xref: /aosp_15_r20/external/swiftshader/third_party/SPIRV-Tools/source/opt/loop_utils.cpp (revision 03ce13f70fcc45d86ee91b7ee4cab1936a95046e)
1 // Copyright (c) 2018 Google LLC.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //     http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #include <algorithm>
16 #include <memory>
17 #include <unordered_map>
18 #include <unordered_set>
19 #include <utility>
20 #include <vector>
21 
22 #include "source/cfa.h"
23 #include "source/opt/cfg.h"
24 #include "source/opt/ir_builder.h"
25 #include "source/opt/ir_context.h"
26 #include "source/opt/loop_descriptor.h"
27 #include "source/opt/loop_utils.h"
28 
29 namespace spvtools {
30 namespace opt {
31 namespace {
32 // Return true if |bb| is dominated by at least one block in |exits|
DominatesAnExit(BasicBlock * bb,const std::unordered_set<BasicBlock * > & exits,const DominatorTree & dom_tree)33 inline bool DominatesAnExit(BasicBlock* bb,
34                             const std::unordered_set<BasicBlock*>& exits,
35                             const DominatorTree& dom_tree) {
36   for (BasicBlock* e_bb : exits)
37     if (dom_tree.Dominates(bb, e_bb)) return true;
38   return false;
39 }
40 
41 // Utility class to rewrite out-of-loop uses of an in-loop definition in terms
42 // of phi instructions to achieve a LCSSA form.
43 // For a given definition, the class user registers phi instructions using that
44 // definition in all loop exit blocks by which the definition escapes.
45 // Then, when rewriting a use of the definition, the rewriter walks the
46 // paths from the use the loop exits. At each step, it will insert a phi
47 // instruction to merge the incoming value according to exit blocks definition.
48 class LCSSARewriter {
49  public:
LCSSARewriter(IRContext * context,const DominatorTree & dom_tree,const std::unordered_set<BasicBlock * > & exit_bb,BasicBlock * merge_block)50   LCSSARewriter(IRContext* context, const DominatorTree& dom_tree,
51                 const std::unordered_set<BasicBlock*>& exit_bb,
52                 BasicBlock* merge_block)
53       : context_(context),
54         cfg_(context_->cfg()),
55         dom_tree_(dom_tree),
56         exit_bb_(exit_bb),
57         merge_block_id_(merge_block ? merge_block->id() : 0) {}
58 
59   struct UseRewriter {
UseRewriterspvtools::opt::__anon7842f7d10111::LCSSARewriter::UseRewriter60     explicit UseRewriter(LCSSARewriter* base, const Instruction& def_insn)
61         : base_(base), def_insn_(def_insn) {}
62     // Rewrites the use of |def_insn_| by the instruction |user| at the index
63     // |operand_index| in terms of phi instruction. This recursively builds new
64     // phi instructions from |user| to the loop exit blocks' phis. The use of
65     // |def_insn_| in |user| is replaced by the relevant phi instruction at the
66     // end of the operation.
67     // It is assumed that |user| does not dominates any of the loop exit basic
68     // block. This operation does not update the def/use manager, instead it
69     // records what needs to be updated. The actual update is performed by
70     // UpdateManagers.
RewriteUsespvtools::opt::__anon7842f7d10111::LCSSARewriter::UseRewriter71     void RewriteUse(BasicBlock* bb, Instruction* user, uint32_t operand_index) {
72       assert(
73           (user->opcode() != spv::Op::OpPhi || bb != GetParent(user)) &&
74           "The root basic block must be the incoming edge if |user| is a phi "
75           "instruction");
76       assert((user->opcode() == spv::Op::OpPhi || bb == GetParent(user)) &&
77              "The root basic block must be the instruction parent if |user| is "
78              "not "
79              "phi instruction");
80 
81       Instruction* new_def = GetOrBuildIncoming(bb->id());
82 
83       user->SetOperand(operand_index, {new_def->result_id()});
84       rewritten_.insert(user);
85     }
86 
87     // In-place update of some managers (avoid full invalidation).
UpdateManagersspvtools::opt::__anon7842f7d10111::LCSSARewriter::UseRewriter88     inline void UpdateManagers() {
89       analysis::DefUseManager* def_use_mgr = base_->context_->get_def_use_mgr();
90       // Register all new definitions.
91       for (Instruction* insn : rewritten_) {
92         def_use_mgr->AnalyzeInstDef(insn);
93       }
94       // Register all new uses.
95       for (Instruction* insn : rewritten_) {
96         def_use_mgr->AnalyzeInstUse(insn);
97       }
98     }
99 
100    private:
101     // Return the basic block that |instr| belongs to.
GetParentspvtools::opt::__anon7842f7d10111::LCSSARewriter::UseRewriter102     BasicBlock* GetParent(Instruction* instr) {
103       return base_->context_->get_instr_block(instr);
104     }
105 
106     // Builds a phi instruction for the basic block |bb|. The function assumes
107     // that |defining_blocks| contains the list of basic block that define the
108     // usable value for each predecessor of |bb|.
CreatePhiInstructionspvtools::opt::__anon7842f7d10111::LCSSARewriter::UseRewriter109     inline Instruction* CreatePhiInstruction(
110         BasicBlock* bb, const std::vector<uint32_t>& defining_blocks) {
111       std::vector<uint32_t> incomings;
112       const std::vector<uint32_t>& bb_preds = base_->cfg_->preds(bb->id());
113       assert(bb_preds.size() == defining_blocks.size());
114       for (size_t i = 0; i < bb_preds.size(); i++) {
115         incomings.push_back(
116             GetOrBuildIncoming(defining_blocks[i])->result_id());
117         incomings.push_back(bb_preds[i]);
118       }
119       InstructionBuilder builder(base_->context_, &*bb->begin(),
120                                  IRContext::kAnalysisInstrToBlockMapping);
121       Instruction* incoming_phi =
122           builder.AddPhi(def_insn_.type_id(), incomings);
123 
124       rewritten_.insert(incoming_phi);
125       return incoming_phi;
126     }
127 
128     // Builds a phi instruction for the basic block |bb|, all incoming values
129     // will be |value|.
CreatePhiInstructionspvtools::opt::__anon7842f7d10111::LCSSARewriter::UseRewriter130     inline Instruction* CreatePhiInstruction(BasicBlock* bb,
131                                              const Instruction& value) {
132       std::vector<uint32_t> incomings;
133       const std::vector<uint32_t>& bb_preds = base_->cfg_->preds(bb->id());
134       for (size_t i = 0; i < bb_preds.size(); i++) {
135         incomings.push_back(value.result_id());
136         incomings.push_back(bb_preds[i]);
137       }
138       InstructionBuilder builder(base_->context_, &*bb->begin(),
139                                  IRContext::kAnalysisInstrToBlockMapping);
140       Instruction* incoming_phi =
141           builder.AddPhi(def_insn_.type_id(), incomings);
142 
143       rewritten_.insert(incoming_phi);
144       return incoming_phi;
145     }
146 
147     // Return the new def to use for the basic block |bb_id|.
148     // If |bb_id| does not have a suitable def to use then we:
149     //   - return the common def used by all predecessors;
150     //   - if there is no common def, then we build a new phi instr at the
151     //     beginning of |bb_id| and return this new instruction.
GetOrBuildIncomingspvtools::opt::__anon7842f7d10111::LCSSARewriter::UseRewriter152     Instruction* GetOrBuildIncoming(uint32_t bb_id) {
153       assert(base_->cfg_->block(bb_id) != nullptr && "Unknown basic block");
154 
155       Instruction*& incoming_phi = bb_to_phi_[bb_id];
156       if (incoming_phi) {
157         return incoming_phi;
158       }
159 
160       BasicBlock* bb = &*base_->cfg_->block(bb_id);
161       // If this is an exit basic block, look if there already is an eligible
162       // phi instruction. An eligible phi has |def_insn_| as all incoming
163       // values.
164       if (base_->exit_bb_.count(bb)) {
165         // Look if there is an eligible phi in this block.
166         if (!bb->WhileEachPhiInst([&incoming_phi, this](Instruction* phi) {
167               for (uint32_t i = 0; i < phi->NumInOperands(); i += 2) {
168                 if (phi->GetSingleWordInOperand(i) != def_insn_.result_id())
169                   return true;
170               }
171               incoming_phi = phi;
172               rewritten_.insert(incoming_phi);
173               return false;
174             })) {
175           return incoming_phi;
176         }
177         incoming_phi = CreatePhiInstruction(bb, def_insn_);
178         return incoming_phi;
179       }
180 
181       // Get the block that defines the value to use for each predecessor.
182       // If the vector has 1 value, then it means that this block does not need
183       // to build a phi instruction unless |bb_id| is the loop merge block.
184       const std::vector<uint32_t>& defining_blocks =
185           base_->GetDefiningBlocks(bb_id);
186 
187       // Special case for structured loops: merge block might be different from
188       // the exit block set. To maintain structured properties it will ease
189       // transformations if the merge block also holds a phi instruction like
190       // the exit ones.
191       if (defining_blocks.size() > 1 || bb_id == base_->merge_block_id_) {
192         if (defining_blocks.size() > 1) {
193           incoming_phi = CreatePhiInstruction(bb, defining_blocks);
194         } else {
195           assert(bb_id == base_->merge_block_id_);
196           incoming_phi =
197               CreatePhiInstruction(bb, *GetOrBuildIncoming(defining_blocks[0]));
198         }
199       } else {
200         incoming_phi = GetOrBuildIncoming(defining_blocks[0]);
201       }
202 
203       return incoming_phi;
204     }
205 
206     LCSSARewriter* base_;
207     const Instruction& def_insn_;
208     std::unordered_map<uint32_t, Instruction*> bb_to_phi_;
209     std::unordered_set<Instruction*> rewritten_;
210   };
211 
212  private:
213   // Return the new def to use for the basic block |bb_id|.
214   // If |bb_id| does not have a suitable def to use then we:
215   //   - return the common def used by all predecessors;
216   //   - if there is no common def, then we build a new phi instr at the
217   //     beginning of |bb_id| and return this new instruction.
GetDefiningBlocks(uint32_t bb_id)218   const std::vector<uint32_t>& GetDefiningBlocks(uint32_t bb_id) {
219     assert(cfg_->block(bb_id) != nullptr && "Unknown basic block");
220     std::vector<uint32_t>& defining_blocks = bb_to_defining_blocks_[bb_id];
221 
222     if (defining_blocks.size()) return defining_blocks;
223 
224     // Check if one of the loop exit basic block dominates |bb_id|.
225     for (const BasicBlock* e_bb : exit_bb_) {
226       if (dom_tree_.Dominates(e_bb->id(), bb_id)) {
227         defining_blocks.push_back(e_bb->id());
228         return defining_blocks;
229       }
230     }
231 
232     // Process parents, they will returns their suitable blocks.
233     // If they are all the same, this means this basic block is dominated by a
234     // common block, so we won't need to build a phi instruction.
235     for (uint32_t pred_id : cfg_->preds(bb_id)) {
236       const std::vector<uint32_t>& pred_blocks = GetDefiningBlocks(pred_id);
237       if (pred_blocks.size() == 1)
238         defining_blocks.push_back(pred_blocks[0]);
239       else
240         defining_blocks.push_back(pred_id);
241     }
242     assert(defining_blocks.size());
243     if (std::all_of(defining_blocks.begin(), defining_blocks.end(),
244                     [&defining_blocks](uint32_t id) {
245                       return id == defining_blocks[0];
246                     })) {
247       // No need for a phi.
248       defining_blocks.resize(1);
249     }
250 
251     return defining_blocks;
252   }
253 
254   IRContext* context_;
255   CFG* cfg_;
256   const DominatorTree& dom_tree_;
257   const std::unordered_set<BasicBlock*>& exit_bb_;
258   uint32_t merge_block_id_;
259   // This map represent the set of known paths. For each key, the vector
260   // represent the set of blocks holding the definition to be used to build the
261   // phi instruction.
262   // If the vector has 0 value, then the path is unknown yet, and must be built.
263   // If the vector has 1 value, then the value defined by that basic block
264   //   should be used.
265   // If the vector has more than 1 value, then a phi node must be created, the
266   //   basic block ordering is the same as the predecessor ordering.
267   std::unordered_map<uint32_t, std::vector<uint32_t>> bb_to_defining_blocks_;
268 };
269 
270 // Make the set |blocks| closed SSA. The set is closed SSA if all the uses
271 // outside the set are phi instructions in exiting basic block set (hold by
272 // |lcssa_rewriter|).
MakeSetClosedSSA(IRContext * context,Function * function,const std::unordered_set<uint32_t> & blocks,const std::unordered_set<BasicBlock * > & exit_bb,LCSSARewriter * lcssa_rewriter)273 inline void MakeSetClosedSSA(IRContext* context, Function* function,
274                              const std::unordered_set<uint32_t>& blocks,
275                              const std::unordered_set<BasicBlock*>& exit_bb,
276                              LCSSARewriter* lcssa_rewriter) {
277   CFG& cfg = *context->cfg();
278   DominatorTree& dom_tree =
279       context->GetDominatorAnalysis(function)->GetDomTree();
280   analysis::DefUseManager* def_use_manager = context->get_def_use_mgr();
281 
282   for (uint32_t bb_id : blocks) {
283     BasicBlock* bb = cfg.block(bb_id);
284     // If bb does not dominate an exit block, then it cannot have escaping defs.
285     if (!DominatesAnExit(bb, exit_bb, dom_tree)) continue;
286     for (Instruction& inst : *bb) {
287       LCSSARewriter::UseRewriter rewriter(lcssa_rewriter, inst);
288       def_use_manager->ForEachUse(
289           &inst, [&blocks, &rewriter, &exit_bb, context](
290                      Instruction* use, uint32_t operand_index) {
291             BasicBlock* use_parent = context->get_instr_block(use);
292             assert(use_parent);
293             if (blocks.count(use_parent->id())) return;
294 
295             if (use->opcode() == spv::Op::OpPhi) {
296               // If the use is a Phi instruction and the incoming block is
297               // coming from the loop, then that's consistent with LCSSA form.
298               if (exit_bb.count(use_parent)) {
299                 return;
300               } else {
301                 // That's not an exit block, but the user is a phi instruction.
302                 // Consider the incoming branch only.
303                 use_parent = context->get_instr_block(
304                     use->GetSingleWordOperand(operand_index + 1));
305               }
306             }
307             // Rewrite the use. Note that this call does not invalidate the
308             // def/use manager. So this operation is safe.
309             rewriter.RewriteUse(use_parent, use, operand_index);
310           });
311       rewriter.UpdateManagers();
312     }
313   }
314 }
315 
316 }  // namespace
317 
CreateLoopDedicatedExits()318 void LoopUtils::CreateLoopDedicatedExits() {
319   Function* function = loop_->GetHeaderBlock()->GetParent();
320   LoopDescriptor& loop_desc = *context_->GetLoopDescriptor(function);
321   CFG& cfg = *context_->cfg();
322   analysis::DefUseManager* def_use_mgr = context_->get_def_use_mgr();
323 
324   const IRContext::Analysis PreservedAnalyses =
325       IRContext::kAnalysisDefUse | IRContext::kAnalysisInstrToBlockMapping;
326 
327   // Gathers the set of basic block that are not in this loop and have at least
328   // one predecessor in the loop and one not in the loop.
329   std::unordered_set<uint32_t> exit_bb_set;
330   loop_->GetExitBlocks(&exit_bb_set);
331 
332   std::unordered_set<BasicBlock*> new_loop_exits;
333   bool made_change = false;
334   // For each block, we create a new one that gathers all branches from
335   // the loop and fall into the block.
336   for (uint32_t non_dedicate_id : exit_bb_set) {
337     BasicBlock* non_dedicate = cfg.block(non_dedicate_id);
338     const std::vector<uint32_t>& bb_pred = cfg.preds(non_dedicate_id);
339     // Ignore the block if all the predecessors are in the loop.
340     if (std::all_of(bb_pred.begin(), bb_pred.end(),
341                     [this](uint32_t id) { return loop_->IsInsideLoop(id); })) {
342       new_loop_exits.insert(non_dedicate);
343       continue;
344     }
345 
346     made_change = true;
347     Function::iterator insert_pt = function->begin();
348     for (; insert_pt != function->end() && &*insert_pt != non_dedicate;
349          ++insert_pt) {
350     }
351     assert(insert_pt != function->end() && "Basic Block not found");
352 
353     // Create the dedicate exit basic block.
354     // TODO(1841): Handle id overflow.
355     BasicBlock& exit = *insert_pt.InsertBefore(std::unique_ptr<BasicBlock>(
356         new BasicBlock(std::unique_ptr<Instruction>(new Instruction(
357             context_, spv::Op::OpLabel, 0, context_->TakeNextId(), {})))));
358     exit.SetParent(function);
359 
360     // Redirect in loop predecessors to |exit| block.
361     for (uint32_t exit_pred_id : bb_pred) {
362       if (loop_->IsInsideLoop(exit_pred_id)) {
363         BasicBlock* pred_block = cfg.block(exit_pred_id);
364         pred_block->ForEachSuccessorLabel([non_dedicate, &exit](uint32_t* id) {
365           if (*id == non_dedicate->id()) *id = exit.id();
366         });
367         // Update the CFG.
368         // |non_dedicate|'s predecessor list will be updated at the end of the
369         // loop.
370         cfg.RegisterBlock(pred_block);
371       }
372     }
373 
374     // Register the label to the def/use manager, requires for the phi patching.
375     def_use_mgr->AnalyzeInstDefUse(exit.GetLabelInst());
376     context_->set_instr_block(exit.GetLabelInst(), &exit);
377 
378     InstructionBuilder builder(context_, &exit, PreservedAnalyses);
379     // Now jump from our dedicate basic block to the old exit.
380     // We also reset the insert point so all instructions are inserted before
381     // the branch.
382     builder.SetInsertPoint(builder.AddBranch(non_dedicate->id()));
383     non_dedicate->ForEachPhiInst(
384         [&builder, &exit, def_use_mgr, this](Instruction* phi) {
385           // New phi operands for this instruction.
386           std::vector<uint32_t> new_phi_op;
387           // Phi operands for the dedicated exit block.
388           std::vector<uint32_t> exit_phi_op;
389           for (uint32_t i = 0; i < phi->NumInOperands(); i += 2) {
390             uint32_t def_id = phi->GetSingleWordInOperand(i);
391             uint32_t incoming_id = phi->GetSingleWordInOperand(i + 1);
392             if (loop_->IsInsideLoop(incoming_id)) {
393               exit_phi_op.push_back(def_id);
394               exit_phi_op.push_back(incoming_id);
395             } else {
396               new_phi_op.push_back(def_id);
397               new_phi_op.push_back(incoming_id);
398             }
399           }
400 
401           // Build the new phi instruction dedicated exit block.
402           Instruction* exit_phi = builder.AddPhi(phi->type_id(), exit_phi_op);
403           // Build the new incoming branch.
404           new_phi_op.push_back(exit_phi->result_id());
405           new_phi_op.push_back(exit.id());
406           // Rewrite operands.
407           uint32_t idx = 0;
408           for (; idx < new_phi_op.size(); idx++)
409             phi->SetInOperand(idx, {new_phi_op[idx]});
410           // Remove extra operands, from last to first (more efficient).
411           for (uint32_t j = phi->NumInOperands() - 1; j >= idx; j--)
412             phi->RemoveInOperand(j);
413           // Update the def/use manager for this |phi|.
414           def_use_mgr->AnalyzeInstUse(phi);
415         });
416     // Update the CFG.
417     cfg.RegisterBlock(&exit);
418     cfg.RemoveNonExistingEdges(non_dedicate->id());
419     new_loop_exits.insert(&exit);
420     // If non_dedicate is in a loop, add the new dedicated exit in that loop.
421     if (Loop* parent_loop = loop_desc[non_dedicate])
422       parent_loop->AddBasicBlock(&exit);
423   }
424 
425   if (new_loop_exits.size() == 1) {
426     loop_->SetMergeBlock(*new_loop_exits.begin());
427   }
428 
429   if (made_change) {
430     context_->InvalidateAnalysesExceptFor(
431         PreservedAnalyses | IRContext::kAnalysisCFG |
432         IRContext::Analysis::kAnalysisLoopAnalysis);
433   }
434 }
435 
MakeLoopClosedSSA()436 void LoopUtils::MakeLoopClosedSSA() {
437   CreateLoopDedicatedExits();
438 
439   Function* function = loop_->GetHeaderBlock()->GetParent();
440   CFG& cfg = *context_->cfg();
441   DominatorTree& dom_tree =
442       context_->GetDominatorAnalysis(function)->GetDomTree();
443 
444   std::unordered_set<BasicBlock*> exit_bb;
445   {
446     std::unordered_set<uint32_t> exit_bb_id;
447     loop_->GetExitBlocks(&exit_bb_id);
448     for (uint32_t bb_id : exit_bb_id) {
449       exit_bb.insert(cfg.block(bb_id));
450     }
451   }
452 
453   LCSSARewriter lcssa_rewriter(context_, dom_tree, exit_bb,
454                                loop_->GetMergeBlock());
455   MakeSetClosedSSA(context_, function, loop_->GetBlocks(), exit_bb,
456                    &lcssa_rewriter);
457 
458   // Make sure all defs post-dominated by the merge block have their last use no
459   // further than the merge block.
460   if (loop_->GetMergeBlock()) {
461     std::unordered_set<uint32_t> merging_bb_id;
462     loop_->GetMergingBlocks(&merging_bb_id);
463     merging_bb_id.erase(loop_->GetMergeBlock()->id());
464     // Reset the exit set, now only the merge block is the exit.
465     exit_bb.clear();
466     exit_bb.insert(loop_->GetMergeBlock());
467     // LCSSARewriter is reusable here only because it forces the creation of a
468     // phi instruction in the merge block.
469     MakeSetClosedSSA(context_, function, merging_bb_id, exit_bb,
470                      &lcssa_rewriter);
471   }
472 
473   context_->InvalidateAnalysesExceptFor(
474       IRContext::Analysis::kAnalysisCFG |
475       IRContext::Analysis::kAnalysisDominatorAnalysis |
476       IRContext::Analysis::kAnalysisLoopAnalysis);
477 }
478 
CloneLoop(LoopCloningResult * cloning_result) const479 Loop* LoopUtils::CloneLoop(LoopCloningResult* cloning_result) const {
480   // Compute the structured order of the loop basic blocks and store it in the
481   // vector ordered_loop_blocks.
482   std::vector<BasicBlock*> ordered_loop_blocks;
483   loop_->ComputeLoopStructuredOrder(&ordered_loop_blocks);
484 
485   // Clone the loop.
486   return CloneLoop(cloning_result, ordered_loop_blocks);
487 }
488 
CloneAndAttachLoopToHeader(LoopCloningResult * cloning_result)489 Loop* LoopUtils::CloneAndAttachLoopToHeader(LoopCloningResult* cloning_result) {
490   // Clone the loop.
491   Loop* new_loop = CloneLoop(cloning_result);
492 
493   // Create a new exit block/label for the new loop.
494   // TODO(1841): Handle id overflow.
495   std::unique_ptr<Instruction> new_label{new Instruction(
496       context_, spv::Op::OpLabel, 0, context_->TakeNextId(), {})};
497   std::unique_ptr<BasicBlock> new_exit_bb{new BasicBlock(std::move(new_label))};
498   new_exit_bb->SetParent(loop_->GetMergeBlock()->GetParent());
499 
500   // Create an unconditional branch to the header block.
501   InstructionBuilder builder{context_, new_exit_bb.get()};
502   builder.AddBranch(loop_->GetHeaderBlock()->id());
503 
504   // Save the ids of the new and old merge block.
505   const uint32_t old_merge_block = loop_->GetMergeBlock()->id();
506   const uint32_t new_merge_block = new_exit_bb->id();
507 
508   // Replace the uses of the old merge block in the new loop with the new merge
509   // block.
510   for (std::unique_ptr<BasicBlock>& basic_block : cloning_result->cloned_bb_) {
511     for (Instruction& inst : *basic_block) {
512       // For each operand in each instruction check if it is using the old merge
513       // block and change it to be the new merge block.
514       auto replace_merge_use = [old_merge_block,
515                                 new_merge_block](uint32_t* id) {
516         if (*id == old_merge_block) *id = new_merge_block;
517       };
518       inst.ForEachInOperand(replace_merge_use);
519     }
520   }
521 
522   const uint32_t old_header = loop_->GetHeaderBlock()->id();
523   const uint32_t new_header = new_loop->GetHeaderBlock()->id();
524   analysis::DefUseManager* def_use = context_->get_def_use_mgr();
525 
526   def_use->ForEachUse(old_header,
527                       [new_header, this](Instruction* inst, uint32_t operand) {
528                         if (!this->loop_->IsInsideLoop(inst))
529                           inst->SetOperand(operand, {new_header});
530                       });
531 
532   // TODO(1841): Handle failure to create pre-header.
533   def_use->ForEachUse(
534       loop_->GetOrCreatePreHeaderBlock()->id(),
535       [new_merge_block, this](Instruction* inst, uint32_t operand) {
536         if (this->loop_->IsInsideLoop(inst))
537           inst->SetOperand(operand, {new_merge_block});
538 
539       });
540   new_loop->SetMergeBlock(new_exit_bb.get());
541 
542   new_loop->SetPreHeaderBlock(loop_->GetPreHeaderBlock());
543 
544   // Add the new block into the cloned instructions.
545   cloning_result->cloned_bb_.push_back(std::move(new_exit_bb));
546 
547   return new_loop;
548 }
549 
CloneLoop(LoopCloningResult * cloning_result,const std::vector<BasicBlock * > & ordered_loop_blocks) const550 Loop* LoopUtils::CloneLoop(
551     LoopCloningResult* cloning_result,
552     const std::vector<BasicBlock*>& ordered_loop_blocks) const {
553   analysis::DefUseManager* def_use_mgr = context_->get_def_use_mgr();
554 
555   std::unique_ptr<Loop> new_loop = MakeUnique<Loop>(context_);
556 
557   CFG& cfg = *context_->cfg();
558 
559   // Clone and place blocks in a SPIR-V compliant order (dominators first).
560   for (BasicBlock* old_bb : ordered_loop_blocks) {
561     // For each basic block in the loop, we clone it and register the mapping
562     // between old and new ids.
563     BasicBlock* new_bb = old_bb->Clone(context_);
564     new_bb->SetParent(&function_);
565     // TODO(1841): Handle id overflow.
566     new_bb->GetLabelInst()->SetResultId(context_->TakeNextId());
567     def_use_mgr->AnalyzeInstDef(new_bb->GetLabelInst());
568     context_->set_instr_block(new_bb->GetLabelInst(), new_bb);
569     cloning_result->cloned_bb_.emplace_back(new_bb);
570 
571     cloning_result->old_to_new_bb_[old_bb->id()] = new_bb;
572     cloning_result->new_to_old_bb_[new_bb->id()] = old_bb;
573     cloning_result->value_map_[old_bb->id()] = new_bb->id();
574 
575     if (loop_->IsInsideLoop(old_bb)) new_loop->AddBasicBlock(new_bb);
576 
577     for (auto new_inst = new_bb->begin(), old_inst = old_bb->begin();
578          new_inst != new_bb->end(); ++new_inst, ++old_inst) {
579       cloning_result->ptr_map_[&*new_inst] = &*old_inst;
580       if (new_inst->HasResultId()) {
581         // TODO(1841): Handle id overflow.
582         new_inst->SetResultId(context_->TakeNextId());
583         cloning_result->value_map_[old_inst->result_id()] =
584             new_inst->result_id();
585 
586         // Only look at the defs for now, uses are not updated yet.
587         def_use_mgr->AnalyzeInstDef(&*new_inst);
588       }
589     }
590   }
591 
592   // All instructions (including all labels) have been cloned,
593   // remap instruction operands id with the new ones.
594   for (std::unique_ptr<BasicBlock>& bb_ref : cloning_result->cloned_bb_) {
595     BasicBlock* bb = bb_ref.get();
596 
597     for (Instruction& insn : *bb) {
598       insn.ForEachInId([cloning_result](uint32_t* old_id) {
599         // If the operand is defined in the loop, remap the id.
600         auto id_it = cloning_result->value_map_.find(*old_id);
601         if (id_it != cloning_result->value_map_.end()) {
602           *old_id = id_it->second;
603         }
604       });
605       // Only look at what the instruction uses. All defs are register, so all
606       // should be fine now.
607       def_use_mgr->AnalyzeInstUse(&insn);
608       context_->set_instr_block(&insn, bb);
609     }
610     cfg.RegisterBlock(bb);
611   }
612 
613   PopulateLoopNest(new_loop.get(), *cloning_result);
614 
615   return new_loop.release();
616 }
617 
PopulateLoopNest(Loop * new_loop,const LoopCloningResult & cloning_result) const618 void LoopUtils::PopulateLoopNest(
619     Loop* new_loop, const LoopCloningResult& cloning_result) const {
620   std::unordered_map<Loop*, Loop*> loop_mapping;
621   loop_mapping[loop_] = new_loop;
622 
623   if (loop_->HasParent()) loop_->GetParent()->AddNestedLoop(new_loop);
624   PopulateLoopDesc(new_loop, loop_, cloning_result);
625 
626   for (Loop& sub_loop :
627        make_range(++TreeDFIterator<Loop>(loop_), TreeDFIterator<Loop>())) {
628     Loop* cloned = new Loop(context_);
629     if (Loop* parent = loop_mapping[sub_loop.GetParent()])
630       parent->AddNestedLoop(cloned);
631     loop_mapping[&sub_loop] = cloned;
632     PopulateLoopDesc(cloned, &sub_loop, cloning_result);
633   }
634 
635   loop_desc_->AddLoopNest(std::unique_ptr<Loop>(new_loop));
636 }
637 
638 // Populates |new_loop| descriptor according to |old_loop|'s one.
PopulateLoopDesc(Loop * new_loop,Loop * old_loop,const LoopCloningResult & cloning_result) const639 void LoopUtils::PopulateLoopDesc(
640     Loop* new_loop, Loop* old_loop,
641     const LoopCloningResult& cloning_result) const {
642   for (uint32_t bb_id : old_loop->GetBlocks()) {
643     BasicBlock* bb = cloning_result.old_to_new_bb_.at(bb_id);
644     new_loop->AddBasicBlock(bb);
645   }
646   new_loop->SetHeaderBlock(
647       cloning_result.old_to_new_bb_.at(old_loop->GetHeaderBlock()->id()));
648   if (old_loop->GetLatchBlock())
649     new_loop->SetLatchBlock(
650         cloning_result.old_to_new_bb_.at(old_loop->GetLatchBlock()->id()));
651   if (old_loop->GetContinueBlock())
652     new_loop->SetContinueBlock(
653         cloning_result.old_to_new_bb_.at(old_loop->GetContinueBlock()->id()));
654   if (old_loop->GetMergeBlock()) {
655     auto it =
656         cloning_result.old_to_new_bb_.find(old_loop->GetMergeBlock()->id());
657     BasicBlock* bb = it != cloning_result.old_to_new_bb_.end()
658                          ? it->second
659                          : old_loop->GetMergeBlock();
660     new_loop->SetMergeBlock(bb);
661   }
662   if (old_loop->GetPreHeaderBlock()) {
663     auto it =
664         cloning_result.old_to_new_bb_.find(old_loop->GetPreHeaderBlock()->id());
665     if (it != cloning_result.old_to_new_bb_.end()) {
666       new_loop->SetPreHeaderBlock(it->second);
667     }
668   }
669 }
670 
671 // Class to gather some metrics about a region of interest.
Analyze(const Loop & loop)672 void CodeMetrics::Analyze(const Loop& loop) {
673   CFG& cfg = *loop.GetContext()->cfg();
674 
675   roi_size_ = 0;
676   block_sizes_.clear();
677 
678   for (uint32_t id : loop.GetBlocks()) {
679     const BasicBlock* bb = cfg.block(id);
680     size_t bb_size = 0;
681     bb->ForEachInst([&bb_size](const Instruction* insn) {
682       if (insn->opcode() == spv::Op::OpLabel) return;
683       if (insn->IsNop()) return;
684       if (insn->opcode() == spv::Op::OpPhi) return;
685       bb_size++;
686     });
687     block_sizes_[bb->id()] = bb_size;
688     roi_size_ += bb_size;
689   }
690 }
691 
692 }  // namespace opt
693 }  // namespace spvtools
694