1 //===- DependenceGraphBuilder.cpp ------------------------------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 // This file implements common steps of the build algorithm for construction
9 // of dependence graphs such as DDG and PDG.
10 //===----------------------------------------------------------------------===//
11
12 #include "llvm/Analysis/DependenceGraphBuilder.h"
13 #include "llvm/ADT/EnumeratedArray.h"
14 #include "llvm/ADT/SCCIterator.h"
15 #include "llvm/ADT/Statistic.h"
16 #include "llvm/Analysis/DDG.h"
17
18 using namespace llvm;
19
20 #define DEBUG_TYPE "dgb"
21
22 STATISTIC(TotalGraphs, "Number of dependence graphs created.");
23 STATISTIC(TotalDefUseEdges, "Number of def-use edges created.");
24 STATISTIC(TotalMemoryEdges, "Number of memory dependence edges created.");
25 STATISTIC(TotalFineGrainedNodes, "Number of fine-grained nodes created.");
26 STATISTIC(TotalPiBlockNodes, "Number of pi-block nodes created.");
27 STATISTIC(TotalConfusedEdges,
28 "Number of confused memory dependencies between two nodes.");
29 STATISTIC(TotalEdgeReversals,
30 "Number of times the source and sink of dependence was reversed to "
31 "expose cycles in the graph.");
32
33 using InstructionListType = SmallVector<Instruction *, 2>;
34
35 //===--------------------------------------------------------------------===//
36 // AbstractDependenceGraphBuilder implementation
37 //===--------------------------------------------------------------------===//
38
39 template <class G>
computeInstructionOrdinals()40 void AbstractDependenceGraphBuilder<G>::computeInstructionOrdinals() {
41 // The BBList is expected to be in program order.
42 size_t NextOrdinal = 1;
43 for (auto *BB : BBList)
44 for (auto &I : *BB)
45 InstOrdinalMap.insert(std::make_pair(&I, NextOrdinal++));
46 }
47
48 template <class G>
createFineGrainedNodes()49 void AbstractDependenceGraphBuilder<G>::createFineGrainedNodes() {
50 ++TotalGraphs;
51 assert(IMap.empty() && "Expected empty instruction map at start");
52 for (BasicBlock *BB : BBList)
53 for (Instruction &I : *BB) {
54 auto &NewNode = createFineGrainedNode(I);
55 IMap.insert(std::make_pair(&I, &NewNode));
56 NodeOrdinalMap.insert(std::make_pair(&NewNode, getOrdinal(I)));
57 ++TotalFineGrainedNodes;
58 }
59 }
60
61 template <class G>
createAndConnectRootNode()62 void AbstractDependenceGraphBuilder<G>::createAndConnectRootNode() {
63 // Create a root node that connects to every connected component of the graph.
64 // This is done to allow graph iterators to visit all the disjoint components
65 // of the graph, in a single walk.
66 //
67 // This algorithm works by going through each node of the graph and for each
68 // node N, do a DFS starting from N. A rooted edge is established between the
69 // root node and N (if N is not yet visited). All the nodes reachable from N
70 // are marked as visited and are skipped in the DFS of subsequent nodes.
71 //
72 // Note: This algorithm tries to limit the number of edges out of the root
73 // node to some extent, but there may be redundant edges created depending on
74 // the iteration order. For example for a graph {A -> B}, an edge from the
75 // root node is added to both nodes if B is visited before A. While it does
76 // not result in minimal number of edges, this approach saves compile-time
77 // while keeping the number of edges in check.
78 auto &RootNode = createRootNode();
79 df_iterator_default_set<const NodeType *, 4> Visited;
80 for (auto *N : Graph) {
81 if (*N == RootNode)
82 continue;
83 for (auto I : depth_first_ext(N, Visited))
84 if (I == N)
85 createRootedEdge(RootNode, *N);
86 }
87 }
88
createPiBlocks()89 template <class G> void AbstractDependenceGraphBuilder<G>::createPiBlocks() {
90 if (!shouldCreatePiBlocks())
91 return;
92
93 LLVM_DEBUG(dbgs() << "==== Start of Creation of Pi-Blocks ===\n");
94
95 // The overall algorithm is as follows:
96 // 1. Identify SCCs and for each SCC create a pi-block node containing all
97 // the nodes in that SCC.
98 // 2. Identify incoming edges incident to the nodes inside of the SCC and
99 // reconnect them to the pi-block node.
100 // 3. Identify outgoing edges from the nodes inside of the SCC to nodes
101 // outside of it and reconnect them so that the edges are coming out of the
102 // SCC node instead.
103
104 // Adding nodes as we iterate through the SCCs cause the SCC
105 // iterators to get invalidated. To prevent this invalidation, we first
106 // collect a list of nodes that are part of an SCC, and then iterate over
107 // those lists to create the pi-block nodes. Each element of the list is a
108 // list of nodes in an SCC. Note: trivial SCCs containing a single node are
109 // ignored.
110 SmallVector<NodeListType, 4> ListOfSCCs;
111 for (auto &SCC : make_range(scc_begin(&Graph), scc_end(&Graph))) {
112 if (SCC.size() > 1)
113 ListOfSCCs.emplace_back(SCC.begin(), SCC.end());
114 }
115
116 for (NodeListType &NL : ListOfSCCs) {
117 LLVM_DEBUG(dbgs() << "Creating pi-block node with " << NL.size()
118 << " nodes in it.\n");
119
120 // SCC iterator may put the nodes in an order that's different from the
121 // program order. To preserve original program order, we sort the list of
122 // nodes based on ordinal numbers computed earlier.
123 llvm::sort(NL, [&](NodeType *LHS, NodeType *RHS) {
124 return getOrdinal(*LHS) < getOrdinal(*RHS);
125 });
126
127 NodeType &PiNode = createPiBlock(NL);
128 ++TotalPiBlockNodes;
129
130 // Build a set to speed up the lookup for edges whose targets
131 // are inside the SCC.
132 SmallPtrSet<NodeType *, 4> NodesInSCC(NL.begin(), NL.end());
133
134 // We have the set of nodes in the SCC. We go through the set of nodes
135 // that are outside of the SCC and look for edges that cross the two sets.
136 for (NodeType *N : Graph) {
137
138 // Skip the SCC node and all the nodes inside of it.
139 if (*N == PiNode || NodesInSCC.count(N))
140 continue;
141
142 for (NodeType *SCCNode : NL) {
143
144 enum Direction {
145 Incoming, // Incoming edges to the SCC
146 Outgoing, // Edges going ot of the SCC
147 DirectionCount // To make the enum usable as an array index.
148 };
149
150 // Use these flags to help us avoid creating redundant edges. If there
151 // are more than one edges from an outside node to inside nodes, we only
152 // keep one edge from that node to the pi-block node. Similarly, if
153 // there are more than one edges from inside nodes to an outside node,
154 // we only keep one edge from the pi-block node to the outside node.
155 // There is a flag defined for each direction (incoming vs outgoing) and
156 // for each type of edge supported, using a two-dimensional boolean
157 // array.
158 using EdgeKind = typename EdgeType::EdgeKind;
159 EnumeratedArray<bool, EdgeKind> EdgeAlreadyCreated[DirectionCount]{
160 false, false};
161
162 auto createEdgeOfKind = [this](NodeType &Src, NodeType &Dst,
163 const EdgeKind K) {
164 switch (K) {
165 case EdgeKind::RegisterDefUse:
166 createDefUseEdge(Src, Dst);
167 break;
168 case EdgeKind::MemoryDependence:
169 createMemoryEdge(Src, Dst);
170 break;
171 case EdgeKind::Rooted:
172 createRootedEdge(Src, Dst);
173 break;
174 default:
175 llvm_unreachable("Unsupported type of edge.");
176 }
177 };
178
179 auto reconnectEdges = [&](NodeType *Src, NodeType *Dst, NodeType *New,
180 const Direction Dir) {
181 if (!Src->hasEdgeTo(*Dst))
182 return;
183 LLVM_DEBUG(dbgs()
184 << "reconnecting("
185 << (Dir == Direction::Incoming ? "incoming)" : "outgoing)")
186 << ":\nSrc:" << *Src << "\nDst:" << *Dst
187 << "\nNew:" << *New << "\n");
188 assert((Dir == Direction::Incoming || Dir == Direction::Outgoing) &&
189 "Invalid direction.");
190
191 SmallVector<EdgeType *, 10> EL;
192 Src->findEdgesTo(*Dst, EL);
193 for (EdgeType *OldEdge : EL) {
194 EdgeKind Kind = OldEdge->getKind();
195 if (!EdgeAlreadyCreated[Dir][Kind]) {
196 if (Dir == Direction::Incoming) {
197 createEdgeOfKind(*Src, *New, Kind);
198 LLVM_DEBUG(dbgs() << "created edge from Src to New.\n");
199 } else if (Dir == Direction::Outgoing) {
200 createEdgeOfKind(*New, *Dst, Kind);
201 LLVM_DEBUG(dbgs() << "created edge from New to Dst.\n");
202 }
203 EdgeAlreadyCreated[Dir][Kind] = true;
204 }
205 Src->removeEdge(*OldEdge);
206 destroyEdge(*OldEdge);
207 LLVM_DEBUG(dbgs() << "removed old edge between Src and Dst.\n\n");
208 }
209 };
210
211 // Process incoming edges incident to the pi-block node.
212 reconnectEdges(N, SCCNode, &PiNode, Direction::Incoming);
213
214 // Process edges that are coming out of the pi-block node.
215 reconnectEdges(SCCNode, N, &PiNode, Direction::Outgoing);
216 }
217 }
218 }
219
220 // Ordinal maps are no longer needed.
221 InstOrdinalMap.clear();
222 NodeOrdinalMap.clear();
223
224 LLVM_DEBUG(dbgs() << "==== End of Creation of Pi-Blocks ===\n");
225 }
226
createDefUseEdges()227 template <class G> void AbstractDependenceGraphBuilder<G>::createDefUseEdges() {
228 for (NodeType *N : Graph) {
229 InstructionListType SrcIList;
230 N->collectInstructions([](const Instruction *I) { return true; }, SrcIList);
231
232 // Use a set to mark the targets that we link to N, so we don't add
233 // duplicate def-use edges when more than one instruction in a target node
234 // use results of instructions that are contained in N.
235 SmallPtrSet<NodeType *, 4> VisitedTargets;
236
237 for (Instruction *II : SrcIList) {
238 for (User *U : II->users()) {
239 Instruction *UI = dyn_cast<Instruction>(U);
240 if (!UI)
241 continue;
242 NodeType *DstNode = nullptr;
243 if (IMap.find(UI) != IMap.end())
244 DstNode = IMap.find(UI)->second;
245
246 // In the case of loops, the scope of the subgraph is all the
247 // basic blocks (and instructions within them) belonging to the loop. We
248 // simply ignore all the edges coming from (or going into) instructions
249 // or basic blocks outside of this range.
250 if (!DstNode) {
251 LLVM_DEBUG(
252 dbgs()
253 << "skipped def-use edge since the sink" << *UI
254 << " is outside the range of instructions being considered.\n");
255 continue;
256 }
257
258 // Self dependencies are ignored because they are redundant and
259 // uninteresting.
260 if (DstNode == N) {
261 LLVM_DEBUG(dbgs()
262 << "skipped def-use edge since the sink and the source ("
263 << N << ") are the same.\n");
264 continue;
265 }
266
267 if (VisitedTargets.insert(DstNode).second) {
268 createDefUseEdge(*N, *DstNode);
269 ++TotalDefUseEdges;
270 }
271 }
272 }
273 }
274 }
275
276 template <class G>
createMemoryDependencyEdges()277 void AbstractDependenceGraphBuilder<G>::createMemoryDependencyEdges() {
278 using DGIterator = typename G::iterator;
279 auto isMemoryAccess = [](const Instruction *I) {
280 return I->mayReadOrWriteMemory();
281 };
282 for (DGIterator SrcIt = Graph.begin(), E = Graph.end(); SrcIt != E; ++SrcIt) {
283 InstructionListType SrcIList;
284 (*SrcIt)->collectInstructions(isMemoryAccess, SrcIList);
285 if (SrcIList.empty())
286 continue;
287
288 for (DGIterator DstIt = SrcIt; DstIt != E; ++DstIt) {
289 if (**SrcIt == **DstIt)
290 continue;
291 InstructionListType DstIList;
292 (*DstIt)->collectInstructions(isMemoryAccess, DstIList);
293 if (DstIList.empty())
294 continue;
295 bool ForwardEdgeCreated = false;
296 bool BackwardEdgeCreated = false;
297 for (Instruction *ISrc : SrcIList) {
298 for (Instruction *IDst : DstIList) {
299 auto D = DI.depends(ISrc, IDst, true);
300 if (!D)
301 continue;
302
303 // If we have a dependence with its left-most non-'=' direction
304 // being '>' we need to reverse the direction of the edge, because
305 // the source of the dependence cannot occur after the sink. For
306 // confused dependencies, we will create edges in both directions to
307 // represent the possibility of a cycle.
308
309 auto createConfusedEdges = [&](NodeType &Src, NodeType &Dst) {
310 if (!ForwardEdgeCreated) {
311 createMemoryEdge(Src, Dst);
312 ++TotalMemoryEdges;
313 }
314 if (!BackwardEdgeCreated) {
315 createMemoryEdge(Dst, Src);
316 ++TotalMemoryEdges;
317 }
318 ForwardEdgeCreated = BackwardEdgeCreated = true;
319 ++TotalConfusedEdges;
320 };
321
322 auto createForwardEdge = [&](NodeType &Src, NodeType &Dst) {
323 if (!ForwardEdgeCreated) {
324 createMemoryEdge(Src, Dst);
325 ++TotalMemoryEdges;
326 }
327 ForwardEdgeCreated = true;
328 };
329
330 auto createBackwardEdge = [&](NodeType &Src, NodeType &Dst) {
331 if (!BackwardEdgeCreated) {
332 createMemoryEdge(Dst, Src);
333 ++TotalMemoryEdges;
334 }
335 BackwardEdgeCreated = true;
336 };
337
338 if (D->isConfused())
339 createConfusedEdges(**SrcIt, **DstIt);
340 else if (D->isOrdered() && !D->isLoopIndependent()) {
341 bool ReversedEdge = false;
342 for (unsigned Level = 1; Level <= D->getLevels(); ++Level) {
343 if (D->getDirection(Level) == Dependence::DVEntry::EQ)
344 continue;
345 else if (D->getDirection(Level) == Dependence::DVEntry::GT) {
346 createBackwardEdge(**SrcIt, **DstIt);
347 ReversedEdge = true;
348 ++TotalEdgeReversals;
349 break;
350 } else if (D->getDirection(Level) == Dependence::DVEntry::LT)
351 break;
352 else {
353 createConfusedEdges(**SrcIt, **DstIt);
354 break;
355 }
356 }
357 if (!ReversedEdge)
358 createForwardEdge(**SrcIt, **DstIt);
359 } else
360 createForwardEdge(**SrcIt, **DstIt);
361
362 // Avoid creating duplicate edges.
363 if (ForwardEdgeCreated && BackwardEdgeCreated)
364 break;
365 }
366
367 // If we've created edges in both directions, there is no more
368 // unique edge that we can create between these two nodes, so we
369 // can exit early.
370 if (ForwardEdgeCreated && BackwardEdgeCreated)
371 break;
372 }
373 }
374 }
375 }
376
377 template <class G>
sortNodesTopologically()378 void AbstractDependenceGraphBuilder<G>::sortNodesTopologically() {
379
380 // If we don't create pi-blocks, then we may not have a DAG.
381 if (!shouldCreatePiBlocks())
382 return;
383
384 SmallVector<NodeType *, 64> NodesInPO;
385 using NodeKind = typename NodeType::NodeKind;
386 for (NodeType *N : post_order(&Graph)) {
387 if (N->getKind() == NodeKind::PiBlock) {
388 // Put members of the pi-block right after the pi-block itself, for
389 // convenience.
390 const NodeListType &PiBlockMembers = getNodesInPiBlock(*N);
391 NodesInPO.insert(NodesInPO.end(), PiBlockMembers.begin(),
392 PiBlockMembers.end());
393 }
394 NodesInPO.push_back(N);
395 }
396
397 size_t OldSize = Graph.Nodes.size();
398 Graph.Nodes.clear();
399 for (NodeType *N : reverse(NodesInPO))
400 Graph.Nodes.push_back(N);
401 if (Graph.Nodes.size() != OldSize)
402 assert(false &&
403 "Expected the number of nodes to stay the same after the sort");
404 }
405
406 template class llvm::AbstractDependenceGraphBuilder<DataDependenceGraph>;
407 template class llvm::DependenceGraphInfo<DDGNode>;
408