<2>();
161 		Pointer<Byte> constants = function.Arg<3>();
162 
163 		SIMD::Float uvwa[4];
164 		SIMD::Float dRef;
165 		SIMD::Float lodOrBias;  // Explicit level-of-detail, or bias added to the implicit level-of-detail (depending on samplerMethod).
166 		SIMD::Float dsx[4];
167 		SIMD::Float dsy[4];
168 		SIMD::Int offset[4];
169 		SIMD::Int sampleId;
170 		SamplerFunction samplerFunction = instruction.getSamplerFunction();
171 
172 		uint32_t i = 0;
173 		for(; i < instruction.coordinates; i++)
174 		{
175 			uvwa[i] = in[i];
176 		}
177 
178 		if(instruction.isDref())
179 		{
180 			dRef = in[i];
181 			i++;
182 		}
183 
184 		if(instruction.samplerMethod == Lod || instruction.samplerMethod == Bias || instruction.samplerMethod == Fetch)
185 		{
186 			lodOrBias = in[i];
187 			i++;
188 		}
189 		else if(instruction.samplerMethod == Grad)
190 		{
191 			for(uint32_t j = 0; j < instruction.grad; j++, i++)
192 			{
193 				dsx[j] = in[i];
194 			}
195 
196 			for(uint32_t j = 0; j < instruction.grad; j++, i++)
197 			{
198 				dsy[j] = in[i];
199 			}
200 		}
201 
202 		for(uint32_t j = 0; j < instruction.offset; j++, i++)
203 		{
204 			offset[j] = As<SIMD::Int>(in[i]);
205 		}
206 
207 		if(instruction.sample)
208 		{
209 			sampleId = As<SIMD::Int>(in[i]);
210 		}
211 
212 		SamplerCore s(constants, samplerState, samplerFunction);
213 
214 		// For explicit-lod instructions the LOD can be different per SIMD lane. SamplerCore currently assumes
215 		// a single LOD per four elements, so we sample the image again for each LOD separately.
216 		// TODO(b/133868964) Pass down 4 component lodOrBias, dsx, and dsy to sampleTexture
217 		if(samplerFunction.method == Lod || samplerFunction.method == Grad ||
218 		   samplerFunction.method == Bias || samplerFunction.method == Fetch)
219 		{
220 			// Only perform per-lane sampling if LOD diverges or we're doing Grad sampling.
221 			Bool perLaneSampling = (samplerFunction.method == Grad) || Divergent(As<SIMD::Int>(lodOrBias));
222 			auto lod = Pointer<Float>(&lodOrBias);
223 			Int i = 0;
224 			Do
225 			{
226 				SIMD::Float dPdx;
227 				SIMD::Float dPdy;
228 				dPdx.x = Pointer<Float>(&dsx[0])[i];
229 				dPdx.y = Pointer<Float>(&dsx[1])[i];
230 				dPdx.z = Pointer<Float>(&dsx[2])[i];
231 
232 				dPdy.x = Pointer<Float>(&dsy[0])[i];
233 				dPdy.y = Pointer<Float>(&dsy[1])[i];
234 				dPdy.z = Pointer<Float>(&dsy[2])[i];
235 
236 				SIMD::Float4 sample = s.sampleTexture(texture, uvwa, dRef, lod[i], dPdx, dPdy, offset, sampleId);
237 
238 				If(perLaneSampling)
239 				{
240 					Pointer<Float> rgba = out;
241 					rgba[0 * SIMD::Width + i] = Pointer<Float>(&sample.x)[i];
242 					rgba[1 * SIMD::Width + i] = Pointer<Float>(&sample.y)[i];
243 					rgba[2 * SIMD::Width + i] = Pointer<Float>(&sample.z)[i];
244 					rgba[3 * SIMD::Width + i] = Pointer<Float>(&sample.w)[i];
245 					i++;
246 				}
247 				Else
248 				{
249 					Pointer<SIMD::Float> rgba = out;
250 					rgba[0] = sample.x;
251 					rgba[1] = sample.y;
252 					rgba[2] = sample.z;
253 					rgba[3] = sample.w;
254 					i = SIMD::Width;
255 				}
256 			}
257 			Until(i == SIMD::Width);
258 		}
259 		else
260 		{
261 			Float lod = Float(lodOrBias.x);
262 			SIMD::Float4 sample = s.sampleTexture(texture, uvwa, dRef, lod, (dsx[0]), (dsy[0]), offset, sampleId);
263 
264 			Pointer<SIMD::Float> rgba = out;
265 			rgba[0] = sample.x;
266 			rgba[1] = sample.y;
267 			rgba[2] = sample.z;
268 			rgba[3] = sample.w;
269 		}
270 	}
271 
272 	return function("sampler");
273 }
274 
convertFilterMode(const vk::SamplerState * samplerState,VkImageViewType imageViewType,SamplerMethod samplerMethod)275 sw::FilterType SpirvEmitter::convertFilterMode(const vk::SamplerState *samplerState, VkImageViewType imageViewType, SamplerMethod samplerMethod)
276 {
277 	if(samplerMethod == Gather)
278 	{
279 		return FILTER_GATHER;
280 	}
281 
282 	if(samplerMethod == Fetch)
283 	{
284 		return FILTER_POINT;
285 	}
286 
287 	if(samplerState->anisotropyEnable != VK_FALSE)
288 	{
289 		if(imageViewType == VK_IMAGE_VIEW_TYPE_2D || imageViewType == VK_IMAGE_VIEW_TYPE_2D_ARRAY)
290 		{
291 			if(samplerMethod != Lod)  // TODO(b/162926129): Support anisotropic filtering with explicit LOD.
292 			{
293 				return FILTER_ANISOTROPIC;
294 			}
295 		}
296 	}
297 
298 	switch(samplerState->magFilter)
299 	{
300 	case VK_FILTER_NEAREST:
301 		switch(samplerState->minFilter)
302 		{
303 		case VK_FILTER_NEAREST: return FILTER_POINT;
304 		case VK_FILTER_LINEAR: return FILTER_MIN_LINEAR_MAG_POINT;
305 		default:
306 			UNSUPPORTED("minFilter %d", samplerState->minFilter);
307 			return FILTER_POINT;
308 		}
309 		break;
310 	case VK_FILTER_LINEAR:
311 		switch(samplerState->minFilter)
312 		{
313 		case VK_FILTER_NEAREST: return FILTER_MIN_POINT_MAG_LINEAR;
314 		case VK_FILTER_LINEAR: return FILTER_LINEAR;
315 		default:
316 			UNSUPPORTED("minFilter %d", samplerState->minFilter);
317 			return FILTER_POINT;
318 		}
319 		break;
320 	default:
321 		break;
322 	}
323 
324 	UNSUPPORTED("magFilter %d", samplerState->magFilter);
325 	return FILTER_POINT;
326 }
327 
convertMipmapMode(const vk::SamplerState * samplerState)328 sw::MipmapType SpirvEmitter::convertMipmapMode(const vk::SamplerState *samplerState)
329 {
330 	if(!samplerState)
331 	{
332 		return MIPMAP_POINT;  // Samplerless operations (OpImageFetch) can take an integer Lod operand.
333 	}
334 
335 	if(samplerState->ycbcrModel != VK_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY)
336 	{
337 		// TODO(b/151263485): Check image view level count instead.
338 		return MIPMAP_NONE;
339 	}
340 
341 	switch(samplerState->mipmapMode)
342 	{
343 	case VK_SAMPLER_MIPMAP_MODE_NEAREST: return MIPMAP_POINT;
344 	case VK_SAMPLER_MIPMAP_MODE_LINEAR: return MIPMAP_LINEAR;
345 	default:
346 		UNSUPPORTED("mipmapMode %d", samplerState->mipmapMode);
347 		return MIPMAP_POINT;
348 	}
349 }
350 
convertAddressingMode(int coordinateIndex,const vk::SamplerState * samplerState,VkImageViewType imageViewType)351 sw::AddressingMode SpirvEmitter::convertAddressingMode(int coordinateIndex, const vk::SamplerState *samplerState, VkImageViewType imageViewType)
352 {
353 	switch(imageViewType)
354 	{
355 	case VK_IMAGE_VIEW_TYPE_1D:
356 	case VK_IMAGE_VIEW_TYPE_1D_ARRAY:
357 		if(coordinateIndex >= 1)
358 		{
359 			return ADDRESSING_UNUSED;
360 		}
361 		break;
362 	case VK_IMAGE_VIEW_TYPE_2D:
363 	case VK_IMAGE_VIEW_TYPE_2D_ARRAY:
364 		if(coordinateIndex == 2)
365 		{
366 			return ADDRESSING_UNUSED;
367 		}
368 		break;
369 
370 	case VK_IMAGE_VIEW_TYPE_3D:
371 		break;
372 
373 	case VK_IMAGE_VIEW_TYPE_CUBE:
374 	case VK_IMAGE_VIEW_TYPE_CUBE_ARRAY:
375 		if(coordinateIndex <= 1)  // Cube faces themselves are addressed as 2D images.
376 		{
377 			// Vulkan 1.1 spec:
378 			// "Cube images ignore the wrap modes specified in the sampler. Instead, if VK_FILTER_NEAREST is used within a mip level then
379 			//  VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE is used, and if VK_FILTER_LINEAR is used within a mip level then sampling at the edges
380 			//  is performed as described earlier in the Cube map edge handling section."
381 			// This corresponds with our 'SEAMLESS' addressing mode.
382 			return ADDRESSING_SEAMLESS;
383 		}
384 		else  // coordinateIndex == 2
385 		{
386 			// The cube face is an index into 2D array layers.
387 			return ADDRESSING_CUBEFACE;
388 		}
389 		break;
390 
391 	default:
392 		UNSUPPORTED("imageViewType %d", imageViewType);
393 		return ADDRESSING_WRAP;
394 	}
395 
396 	if(!samplerState)
397 	{
398 		// OpImageFetch does not take a sampler descriptor, but still needs a valid
399 		// addressing mode that prevents out-of-bounds accesses:
400 		// "The value returned by a read of an invalid texel is undefined, unless that
401 		//  read operation is from a buffer resource and the robustBufferAccess feature
402 		//  is enabled. In that case, an invalid texel is replaced as described by the
403 		//  robustBufferAccess feature." - Vulkan 1.1
404 
405 		// VK_EXT_image_robustness requires nullifying out-of-bounds accesses.
406 		// ADDRESSING_BORDER causes texel replacement to be performed.
407 		// TODO(b/162327166): Only perform bounds checks when VK_EXT_image_robustness is enabled.
408 		return ADDRESSING_BORDER;
409 	}
410 
411 	VkSamplerAddressMode addressMode = VK_SAMPLER_ADDRESS_MODE_REPEAT;
412 	switch(coordinateIndex)
413 	{
414 	case 0: addressMode = samplerState->addressModeU; break;
415 	case 1: addressMode = samplerState->addressModeV; break;
416 	case 2: addressMode = samplerState->addressModeW; break;
417 	default: UNSUPPORTED("coordinateIndex: %d", coordinateIndex);
418 	}
419 
420 	switch(addressMode)
421 	{
422 	case VK_SAMPLER_ADDRESS_MODE_REPEAT: return ADDRESSING_WRAP;
423 	case VK_SAMPLER_ADDRESS_MODE_MIRRORED_REPEAT: return ADDRESSING_MIRROR;
424 	case VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE: return ADDRESSING_CLAMP;
425 	case VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER: return ADDRESSING_BORDER;
426 	case VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE: return ADDRESSING_MIRRORONCE;
427 	default:
428 		UNSUPPORTED("addressMode %d", addressMode);
429 		return ADDRESSING_WRAP;
430 	}
431 }
432 
433 }  // namespace sw
434